
© Copyright 1990 by Ben Hekster

Created on the Apple Macintosh Plus with Microsoft Word and Claris MacDraw II
Printed in 10-point Times Roman, diagrams in Avant Garde and source code in Courier

Printing date 2000/10/02

The words played all around our heads
Perhaps we went too far

We'll soldier on until the end again

—We Stand Alone, Ultravox [Rage in Eden]

Preface ii

Preface

This report describes the work towards the fulfillment of the 250-hour assignment course with the
Integrated-Circuit and Electronics group of the University of Twente, under the supervision of Eddie van
Schie and Philip Wolbert, executed during March through June 1990.

The assignment consists of the design and implementation of Phase II of TRIP, the TRENDY Input
Processor. TRENDY is an integrated-circuit fabrication process simulator which takes a textual input file
to specify the steps of the process to be simulated. It is the purpose of the TRIP software to allow users
of TRENDY to instead employ interactive graphical manipulation techniques to specify these steps rather
than typing the actual commands. TRIP will then generate these from the graphical representation.

Actually, a very substantial amount of effort was expended towards the consideration that TRIP could
also be used as an input generator for other text-based applications. Experience has shown [6] that there
could certainly be a great use for such a TRIP system for SUPREM 3 simulations. In this sense the name
‘TRIP’ is a little bit of a misnomer and something like ‘XIP’ might have been more indicative of the
nature of the program. The discussion in this report, however, generally refers to just the TRENDY
simulator.

Phase I of the implementation, described in Design and Partial Implementation of TRIP [8] covered the
design of the TRIP system and the version 1.0 implementations of the Command Manager and Library
Manager. These allow the specification of a particular text-based application's command set in a desig-
nated file, called the Command Dialog Description file, and manage a command library system.

This document describes the Phase II work of the TRIP implementation—specifically, versions 1.0 of the
Dialog Manager, Editor Manager and the Layout Manager, as well as the version 1.1 updates to the
Command Manager. It is responsible for allowing users of TRIP to interactively set and modify param-
eters to simulator commands. It does this through the use of dialogs, which display the command
parameters to a user in an attractive and intuitive manner. The problem of dialog generation is made
more complex than otherwise because the CDD specifications of the command set are not known until
run-time. It is by changing these specifications that dialogs can be generated for different applications.

The final Phase III should complete TRIP with the implementation of what is at least at this point in time
known as the Structure Manager. This would let users manage the interrelationships between individual
commands, as well as generate the actual input for the simulator.

This report

Because the software relies so heavily on it, the reader is assumed to be familiar with the basics of the X
window system and the Xr toolkit. This includes concepts such as window exposures, event processing
and field editors, although the innovative new aspects of X are explained briefly in the text.

Especially because this work is part of a larger and still evolving effort, I have tried to pay particular at-
tention to the creation of a coherent presentation of the way in which the software itself works. This
implies rather extensive coverage of the procedural interfaces of each of the new managers. I believe it is
essential that software created in a cooperative environment be well-documented, or future programmers
may not completely understand its concepts and run the risk of creating inefficient solutions.

The C source code fragments in the text use the syntax of the fairly recently approved ANSI C standard
described in [5], even though the actual code is written for an old-style compiler. I feel this is justified by
the enhanced expressiveness of the new standard. For example, in the new standard function prototypes
allow explicit specification of the parameter type.

Often at the end of a section or chapter, additional material may be found which will be of particular in-
terest to programmers who wish to understand details of the internal operation of the implementation,
perhaps in order to modify or enhance the functionality already provided. These sections, which may be
skipped by readers and programmers who wish only to use the routines and managers as is, are marked
by a vertical bar in the left margin, as this paragraph is.

Preface iii

Because not all the details of the implementation described in this document could be foreseen at the time
of the original definition there are some slight changes to the terminology used in it. In particular, the
scope of the Editor Manager has now been modified—any reference in the original report to “Editor
Manager” should be considered to be replaced either by the new “Dialog Manager”, or by all three of the
new managers mentioned above collectively. In this report, “Editor Manager” refers only to a single
module of TRIP which is used by the Dialog Manager.

The software

In writing the software I have made great pains to attempt to ensure that it was fault-tolerant. In this I
mean that it should always suspect that at some point something may go wrong, and to program defen-
sively so as to avoid unrecoverable situations. Of course, some errors are not directly under the pro-
gram's control and thus are unavoidable—for instance, when a request for a system resource is denied.
However, it would be intolerable for the user to have the entire program terminate just because a memory
allocation request could not be fulfilled. In cases like this, it is most always possible to abort the single
operation which resulted in the request (taking care, and this is also important, to release any resources
obtained so far), and to allow the user to try again when conditions may be more favorable.

On the question of errors—although there is no problem in their detection and propagation to different
parts of the software, signaling errors to the user has not yet been implemented. I would have liked to
have introduced a scheme I have already used experimentally, which provides impatient users with con-
cise and easy-to-understand error messages, and inquisitive users with detailed level-by-level
explanations of what went wrong. The design of such a system was exhibited in [12]. Unfortunately,
there was not sufficient time for me to implement this as well.

Although I believe the finished software performs as specified, some of the advanced features could not
be completed in time for their incorporation in this report. Due to lack of time it was necessary to give
precedence to the writing of the report. Nevertheless, I will attempt to have completed these by the time
of the Phase III implementation. Currently, the finished Phase II software comprises some 4,500 lines of
C code. The Phase I and II software together constitute about 9,000 lines.

Ben Hekster
Tankelanden 5
7542 DR Enschede
053-764091

Index iv

Contents

Preface ii
This report ii
The software iii

1 Introduction 1

Overview... 1
Remarks 4

Other Contributions .. 4
Shell scripts 4
X Window images 4

2 Layout Manager 6

Layout Manager Entities... 6
Regions 6
Layouts 8
Fitting editors 10
Fitting regions 11

Routines .. 12
Region routines 12
Layout routines 14
Debugging routines 16
Internal routines 16

Future Improvements.. 17

3 Editor Manager 18

Using the Editor Manager... 18
Editor classification 18
Editor specification 20

External Editors .. 20
Communicating with the Editor Manager 21
Protocol 22
Writing external editors 24
Editor Manager events 25

Routines .. 27
Protocol interface 28

Future Improvements.. 29

4 Dialog Manager 30

Metavalues.. 31
Definitions 31
Metavalue specification 33
Implementation 33
Flat representation 34

Using the Dialog Manager.. 34
Dialog creation algorithm 35

Using Dialogs ... 36
Dialog buttons 36

Index v

Metavalues in dialogs 37

Routines .. 38
Dialog management 38
Metavalue routines 39

Future Improvements.. 40

5 Command Manager 41

Summary of Changes ... 41
External editors 42

CDD Grammar ... 43

Routines .. 44

Future Improvements.. 46

Bibliography 48

Index 49

Introduction 1

1 Introduction

Ride the arrow to the target
Shake it hip to hip, rocket through the wilderness

Around the world, the trip begins with a kiss

—Roam, B-52s [Cosmic Thing]

TRIP makes extensive use of version 11 of the X Window system (commonly referred to simply as X11)
as well as the Xr (“X-ray”) toolkit for its graphics capabilities. [1-4] Using a portable window system as
well as a very portable language (C) and operating system (UNIX) should allow the software to run on
other systems with no, or at most very minor, modification to the program source.

Although TRIP was originally mandated to run with OSF/Motif, it should in fact run with or without any
window manager at all. During development TRIP ran with the Hewlett-Packard Window Manager
(hpwm), which is actually very similar to the Motif Window Manager (mwm) [11]. Information on using
and customizing the X Window environment may be found in [10].

All the Phase II software written and described here is contained in the /users/eddie/ben directory. The
Phase I files are contained in /users/philip/peter/trip.f. It was not possible to create links to the latter files,
some of which were needed for testing purposes, because the two directories reside on different file
systems. For reasons of efficiency and because of the problems involved in keeping two versions of the
same software consistent, I thought it unwise to make actual copies of these files. Therefore, where they
are needed, I used the full path name of the Phase I files. Depending on which file system is used for the
final development of TRIP, these will have to be changed.

It is interesting to note that whereas many programs and software packages have one external interface,
the Phase II TRIP software has three. First, there is the interface to the rest of the TRIP software,
specifically the Phase I Command Manager and the as yet nonexistent Phase III Structure Manager. Then
there are the external editors, where both sides of the communication were developed from scratch in this
work. Lastly, there is the interface with the TRIP user himself. Some of the complexity of this software
is a result of the fact that two of these entities, the user and the external editors, operate asynchronously
from the main Phase II process.

OVERVIEW

The TRIP system, as it now stands, may be depicted in terms of its modules as follows:

Introduction 2

Command
Manager

Structure
Manager

Library
Manager

Dialog
Manager

Editor
Manager

Layout
Manager

X Xr

Alien

Figure 1-1. Overview of the TRIP system

The ‘alien’ module shown above is not actually part of the TRIP system proper—it is used for validation
and demonstrational purposes but will not be a part of the final TRIP software. It derives its name from
the parasitic creature in the science-fiction classic Alien, in which the organism, like the software module,
latches tightly onto the host's external ‘interface.’ Specifically, it serves to fill the voids between the
Phase I and II managers and to form a temporary bridge to the UNIX command-line interface. In
addition, it composes valuable example code for the benefit of the implementor of the Phase III Structure
Manager, which should help serve to reduce the considerable learning curve involved with learning to use
a new complex window system and toolkit and software modules written by other programmers.

Changes from the original design structure proposed in [8] arose because the Phase II implementation de-
scribed here brought about more work than originally expected, and thereby saw the introduction of two
additional managers. The subsequent implementation of the Phase III software will unquestionably also
introduce further changes to the architecture of the system.

The following figure shows an overview of the software that was implemented during this Phase II of the
project. The outer boxes (with the exception of the ‘external editors’) represent conceptual ‘Managers,’
the inner boxes compilation units (source files). The Managers have been written to be highly
independent of one another in the sense that intermanagerial communication proceeds only through well-
defined entry points and not by random access in each other's private data structures. This means that any
changes in the implementation of one Manager which still adhere to its specifications should not affect
any other. The external editors also exhibit this independence but exist in separate compiled programs
(hence the term external) which may be used by the TRIP system.

Introduction 3

Dialog Manager

Editor Manager Layout Manager

layout

region

editor

intedit

dialog

External editors

temp, …

extedit

meta

tripcd11

Command Manager

Figure 1-2. Overview of the new managers

Each manager has a well-defined function in terms of the rest of the system:

Dialog Manager. The Dialog Manager forms the interface of the system shown in figure 1-2 to the rest
of the TRIP system—in particular, the Command Manager and the yet to be implemented Structure
Manager. It provides the Structure Manager with a very easy-to-use interaction model in the form of di-
alogs. These are special windows in which a user can view and edit parameters of particular simulator
commands. The dialog is an extremely convenient vehicle for the specification of simulation commands,
because, unlike the original textual commands it does not require the user to memorize any command
syntax, the number or types of command parameters, or the legal options for each parameter. The dialog
implicitly (by limiting the selection of parameter values to those actually available) or explicitly (by
warning the user that a specified value is not legal) excludes the possibility of syntax errors in the spec-
ification of the simulator input file. Also, the responsive graphical interface of the dialog should greatly
enhance operator productivity. (Studies to quantify this claim are planned in the context of another
course.) Simply, when the Structure Manager determines that the user wants to add a new or edit an
existing command, it may simply instruct the Dialog Manager to open a dialog which allows the user to
do so.

Editor Manager. A dialog consists of individual editors representing each of the parameters in a simu-
lator command. The Editor Manager provides five basic types of editors, called internal editors: integer
and real number, string, Boolean, and list editors. In special cases, which will depend on the particular
type of output file TRIP is being used to generate, it may be desirable to write more effective special-
purpose editors to replace an internal editor. Therefore, the Editor Manager supports the use of indepen-
dently written external editors which reside in separate source files. External editors may be written to
override an internal editor for a single or an entire class of parameters, or even for the handling of an en-
tire command consisting of many parameters. The efficient management of the additional processes re-
quired is handled entirely transparently by the Editor Manager.

Layout Manager. After having translated a command's parameters into a number of individual editors,
they must be placed together in the dialog window. The Layout Manager takes care of this very effi-
ciently, while maintaining a pleasing layout of editors in the dialog. It allows for the hierarchical
structuring of editors to ensure that related parameters are grouped together within the dialog. To cope
with the varying sizes and shapes of single and groups of editors, the Layout Manager entertains the con-

Introduction 4

cept of an arbitrary two-dimensional shape called a region, and contains some powerful routines for cre-
ating and manipulating them.

Command Manager. The tripcd11 files contain the version 1.1 enhancements to the Command
Manager. This module reads the simulator input command and parameter specifications from the CDD
file and builds a corresponding internal representation. It maintains the structuring of commands into
parameters, and of parameters into data types. It also remembers which commands and data types have
external editors associated with them.

Each of these managers is discussed separately in the following chapters. The programmer implementing
the completing Phase III of TRIP should probably need to concern himself only with the Dialog and
Command Manager information in this document. Programmers writing external editors need only the
information in the Editor Manager chapter. Eventual users of TRIP who want to write or modify the
CDD file will also find valuable information on the syntax of parameter specifications in the Editor
Manager chapter.

Remarks

It is painfully obvious that the current hardware configuration of the ICE group's Hewlett-Packard
computer system is inadequate to run the proposed software. Although the TRIP program itself would
seem to make only very modest demands, the cumulative claims on the resources of the system by both
the TRENDY simulator and the X window system are simply too great. Many a time I was not able to
start X at all, or when I could, to compile and link a moderately-sized file or do some printing because of
insufficient swap space, too many running processes or a full file system. However, running the software
under these circumstances has made me more acutely aware of the need for efficient and defensive
programming, and the program is probably the better for it.

Although the documentation [13] mentions it, the compiler on our system does not recognize the new
ANSI C specification compilation mode (-Aa). This is a shame, because the ANSI specification offers
much improved error-detection over the original definition.

OTHER CONTRIBUTIONS

Various smaller products were written for supporting the development of this software.

Shell scripts

Because I was not working under my own account I wrote a personalized shell script, xbs, which replaces
the existing script xs. Besides defining some personally used environment variables, it changes the
$HOME directory to ‘ben’ before starting the X Window system. This is important, because it allows
another .Xdefaults file to be used than the one in the original home directory /users/eddie. This new X
defaults file could be used for experimentation without disturbing the original account owner's settings. It
is likely that the Phase III implementation will include the definition of some .Xdefaults variables which
can be set by users to change window colors and other program attributes.

Another shell script, bake (for beep make), is built on top of the UNIX make command. Although syn-
tactically equivalent, it automatically invokes make as a background process, suppresses printing of the
commands it generates and echoes a beep to the terminal after completion. Errors occurring during the
process are still displayed. This was a lot easier to use concurrently during editing sessions than make
itself.

X Window images

The X window illustrations in this report are the actual X images. They were obtained by first converting
the windows to bit map files with the aid of a specially-written program:

bitimage [options] [filename]

Introduction 5

The routine allows the user to select an area of the screen to be imaged by dragging a rectangle over the
screen with the mouse. The bit map is then computed and written to standard output or a specified file.
To demonstrate the effect of the action, the command shows the bit map by drawing it over the original
image. The following options are recognized:

-w ID Image the drawable (i.e. Window or off-screen PixMap) with identification ID instead of
interactively selecting a screen rectangle.

-a leftxtopxwidthxheight
Image a specified area of the screen instead of interactively selecting a rectangle. With the
-w option, image a specified area of that drawable. By default, the entire screen or
drawable is imaged.

-p plane Use the specified bit plane of the image's pixel map as the bit map. By default, bit plane 0
is used.

-s Save original image—don't draw the output bit map over the original image.

The bit map files were then transferred to the Macintosh, where they were converted by another purpose-
built program to a Clipboard picture:

Xbitmap [-r] [filename]

This MPW (Macintosh Programmer's Workshop) tool reads the data from standard input or a specified bit
map file, and converts it into a QuickDraw picture which is put on the Clipboard. The picture may then
be pasted into a word processor file, a ‘paint program’ for further editing, or whatever. The picture is
scaled so that its size matches that of the image as it appeared on the screen it was captured on.

-r Don't scale the bit map but use the original resolution of the image. This will cause the
image's size and aspect ratio to be distorted.

The Macintosh always retains the full detail of the image, so that each output device renders the image at
its own highest possible resolution.

Interested parties may obtain the Xbitmap tool from the author.

Layout Manager 6

2 Layout Manager

And where do we go?
Where do we go from here?

—With A Shout (Jerusalem), U2 [October]

The Layout Manager is the part of TRIP which handles requests from the Dialog and Editor Managers to
build collections of Xr field editors or other undefined entities in an X window. It determines the optimal
positioning of these editors with respect to one another and places them together in an Xr panel, which is
then ready to be used by the Dialog Manager. Although entities other than Xr editors can also be
positioned, they are not placed in the panel and must therefore be managed separately by the caller.

The Layout Manager consists internally of the actual layout-managing routines (in the layout.c, .h and .o
files) and an additional independent set of region-handling routines (region.c, .h and .o). The region
package might perhaps be useful to other applications as well.

Some of the Layout Manager routines are not actually used but have been provided to support future ex-
pansion. Notably, some of the advanced region-handling capabilities may be useful to programmers
implementing new region evaluation functions.

LAYOUT MANAGER ENTITIES

The Layout Manager uses several entities in order to define and evaluate dialog layouts. The following
types are defined for general use:

typedef enum {false, true} Boolean; /* Boolean */

typedef struct {
short x, y;
} Point; /* point */

typedef struct {
short left, top,

right, bottom;
} Rect; /* rectangle */

Note that this rectangle definition is different from that of Xr, which records its upper left corner and
width and height.

Regions

Because regions are currently almost exclusively used by the Layout Manager internally, you may not
need to read any of the region sections at all. The region capability is interesting, however, and available
for general use.

A region is an arbitrary two-dimensional shape. Regions are used by the Layout Manager to assimilate
and keep track of the screen area occupied by individual field editors in a dialog and for locating and
evaluating unused areas of a layout for placing other field editors. The region concept in software was
derived from QuickDraw [7, pp. I-141-142, I-181 ff.].

Layout Manager 7

They are an extremely flexible way of representing shapes in a plane. They can have any form, size, con-
sist of disjoint parts and even have holes in them. For example, both of the shapes shown below are re-
gions. However, only the one on the right is likely to represent screen area occupied by field editors.

Figure 2-1. Regions

Regions are created, destroyed and changed by calling Layout Manager routines. For example, routines
exist for creating empty regions (i.e., regions that contain no points), rectangular regions, and for creating
the union, intersection, difference or exclusive-or of two regions.

Even though the definition of the region and the routines dealing with them are capable of supporting
regions in the most general form described above, currently the only routines that create new regions
‘from scratch’ create either empty or rectangular ones. Regions are currently only used to represent dia-
log layouts, and the usefulness of, say, triangular or polygonal field editors has not yet been ascertained.
Moreover, the X Window system supports only rectangular windows. The region-handling routines are
especially efficient when dealing with regions composed of rectangles. However, should the need for
different shapes arise, routines to create them can easily be written.

Although Release 11 of X Window (but not X10) also has a region definition capability and provides
similar routines to deal with them, it not surprisingly has no built-in capability to allow an algorithm to
evaluate the suitability of a particular region to represent a dialog layout. Unfortunately the data type in
X is opaque, which means that the internal format of the region data is undefined from the X user's point
of view and therefore cannot be accessed or analyzed by the Layout Manager.

Unless you are writing routines to create differently-shaped regions, or a layout evaluation routine
(described below), there should normally be no need to directly access the region data structure.

The region representation and the routines operating on them unexpectedly proved to be extremely effi-
cient and compact. In fact, some powerful routines which are not yet used by the Layout Manager have
already been provided because their implementation was so straightforward. A region is represented by a
variable of type Region, which is a pointer to a variable-length data structure:

typedef struct {
short size; /* number of shorts */
short data[0]; /* region data */
} *Region;

Size indicates the number of shorts in the entire record, including size itself. The data describing the
actual shape of the region is contained in the variable-length array data. Because the region data is an
array of short variables, the maximum extent of the region is known to be at least the rectangle (–32768,
–32768) - (32767, 32767)†, as guaranteed by the C standard. This should be sufficient to cover most dis-
play devices for some time to come. The region data format is shown with the aid of a small example:

† Depending on the hardware used. The system on which TRIP currently runs uses a 16-bit short

Layout Manager 8

0 20 ∞

10 30 ∞

0 20 ∞

10 30 ∞

∞

0 10 20 30 0 10 20 30 0 10 20 30

0

10

20

30

Figure 2-2. Region data

The region data consists of sequences of y-coordinates and scan lines. A scan line is a one-dimensional
structure, itself consisting of a sequence of continuous and disjoint spans, or horizontal line segments:

typedef short ScanLine[maxScanLineSect + 1];

The ScanLine data type contains the beginning and ending x-coordinates of the consecutive spans in a
scan line in increasing order. The definition of the upper bound of the array has significance only when
variables of this type are actually allocated, as they are within some routines for temporary storage
(RegionMunger and SectExtRgn, described below). Within the region definitions themselves the
ScanLine type is only conceptual, since scan lines may actually have an unlimited number of spans.

Warning: Because of the upper bound in the ScanLine array, some region operations may fail if a
region changes state in more than 12 spans on a single scan line. This would not appear to be a
problem as it is very unlikely that more than twelve disjoint editors could ever even be found on a
single scan line. However, the upper limit can be adjusted by changing the value of the constant
maxScanLineSect.

A scan line at a particular y-coordinate in a region specifies where the region changes 'state' on this scan
line with respect to the former, i.e. from 'inside' to 'outside' the region or vice versa. Just as the represen-
tation itself is subdivided, nearly all of the region routines similarly reduce two-dimensional region
problems to sequences of analogous one-dimensional scan line problems. The region representation is
unique, so that two regions are equal if and only if the region data is equal and of the same length. The
last span in a scan line and the last scan line in a region are delimited by a special value infinity
(represented by ‘∞’ in the figure), which is the largest representable short positive integer.

Although the region size field is not necessary for the region representation, it is used in region-handling
routines to estimate the size of the result region when operations are performed on them.

The region representation derives its efficiency from the fact that it takes advantage of geometric locality
of spatial objects [15, pp. 375, 561] by recording only the scan lines that change (scan line coherence)
and then only the spans in the scan line which have changed (edge coherence).

Layouts

The Layout Manager defines and maintains data structures called layouts, which contain the information
needed to build and run dialogs consisting of individual editors. Layouts, like regions, are created dy-
namically and referred to by pointers. They are created and maintained by calling Layout Manager rou-
tines so there should normally be no need to access them directly. Any number of layouts may be in ex-
istence at the same time, allowing more than one command editor to be active at once.

When a layout is first created it is open. Editors can be added to a layout only while it is open. After all
the editors in the dialog have been added to the layout it must be closed. At this point, the Layout
Manager completes whatever operations are necessary on the layout structure and makes the editors ap-
pear in the layout window. There is no way to reopen a layout after it has been closed.

Although the current implementation of the Command Manager makes no provisions for the grouping of
parameters, one can see the advantages such an ordering would have. It would clearly be desirable for
groups of related parameters to appear in a spatially coherent manner in the dialog. Without any param-
eter structuring facility, however, there is no guarantee that related parameters will appear anywhere near

Layout Manager 9

one another. As the Command Manager imposes no structuring between parameters, it is also not
possible for the Layout Manager itself to decide which parameters to take as related groups.

With a future extension of the Command Manager in mind, the Layout Manager already fully supports
parameter structuring. Editors belonging to related parameters may be laid-out into a lower-level sub-
layout. The sublayout representing the parameter group is then itself positioned in its entirety into the
higher-level layout, ensuring that the related parameters stay correctly positioned with respect to one
another.

As sublayouts may be opened within other sublayouts, there is no inherent limit to the depth sublayout
nesting.

The Layout Manager builds command dialogs using a feature of the Xr library called panels, which are
simply collections of field editors in a window.

A layout is represented internally by the following structure:

typedef struct {
xrPanelInfo info; /* Xr panel information */
xrPanel *panel; /* Xr panel */
INT32 allocFields; /* # of allocated panel fields */
LevelLayout *level; /* current level in layout */
} Layout; /* layout */

Info is an xrPanelInfo structure containing the definition for the panel[1]. It is assembled through specific
Layout Manager calls which add editors to the layout. When the layout definition is complete the panel is
created by passing this structure to Xr.

When the panel is created a pointer to it is returned by Xr and stored in the panel field by the Layout
Manager. The field is NULL while the layout is open.

AllocFields contains the physical number of xrPanelField structures currently allocated for the layout.
The xrPanelInfo structure contains, among other things, a pointer to a list of these structures—one for
each editor in the panel. The number of xrPanelFields allocated is not necessarily the same as the number
of editors. In order to reduce overhead the Layout Manager allocates a number of these fields at once so
that most additions of editors do not lead to memory reallocation requests and therefore do not exacerbate
fragmentation problems.

Level is a pointer to a linked list of LevelLayout structures. One of these structures is inserted at the head
of the list when the layout is first created, and whenever a sublayout is opened. Thus, the LevelLayout
pointed to by this field is always associated with the 'current' sublayout, and the last LevelLayout in the
list corresponds to the main layout itself. When the layout definition for the current sublayout is
complete, the information in the structure at the head of the list is propagated to the next higher level
structure before it is removed. The structure is as follows:

typedef struct _LevelLayout {
Region rgn; /* level's layout region */
INT32 numFields; /* # of editors in level */
struct _LevelLayout *level; /* next level in layout */
} LevelLayout; /* layout */

Rgn is the region describing the union of the space currently occupied by all the individual field editors in
this level of the layout. In other words, if a LevelLayout describes a sublayout, rgn will be fitted in its
entirety into the next LevelLayout's region. When the sublayout is first created this field is initialized to
an empty region.

NumFields is the number of field editors in this level of the layout.

Level is a pointer to the LevelLayout structure of the next higher level in the sublayout hierarchy. The
structure at the end of the list (representing the entire layout itself) has level set to NULL.

Layout Manager 10

Fitting editors

Besides the more general region-handling routines, the Layout Manager also uses a powerful routine for
the optimal positioning of individual field editors within a dialog (see “Region fitting,” below).

Basically, the routine works by scanning the region occupied by the editors which have already been
placed for candidate locations for the new editor. It checks each of these locations to see if there is suffi-
cient empty space available for the editor to fit. In most cases, it will even find ‘hidden’ space in holes
inside the region. If the extent (the minimal rectangle completely surrounding a region) of the dialog
region must grow in order to accumulate the additional editor, additional space for the dialog is
‘allocated’ in a specified extension direction.

The extension direction affects the final appearance of the dialog because it changes the way in which in-
dividual editors are located with respect to one another, as illustrated in the following figure:

screen

extent

editor

SE SW

NW NE

1
2 3

Figure 2-3. Extension direction

The most common extension direction would most likely be towards the southeast, which orders new
fields as much as possible in the reading direction of Western languages, i.e., left to right and top to bot-
tom. It might also be set according to a user's preference or to the writing direction of a particular lan-
guage's script. For example, it would be more natural for readers of Hebrew to order the fields right to
left and top to bottom, i.e., towards the southwest. Such a preference should be defined as an .Xdefaults
variable [3] which can be defined separately by individual users of the program.

Note: Because the Xr panel mechanism used by the Layout Manager requires that the upper left cor-
ner of the panel be located at the origin, the only currently effective extension direction is southeast.
Other toolkits such as Xt, will most likely not have this asinine restriction.

Note also that the final appearance of the dialog is strongly dependent on the order in which editors are
added to the dialog.

For each location which can accommodate the region occupied by the editor, the routine calls a region
evaluation function supplied to it by the caller to select the ‘best’ of these locations. The final region
and editor location are then returned to the caller. The region evaluation function ‘looks’ at a region rep-
resenting a particular dialog layout and uses some criterion for determining its esthetic quality. It might,
for example, take into consideration the size and aspect ratio of the region extent or the amount of empty
space on the edges of and inside the region.

The region evaluation function currently used by the Layout Manager is a very small and fast one which
rates regions on the basis of the area of the minimal square extent as well as the length of the perimeter of
the actual extent. Using the area of the smallest square completely surrounding the region encourages tall
regions to grow wider rather than taller, and wide regions to grow taller rather than wider. Incorporating
the perimeter of the actual extent gives preference to smaller (more compact) regions.

Layout Manager 11

destRgn

fitRgn

anchor point

¿
?

!

(a) (b)

(c) (d)

1 2 3 4

Figure 2-4. Region fitting selection process

Fitting regions

The Layout Manager uses a simple but effective algorithm for finding space for a new region (called the
fitRgn) in an existing region (called the destRgn). Refer to figure 2-4(a).

Depending on the specified extension direction, the fitRgn is assigned an anchor point. This point is the
corner of the fitRgn opposite to the extension direction. In the figure the extension direction is southeast,
so the anchor point is the northwest corner of the fitRgn. The anchor point is matched with each internal
corner of the destRgn in turn. (b.)

In such a location, if the fitRgn overlaps the destRgn in any area the fitRgn is shifted horizontally in the
direction nearest to the extension direction (i.e., east or west). This enables it to be placed along the de-
stRgn even if it originally overlapped. The fitRgn is shifted until it fits, or until any previously
nonoverlapping parts of the fitRgn start to overlap the destRgn (c.) This prevents the fitRgn from floating
over the destRgn into an area where fitRgn placement location candidates have already been selected.
For example, in 2-4(b), the regions marked 1, 2 and 3 would each end up with region 4. Note that in rare
cases the algorithm will not correctly find empty space because it does not attempt also to shift the region
into its vertical component extension direction. I cannot see a way of doing this without significantly
slowing down the algorithm, and the potential benefits seem marginal.

Finally, all resultant locations are evaluated and the region with the highest evaluation score is selected as
the appropriate location. (d.) Confirm that the operations described here ensure the destRgn is extended
only in the assigned extension direction.

Although this simple method is adequate for regions without many edges, its efficiency is bound to be too
low when operating on regions with, for example, curved sides.

Layout Manager 12

ROUTINES

Besides regular testing on the HP 9000, the region routines also ran successfully without modification on
an Apple Macintosh.

Region routines

The region package does not need to be initialized. Routines that create new regions return NULL for the
region if the space for it could not be allocated. It is not legal to pass NULL values for region pa-
rameters.

Region NewRgn();

Returns a new empty region, i.e., one that contains no points.

Region NewRectRgn(int left, int top, int right, int bottom);

Returns a new region containing only the points within the rectangle defined by the given four boundary
coordinates. If the specified rectangle is an empty rectangle, i.e. one with right ≤ left or bottom ≤ top, it
creates an empty region.

void DisposeRgn(Region r);

Disposes of the memory associated with the region. Call this routine after you're completely done with
the region. After calling DisposeRgn, the region may not be referenced again.

Region CopyRgn(Region r);

Creates and returns a new copy of the region. The new region may be used independently and without
affecting the original.

void CornerRgn(Point *corner, Region rgn, short direction);

This routine examines the given region and stores the location of one of its corners in corner. The partic-
ular corner returned depends on direction, which should be one of the four direction constants defined for
the FitRgn routine, below. If the region is empty, CornerRgn always returns the origin (0, 0).

Since regions need not be rectangular, the definition of a corner is somewhat ambiguous. The rule is that
CornerRgn first looks as far north or south in the region as possible, and then extends as far east or west
as possible. The result is that CornerRgn may not return the eastern- or westernmost point in the region.
To find the eastern- or westernmost coordinate in a region, use ExtentRgn.

void ExtentRgn(Rect *extent, Region rgn);

Returns in extent the smallest rectangle completely enclosing all the points in the given region. If the
region is empty, ExtentRgn returns the empty rectangle (0, 0)-(0, 0).

void OffsetRgn(Region rgn, Point offset);

Changes the specified region so that all the points in it will have been translated by an amount offset with
respect to the original region.

Note that OffsetRgn changes the region data of the given region. To keep the original region, call
CopyRgn first and then pass the copied region to OffsetRgn.

Layout Manager 13

Boolean SectRgn(Region rgnA, Region rgnB);

Returns TRUE if the regions intersect at any point, i.e., if any point in the coordinate plane is a member
of both regions.

SectRgn calls the more general internal routine SectExtRgn.

Region UnionRgn(Region rgnA, Region rgnB);

Region SectionRgn(Region rgnA, Region rgnB);

Region DiffRgn(Region rgnA, Region rgnB);

Region XorRgn(Region rgnA, Region rgnB);

Each of the above routines create and return a new region containing either the union, intersection, differ-
ence or exclusive-or of the two given operand regions, as illustrated in the following figure. RgnA and
rgnB may be the same regions.

rgnA

rgnB

SectionRgnUnionRgn DiffRgn XorRgn

Figure 2-5. Operations on regions

The routines call a common internal routine RegionMunger with an additional opcode specifying the
particular operation to be performed. RegionMunger temporarily allocates space twice the size of the
operand regions (the maximum possible size of the output region) but then reallocates the space to match
the actual result region size.

Region FitRgn(Region destRgn, Region fitRgn, Point *offset, short
extend, int (*eval)());

Calculates the optimal union region, according to a specified region evaluation function, of a given desti-
nation region and an additional region to be 'fitted' into it so that it nowhere intersects the destination
region. It returns a new region representing the union of the two regions. FitRgn is called by
EditorLayout and RgnLayout when adding new field editors to the layout, to find the best place for it in
the dialog.

DestRgn specifies the destination region—this region will typically represent the space occupied by the
field editors which have already been placed in the dialog. FitRgn specifies the space required by the ad-
ditional editor. It is not necessary for either destRgn or fitRgn to ‘originate’ at (0, 0). If the destination
region is empty, one of the corners of the fitRgn will be located at the origin in the union (which one de-
pending on the value of extend).

Upon return, the offset will indicate the amount of offset which has been applied to fitRgn to move it to
its location in destRgn. For example, if a certain point of fitRgn is located at (0, 0) the same point of the
fitted region in the union can be found at offset.

Layout Manager 14

Extend specifies the direction in which the destination region may be expanded. One of the following
constants should be used:

#define northWest 0 /* towards northwest */
#define northEast 1
#define southWest 2
#define southEast 3

Eval is a pointer to a region evaluation function of the form

int MyRegionEvaluator(Region r);

Given a region representing a dialog layout the region evaluator should return an integer value indicating
its desirability, with higher numbers indicating a more desirable layout. The numbers returned by the
function may be negative, but should exclude the single most negative integer.

Layout routines

Before using any of the other layout routines the Layout Manager should be initialized by calling
InitLayout. This sets some global variables used internally.

New open layouts may be created by calling NewOpenLayout. Editors can be added while it is open by
calling EditorLayout. The layout may subsequently be closed by calling CloseLayout. When the dialog
is no longer needed, the layout may be disposed of together with its editors by calling DisposeLayout.

Sublayouts may be started on open layouts or sublayouts by calling OpenSubLayout. Any editors added
using EditorLayout between this call and CloseSubLayout are added to the sublayout.

RgnLayout may be used instead of EditorLayout when space for a region needs to be reserved in the lay-
out without adding an editor. This is useful, for example, when the region is not occupied by an Xr field
editor, or if the editor does not run in the same process and therefore cannot be added to the panel.

void InitLayout();

Initializes some internal variables of the Layout Manager.

Layout *NewOpenLayout(Window window);

Creates and returns a new open layout in the specified window, or NULL if it could not be created.

For best results, the window should not be mapped until after the layout is closed, because the window
will be moved and resized at that time. To avoid disconcerting the user, the system should not appear to
be changing the location of windows on the screen of its own accord.

xrPanel *CloseLayout(Layout *layout);

Closes the specified layout. An Xr panel is created containing the editors in the layout, which are then
displayed in the layout window. Regardless of its previous size, the window is resized to completely
surround the editors and is centered on the current display.

If the operation was successful, a pointer to the newly created panel is returned by the routine. This
pointer is needed to gather input from the panel or otherwise control the editors in it. Note that once the
layout is closed the Layout Manager does not touch the layout or the editors themselves at all until the
layout is disposed of.

Layouts to which no editors at all have been added do not cause a panel to be created. In this case, or if
any error occurred, NULL is returned by the routine.

It is not possible add editors or regions to a layout after it has been closed.

Excess allocated xrPanelFields are also reclaimed at this time.

Layout Manager 15

void DisposeLayout(Layout *layout);

Disposes of a layout and all of the structures associated with it, and removes the panel with its editors
from the layout window. The layout window is left unchanged. Call this routine after the layout is com-
pletely done with.

DisposeLayout can also be used with an open layout to release any resources occupied by it, if, for exam-
ple for some reason construction of the layout could not be completed.

Boolean OpenSubLayout(Layout *layout);

Opens an empty sublayout in the specified open layout, returning TRUE if successful. Any editors or
regions added to the layout while the sublayout is open will be laid-out as a group into the next-higher
level (sub)layout.

Every call to OpenSubLayout must be balanced by a call to CloseSubLayout, or CloseLayout will fail.

void CloseSubLayout(Layout *layout);

Closes the last opened sublayout. The editors in the sublayout are 'moved' to and fitted into the next
higher-level (sub)layout.

It is absolutely allowable to call OpenSubLayout again after calling CloseSubLayout. This will create a
different new empty sublayout at the same lower level.

Boolean EditorLayout(Layout *layout, xrEditor *(*editor)(), void
*editorInfo);

Adds an Xr field editor to the open (sub)layout and returns TRUE if it was successful. Editors are not
displayed until the layout is closed.

Editor is a pointer to the Xr editor function such as XrScrollBar. All the Xr editors have a common entry
call of the form

xrEditor *XrEditor(xrEditor *instance, INT32 message, INT8 *data);

It is possible to write your own field editors which may be added to a layout, by carefully following the
Xr protocol for field editors [1, appendix B] and passing a pointer to the entry point of your editor to
EditorLayout.

EditorInfo should point to an appropriate editor information structure (e.g., xrScrollBarInfo for an Xr
scroll bar), which must be completely initialized except for the editor rectangle origin and the editor
window. The size of the editor rectangle should already have been determined for the editor, either by
calling the editor routine with MSG_SIZE to let the editor calculate its own size or by setting it directly.
(In the latter case it is probably judicious to send the editor MSG_SIZE anyway to ensure the specified
size can be supported by the editor.) The structure contents will be changed by EditorLayout so as to
correctly position the editor within the dialog.

It is important that the editor information structures remain in existence until the layout is disposed of.
The Layout Manager will not automatically release any resources used by the information structures.
Also, any such structure may be used in only one layout at a time.

Boolean RgnLayout(Layout *layout, Point *offset, Region region);

Adds the region to the specified layout without adding an editor to the layout panel. Returns TRUE if
successful. Offset is set to the amount by which the region was translated in order to fit in the layout.

This routine is useful when the specified region is not or cannot be associated with an Xr field editor, or
in general to avoid certain regions of the layout being occupied by editors.

Layout Manager 16

Debugging routines

The following two routines are provided for debugging purposes, and are compiled only if the symbol
DEBUG is defined at compilation. This may be done directly in the source file by writing

#define DEBUG

or from the UNIX command line by specifying the -DDEBUG option to the cc command.

void PrintRgn(Region r)

Prints all the scan lines with their y-coordinates in the region, that is, each scan line where the region
changes.

static void *PrintScanLine(ScanLine *theScanLine)

Prints the spans in the scan line and returns a pointer to the first byte following the last of the scan line
data. If the scan line was part of a region, this would be the y-coordinate of the next scan line in the re-
gion.

Internal routines

Next, a few of the more important routines used internally are highlighted.

static void *DeltaScanLine(ScanLine new, ScanLine old, ScanLine
delta);

Returns the exclusive-or of scan lines old and delta in the scan line new. In other words, new is the scan
line which results when the spans in delta indicate where old changes state. Old and delta should be valid
scan lines, that is, their spans must be minimal (i.e., have no two distinct adjoining spans) and sorted in
order of increasing x-coordinate. DeltaScanLine correctly handles cases where spans in old and delta
combine to form larger single spans or cancel each other out.

The routine returns a pointer to the first byte following the end of new. This is especially useful when the
routine is used to create new region data, in which a new scan line will immediately follow the scan line
just returned.

DeltaScanLine is used by various routines to keep track of the current ‘state’ of a region at a particular y-
coordinate while scanning through the region's region data.

Warning: The routine does not check to see if all the spans of the result scan line actually fit into the
array. At worst it may require less than twice the storage required by the two input scan lines.

static void *ScanLineMunger(ScanLine slny, ScanLine sldy, ScanLine
sloy, ScanLine sla, ScanLine slb, RegionOperation op);

Computes the new current and changes scan lines which result if the specified region operation is applied
to two region scan lines.

The new current result region scan line is returned in slny. The state changes of the result scan line with
respect to its previous state, which must be passed in sloy, are returned in sldy.

Sla and slb should specify the current states of the region A and B scan lines. Op specifies the operation
to be performed on the scan lines, but the routine itself processes scan lines in precisely the same manner
regardless of its value. The RegionOperation data type is defined internally as follows:

typedef enum {rgnUnion, rgnSection, rgnDiff, rgnXor} RegionOperation;

Layout Manager 17

The routine returns a pointer to the first byte following the newly returned data in sldy, which, again, is
useful when it is being used to create new region data.

static Region RegionMunger(Region rgna, Region rgnb, RegionOperation
op);

Creates and returns a new region by applying the specified operation on the operand regions, or NULL if
the region could not be allocated.

RegionMunger temporarily uses twice the storage occupied by the operand regions.

static Boolean SectExtScanLine(ScanLine ssla, ScanLine sslb, int
*shift, int offset, short extend);

Returns TRUE if the two given scan lines intersect at any point, or FALSE if they don't. Offset specifies
the amount by which scan line B should be considered to be offset, a positive number indicating a shift to
the right.

If the scan lines intersect and extend is not equal to nowhere, SectExtScanLine attempts to make the scan
lines nonintersecting by shifting scan line B so, that any of its spans that intersect A are moved out of it.
It will not, however, shift B if any previously nonintersecting spans of B would become intersecting
during the shift. The direction in which scan line B may be shifted (east or west) should be specified in
extend, using one of the four extension directions or the additional constant

#define nowhere -1

if no shifting is to be attempted. The minimum additional amount, above that already specified by offset,
that scan line B needs to be shifted in order to make it nonintersecting is returned in shift, where a
positive value indicates a shift to the right. Zero is returned if the scan lines cannot be made noninter-
secting without moving nonintersecting spans of B across A.

static Boolean SectExtRgn(Region rgna, Region rgnb, int *shift, Point
offset, short extend);

Returns TRUE if the two given regions intersect at any point, or FALSE if they don't. Offset specifies the
amount by which region B should be considered to be translated.

If the regions intersect and extend is not equal to nowhere, SectExtRgn attempts to make the regions
nonintersecting by translating region B horizontally, so that any parts intersecting region A are moved out
of it. It will not translate region B if any previously nonintersecting parts of B would become intersecting
during the translation. The direction in which region B may be shifted (east or west) should be specified
in extend, using one of the four extension directions or ‘nowhere’ if no shifting is to be attempted. The
minimum additional amount, above that already specified by offset, that region B needs to be translated in
order to make it nonintersecting is returned in shift, or zero if the regions cannot be made nonintersecting
without moving nonintersecting parts of B across A.

FUTURE IMPROVEMENTS

Future versions of the Layout Manager might attempt to expand the regions occupied by individual edi-
tors to fill up any empty space in the layout region. It is not certain that this will actually be beneficial to
their appearance.

The predefined region evaluation function is a very simple. Putting some thought into another version
may offer the possibility of greatly improving the appearance of layouts in dialogs.

Editor Manager 18

3 Editor Manager

So far
Should I take it just a little farther?

So good
And if I think about it, it gets better

I Could Get Used to This, 'Til Tuesday [Voices Carry]

The term ‘Editor Manager’ as used in this document describes a separate module used by the Dialog
Manager. This is a departure from the use in [8] where it encompasses the entire dialog management sys-
tem. The Editor Manager translates requests from the Dialog Manager for editors of certain data types
into the creation of appropriate Xr field editors (called internal editors) or user-defined editors contained
in separate compiled units (external editors).

Editors are routines which display graphical entities on the screen representing a particular data type
value, and allow a user to interactively view and modify this value using a mouse and keyboard. Often
there will be more than one instance of the same editor type in existence at any one time. A specially-
designed window containing a number of editor instances to allow the specification of all the parameter
values of a particular simulator command is called a dialog.

The Editor Manager takes care of starting, stopping and generally managing additional processes which
may be needed to run editors. This naturally includes taking care of setting up and running the communi-
cation links between these processes and the Editor Manager.

USING THE EDITOR MANAGER

Particular types of editors are created upon request. Once an editor is created, it is assigned a positive in-
teger editor reference number which may be used by the caller to control it. There is no theoretical
limit to the number of editors which may be in existence at any time.

At this point an initial value for the editor may be specified, or a parameter-specific default will be used.
Editor values are obtained as the result of earlier invocations of editors—the caller never creates editor
values itself. Their format is defined by the type of data the editor handles so that they can later be used
to generate the output which is used to feed the simulator.

The editor then stays in existence and handles input from the user as appropriate. The caller must specif-
ically ask for the editor's value when needed. It is undetermined whether a user has altered the value of
the editor in the meantime. If the editor is one of several in a window, it is the caller's responsibility to
query each of the editors when necessary.

When the caller is done using the editor it must explicitly remove it. The previous usage of the editor
reference number is thereby rendered invalid, but it may be assigned to another new editor instance in the
future.

Editor classification

Editors come in many different shapes and sizes. First of all they can be distinguished on the basis of
whether they are command or parameter editors. Commands typically consist of several parameters,
and likewise, anything a single command editor can do could also be done (albeit probably less effec-
tively) by a number of parameter editors. A command editor may in some cases be more useful or intu-
itive than a respective set of parameter editors.

Editor Manager 19

Command and parameter editors can be classified further into editor variants according to the kind of
data they edit. For a command editor this will be a particular command (e.g., “Add-Material-Region”)
and for a parameter editor some data type (such as “integer”, or “temp” for temperature).

Thirdly, a distinction can be made between internal and external editors. Internal editors are those con-
tained in the Editor Manager itself, and have been chosen so that the great majority, if not all of the
command and parameter types can be reduced to the types of data handled by these editors. External edi-
tors may be written by other programmers to facilitate data entry for certain commands or data types of a
particular simulator system. They are contained in separately compiled files which may be modified, or
added or removed from the system at any time.

Editor programs can support many different editor variant types. The ‘internal editor program,’ the
Editor Manager itself, has five internal parameter editors:

• An int variant parameter editor, which allows users to specify any integer value;

• A real variant parameter editor, for the specification of floating-point numbers;

• A string variant editor, for the specification of character strings;

• A boolean variant (note no capitalization) editor, which allows the specification of one of
two states;

• A list variant editor, which allows the user to make a single selection from a predefined list
of items. There are actually a great number of different list variants depending on the items
in the list, which are all handled by the same editor.

Contrary to initial intentions the internal editors (or default editors, as they were also called) do not run in
a separate process. Although this would indeed simplify the implementation, incorporating them into the
existing TRIP program saves one additional long-term process and the concomitant interprocess
communication.

The appearance of these editors in a window is illustrated in the following figure:

integer value editor

string value editor

real value editor

Boolean value editor

list editor

Figure 3-1. Internal editors

The internal parameter editor variants correspond to the five primitive types defined in [8, p.19]. Internal
command editors are not strictly necessary because commands should always be reducible to their
constituent parameters. Note that this is not the task of the Editor Manager—it operates only on the level
of individual editors and any necessary decomposition of commands into parameters must be performed
externally by the Dialog Manager. In fact, the Editor Manager treats command and parameter editors
absolutely identically, although the editors themselves obviously handle different kinds of data.

Editor Manager 20

Editor specification

When creating new editor instances, the Editor Manager passes the editor a command or parameter spec-
ification derived from the text in the user-defined CDD file. It is up to the individual editors to gather any
additional required information from the editor specification. Parameter editors receive parameter
specifications of the form

<par> ::= '<' <label> : <type> : <value> '>'

(see the remark on BNF notation in the Command Manager chapter).

A parameter label is a non-editable string which should appear somewhere in the editor instance to help
the operator identify individual editors with particular parameters., as well as differentiate between
multiple instances of the same editor variant type in a single dialog. For instance, there may be four in-
teger variant editors in a dialog to specify the coordinates of a rectangle, differing only in their labels.

Type is the type of the data to be edited. The syntax of this string is defined by the editor that manages
the type. The internal parameter editor types are the variants listed above, ‘int’, ‘real’, ‘string’, ‘boolean’
or a list type. List types are many and are specified by means of a single-quoted list of items, separated
by commas:

<list type> ::= ' <item> '{' , <item> '}' '

The brackets indicate the list may have any number of items in it.

Lastly, the value specifies a default editor value, which is a string containing a readable representation of
the value of the parameter. When an editor is created it may be passed an initial value, but if it isn't the
editor should use the value specified here. This allows the same editor to have defaults depending on the
command parameter, not just on the variant. When requested to do so, the instance will return a similar
string containing its current value.

For a list variant editor, a legal value is any one of the list items single-quoted. For a boolean variant ed-
itor it is either “true” or “false”. Int, real, and string variant editors accept the ASCII representations of
any integer, real or string value, respectively. If a specified value is invalid, the actually used default
value is editor-specific.

Command editors receive, not unexpectedly, command specifications. They are basically concatenations
of parameter specifications with some additional parameter repetition constructs. Refer to [8, ch.4] and
the Command Manager chapter for more detailed information about command specifications.

To exemplify, the editor specifications of the internal editors in figure 3-1 were:

< list : ' item 1, item 2' : 'item 2' >
< real : real : 3.4 >
< integer : int : 123 >
< boolean : boolean : true >
< string : string : Hi! >

If there were a command editor for this command, it would receive all five parameter specifications as the
command specification.

Note: Sometimes the specification passed to an editor may not be what it expects. For instance, if
the CDD file specifies a parameter with a type of “temp” defined as a subtype of integer, it will end up
with the int variant editor if the temperature editor is not available. Programmers writing external
editors should keep this in mind, as their editors may find themselves in a similar situation. List
variant editors are currently safe from this happening, as the Command Manager does not allow
subtypes to be defined from list types.

EXTERNAL EDITORS

External parameter editors replace internal ones to provide a more natural way of editing certain types of
data. External command editors do the same, but replacing all of the parameter editors for a particular

Editor Manager 21

command by a single integrated editor. For example, it would probably be easier to draw a polygon than
to enter the individual vertex x- and y-coordinates.

Because external editors are contained in separate source files they can only run as separate processes.
When the Editor Manager first receives a request for an external editor, it starts a new process to run the
program handling the editor. The name of this program is specified by the user in the CDD file (see also
the Command Manager chapter). Multiple processes handling different types of editors may be running
at the same time. Requests for additional editors which are handled by a running program do not of
course cause the creation of more processes.

Communicating with the Editor Manager

Originally it was thought that communication between the Editor Manager and editor processes would
need to occur through UNIX pipes. Pipes are designed primarily to transfer large (or at least substantial)
streams of continuous data. However, communication between the Editor Manager and editor processes
consists mainly of short bursts of very small exchanges (usually less than 25 bytes) of data. Using pipes
in this instance would appear to be a waste of system resources considering the long periods of time that
they remain in idle existence.

Fortunately, the X Window package provides a more appropriate solution in the use of properties, which
are variable-length packages of data associated by an X client to a particular window on the system.
Properties are used for instance, by X applications (such as TRIP) to make certain configuration
preferences available to a window manager. When they are created, a property is referred to by its name.
Afterwards, they may be read or changed by any client that knows the property's atom, which is an inte-
ger property identification. By communicating appropriate atoms to editor processes at suitable times the
Editor Manager and editor processes have an extremely convenient method of communication available
to them. Note that there is no concept of a connection or channel being in existence for extended du-
rations, other than that between the application and the X server, which is always open anyway.

1. leave message
in window property

external
editor

EM

X
server2. signal clients

3. read property

no special link

Figure 3-2. External editor communication using properties

Communication in the opposite direction proceeds likewise. Whenever a particular property is set or
changed the X server sends a PropertyNotify event to any client having set itself up to receive them, al-
lowing the Editor Manager/external editor communication to be incorporated into the normal stream of
event processing.

This actually eliminates another problem which would occur if pipes were used, due to the fact that there
would then be two independent input-gathering mechanisms (pipe reads and X events). If no input is
available on one, the other one must be checked, and so forth—special care would have to be taken to
ensure that a busy-waiting situation was not created in which valuable processor time is wasted just
looking for input. With window properties we still get all our input from a single source so that a process
waiting for input can simply be blocked when none is available, allowing another process to run instead.

Editor Manager 22

Protocol

Communication through window properties occurs on two levels. First of all, whenever an editor process
is started, a process property is associated with it. The property's name, which will be of the form
“TRIPexpnnn” is passed to the process in its main() entry procedure argument list. Second, an instance
property is associated with each external editor instance. These property names are likewise of the form
“TRIPexennn”, where nnn is the editor reference number. The editor process receives instance property
names through the process property. All these properties have been arbitrarily associated with the root
window, because editor processes may have editor instances in any number or no windows. Because
atoms are assigned by the X server on the basis of the property names and are thus guaranteed to be
unique, there is negligible risk of ‘property collision.’ Note that because editor reference numbers are
reused, instance properties may have applied to different editors during their lifetimes. The same holds
for process properties created by the Editor Manager. Recycling properties is actually a good idea, as
they cannot ever actually be completely removed from the system once they are created. (Even though
the following discussion and X terminology say that properties are deleted, they are not really.)

An description of the six different phases in the protocol is given next.

Editor
Manager

external
editor

start process
create process property

fail

succeed

exec
process atom

initialize

Figure 3-3. External editor process creation

• Process creation. The editor process is forked and exec'ed. The process property name is
passed to the process as the first argument argv[1]. The process will signal the Editor
Manager through the process property as to whether the process creation and program
initialization were successful. If the exec failed and the editor program was therefore never
reached, the Editor Manager notifies itself using the same mechanism.

Editor Manager 23

create instance property
editor atom
variant
specification
value

size

lay out editor

lay out other editors

close layout

position

window

create instance

compute size

abort

Figure 3-4. External editor instance creation

• Instance creation. The Editor Manager places a data package consisting of the new editor
instance's property name, the editor variant, specification and initial value, into the process
property. The editor process is thereby automatically notified that a new instance is
requested and reads the information out of the property. All further communications
concerning the new instance proceed through the instance property. If it decides to create
the instance, the editor process passes the size of the editor back. Otherwise, it indicates
that the process will not create the instance. The process is then never at all contacted
through the new instance property concerning this instance.

Otherwise, the Editor Manager places the editor in the open dialog layout and sends the
new editor's position to the process. Finally, after the layout is closed all external editor
instances are notified of the ID of the newly created panel window in which they should
create windows to display themselves. Editors cannot use the panel window itself because
it is not possible for two X clients to receive mouse button events on the same window.

For the duration of the instance's existence, excepting the following three explicit phases in
the protocol, the editor instance operates completely independently from the Editor
Manager. It receives and processes its own input events and keeps track of the current state
of the instance.

request instance value

editor atom

value

get instance value

Figure 3-5. Instance value query

• Value query. Whenever necessary, the Editor Manager requests an instance to report its
current value. This might happen in response to a request from the operator or an indirect
explicit request from the Dialog Manager. The instance never reports its value of its own
accord.

Editor Manager 24

change instance value

editor atom
value

set instance value

Figure 3-6. Instance value modification

• Value modification. Likewise, the instance may be requested to change it current value. It
is automatically reported through a special event type.

delete instance property

dispose instance

editor atom

Figure 3-7. Instance disposal

• Instance disposal. When the instance is no longer needed the Editor Manager simply
deletes its instance property. The editor process receives an event notifying it accordingly
and removes the instance.

delete process property

terminate

process atom

Figure 3-8. Process disposal

• Process disposal. Likewise, when the process is no longer needed its process property is
deleted. Currently, this happens when all its instances have been disposed. In future, the
Editor Manager might not immediately terminate the process but decide to keep it in a
latent state for a while in anticipation of new instances being created in the near future.

Writing external editors

Those wishing to write external editors need not bother with the details of the protocol described above,
because a small interface module has been provided to manage the low-level protocol. This module,
‘extedit’, should be included and linked with all external editor programs. Should there be any future
changes to the protocol, the editor should then remain at least source-code compatible.

A sample external editor ‘temp’ has been provided. This program contains a ‘temp’ variant temperature
parameter editor. This very crude example editor was used for validation of the protocol. The fact that it
supports only one instance at a time was also useful in testing of abnormal protocol termination. The
source can be used as a guide to external editor writing.

External editor programs can be written to handle more than one different variant of editor, or can com-
bine both command and parameter editors. There is certainly a very good reason to want to consolidate
as many different editor variants into a single program as possible, as the overhead of the graphics li-
braries used may be considerable. For example, using both the X and Xr libraries adds about 250 kilo-
bytes of object code to the editor program. Note however, that there is no constraint on which toolkit is
used by an editor program. In fact, the example editor does not use any toolkit at all.

Once an editor program has been written, the CDD specification file must be changed to make TRIP
aware of its existence. As of yet, however, the Command Manager does not support the specification of

Editor Manager 25

either parameter editors or sublevel command (option) editors. [8] Describes the current CDD file syntax,
and how to specify the use of an external editor program.

Although the protocol provides a mechanism to deny requests to create editor instances, editor processes
really should rarely need to use this feature. The Editor Manager and operating system have expended
considerable effort to reach this point in the protocol, and processes routinely denying requests could
have a substantial detrimental effect on the responsiveness of the system. The operator will not appreci-
ate having to wait for extended periods of time (especially when the system and network are congested)
and may intuitively learn or purposely choose to avoid using certain features.

Specific editor instances may be uniquely identified by means of their instance property atoms. However,
the extedit interface also allows individual instnaces to be discriminated through a reference constant
which may be assigned to them by the editor program when they are created, and read or changed
whenever desired. Such a constant would typically be used to store a pointer to a private data structure,
but since it is not accessed by extedit it may be used in whatever manner the editor program desires.
Extedit internally maintains a variable-length table of instance atoms and reference constants.

Programmers writing external editors should consider the use of colors in their editors. For instance, the
sample external editor ‘temp’ draws the setting in red. Although color can greatly enhance the efficacy of
an editor and make its appearance more pleasant, color should never be the only way that items in an
editor can be distinguished, because the program should also be usable in a black-and-white environment.

Editor Manager events

The protocol interface module relies on being passed events which have been received by the editor pro-
gram. It is absolutely essential that anywhere in the program where events are removed from the event
queue they are first passed to extedit before being processed. This gives the protocol handler a chance to
examine the event and determine whether it applies to Editor Manager communication and take any
additional action. Currently only PropertyNotify events need to be intercepted.

If the event does apply to Editor Manager communication, the event type and record contents will be
modified so that the editor program is more accurately informed of the nature of the event. For this
purpose a number of new Editor Manager event types have been defined. This method has the distinct
advantage of unobtrusively mixing in with the normal process of event gathering—an external editor
program reacts to the new event types in just the same way as to the existing X events.

The new event types and their use are explained in turn.

EError

typedef struct {
XPropertyEvent xproperty; /* event that caused the error */
} EErrorEvent;

Returned whenever an error occurs in the communication protocol. As this event should actually never
occur, the correct action to take in any particular circumstance is undefined. The safest course to follow
would probably be to continue to respond only to instance and process disposal events. The event type is
currently identical in contents to an X PropertyNotify event.

EQuit

typedef struct {
XPropertyEvent xproperty; /* event that caused this action */
} EQuitEvent;

Signal to the external editor program to terminate. This event is only sent when all previously created
editor instances have already been disposed of. After this event, the program will not receive any more
Editor Manager events. The event type is currently identical in contents to an X PropertyNotify event.

Editor Manager 26

ENewInstance

typedef struct {
XPropertyEvent xproperty; /* event that caused this action */
Atom instance; /* new instance property atom */
char *variant; /* variant string */
char *spec; /* editor specification string */
} ENewInstanceEvent;

Signals the external editor program to create a new editor instance. The instance atom, by which the new
instance will henceforth be identified is returned in the instance field. The variant and spec fields contain
the editor variant and the editor specification strings, respectively. These strings must be freed when they
are no longer required.

After receiving an ENewInstanceEvent the editor program must respond by calling either
EConfirmInstance or EDenyInstance, described below. A new instance should always be created with an
initial value as specified by the default in the editor specification. The proper initial value, if there is one,
will be sent through an additional forthcoming event.

EDisposeInstance

typedef struct {
XPropertyEvent xproperty; /* event that caused this action */
Atom instance; /* instance to dispose */
void *refCon; /* instance reference constant */
} EDisposeInstanceEvent;

Signals the editor program to dispose of the specified editor instance. The refCon field contains its
reference constant. After this, the program never again receives an event concerning that instance.

At this point, the window in which the editor was created has already been destroyed.

EGetValue

typedef struct {
XPropertyEvent xproperty; /* event that caused this action */
Atom instance; /* instance of which value is req'd */
void *refCon; /* instance reference constant */
} EGetValueEvent;

Returned whenever the Editor Manager needs to know the current value of the specified instance. The
refCon field contains the instance's reference constant. After receiving such an event, a program should
respond by calling EReturnValue, described below.

ESetValue

typedef struct {
XPropertyEvent xproperty; /* event that caused this action */
Atom instance; /* instance of which to change value */
void *refCon; /* instance reference constant */
char *value; /* new instance value */
} ESetValueEvent;

An editor program receives an ESetValueEvent to change one of its instance's value. The editor should
either redraw the instance immediately to reflect the new value, or generate an Expose event on itself so
that it is redrawn through normal event processing.

The instance field contains the appropriate instance atom, and the refCon field the reference constant.
The string containing the instance's new value is stored in the value field. This string is an X resource
and must be deallocated using the XFree routine when the program is done with it.

Editor Manager 27

ROUTINES

The Editor Manager does not need to be initialized, but the X client must have been set up to receive
PropertyNotify events from the root window in order for it to function correctly.

The Editor Manager interface is exceedingly straightforward—new editors are created by calling
NewEditor, which returns a new editor reference number. While editors are in existence, their values can
be obtained or changed by calling GetEditorValue and SetEditorValue. When the caller is done with the
editor it should call DisposeEditor.

short NewEditor(Layout *layout, char file[], char variant[], char
spec[]);

Creates and lays out a new editor instance and returns an editor reference number which is used to refer
to the instance in later calls, or zero if the instance could not be created.

Layout specifies in which layout the editor is to appear.

File is the file name of an external editor, or NULL if an internal editor should be used. If necessary, a
new editor process is started to create the instance.

Variant is the editor variant. For a command editor this is a full command name (the concatenation of all
the subcommand step names), and for a parameter editor a type name. Spec is the parameter or command
specification as returned by the Command Manager.

The editor's value is initially set to the parameter default, as given in the parameter specification.

void DisposeEditor(short ref);

Disposes of the specified editor instance, releasing all resources allocated for it. After calling this routine,
the instance should definitely not be referenced again.

If the editor is an the last external editor instance of an editor process, the process is also terminated.

void SetEditorValue(short ref, char *value);

Sets the specified instance's new current value. The instance is automatically redrawn to reflect the new
setting.

Value is a character string specifying the new value. The format of this string depends on the type of
editor, as described in the ‘Editor specification’ section, above. The actual new instance setting when the
format of this string is incorrect, is editor-specific.

char* GetEditorValue(short ref);

Returns a new string showing the current value of the specified editor instance, or NULL if there was an
error.

void EditorWindow(Window panelWindow);

This routine is the only blemish on the symmetry of the Editor Manager interface. After all the editors in
a particular dialog have been laid out and the layout is closed, the external editors need to know the newly
created panel window. This is due to a quirk in the Xr panel mechanism—if another toolkit is used in the
future, this routine can probably be removed.

Editor Manager 28

Protocol interface

All external editor programs should use these routines rather than communicating with the Editor
Manager directly through the process and instance properties. Changes or bug fixes to the low-level
protocol will then automatically be available to the editors.

The module is contained in the extedit .c, .h and .o files. It uses the X Window intrinsics library, but no
toolkit. It requires that the editor program declare and initialize two global variables named display and
screen before using any of the routines. Display is returned by XOpenDisplay, and the screen can be
obtained either from the X intrinsics DefaultScreen macro, a command line option or an .Xdefaults
variable[3].

Boolean EOpenLink(char *propName);

Prepares the process property communication with the Editor Manager. PropName is the name of the
property atom, as passed to the editor program by the Editor Manager in the argv[1] parameter to the
program's main() routine. The return value indicates whether the routine was successful. If it wasn't,
communication with the Editor Manager could not be established and the program should terminate.

Call this routine once only when the program has determined that it can run, after initializing the X
Window library but before using any of the other extedit routines.

The routine obtains the process property atom from the specified property name and signals to the Editor
Manager that process creation was successful.

void ECloseLink();

Reverses the operation of EOpenLink routine by terminating communication with the Editor Manager.
Call this routine before terminating the editor process and before closing the connection with the X
server.

Currently this routine does nothing because there is no actual connection which needs to be closed, but it
has been incorporated into the routine interface to support future enhancements to the extedit module.

void EEvent(XEvent *event);

Examines the specified event to see if it applies to the Editor Manager communication. If it does, it pro-
cesses the event accordingly and modifies the event record as appropriate. After calling this routine, the
program can examine the event type returned and branch accordingly, just as with ordinary X events.

This routine must be called after any type of X event has been removed from the queue. Otherwise, the
interface module may miss a crucial event and be left behind at an earlier stage in the protocol. However,
if the editor program only examines the event without actually removing it from the queue (using one of
the XCheckEvent routines), EEvent should not be called because the event would then be registered twice
(which is just as bad as not getting the event at all). There is no facility for re-sending data after a certain
period has elapsed, because there is really no reason why a communication should be lost.

Specifically, the routine looks for PropertyNotify events, which at different stages in the protocol can
mean different things. Refer to the “Editor Manager events” section for more details. In future, the
routine may also need to look for other X event types.

Boolean EConfirmInstance(Atom instance, Window *window, short *x,
short *y, void *refCon, short width, short height);

After receiving an ENewInstanceEvent, causes the Editor Manager to be informed that the required
instance can in fact be created by the editor program.

Returns TRUE if successful. If so, the program should create and start handling events for the new
instance. If it returns FALSE, there was an error. This should really never occur, but if it does the

Editor Manager 29

program should consider the new instance as not created but continue running, because any other running
instances may still be able to function correctly.

Atom is the new editor instance atom, as returned in the instance field of the ENewInstanceEvent
structure.

Window, x and y are pointers to where the instance's window ID and the location of its upper left corner
will be stored upon return of the routine. Currently, a new mapped window is always created for the
instance, and its upper left point is always located at (0, 0) within the specified window, but this may
change in the future.

RefCon specifies a reference constant to be associated with the new instance. This constant, which is
declared as a pointer to void but never accessed by extedit, is returned to the program whenever an event
occurs concerning this instance.

Width and height should be set to the new instance's required width and height. This information is used
by TRIP to find space between any other editors in the dialog window.

void EDenyInstance(Atom instance);

After receiving an ENewInstanceEvent, causes the Editor Manager to be informed that the required
instance will not be created by the editor program. After using this routine, the editor program is never
again contacted with regard to this new instance.

As mentioned before this routine should be used only sparingly, and probably only in instances in which
the program cannot obtain the necessary resources to support the new instance.

void EReturnValue(Atom instance, char *value);

Call this routine in response to an EGetValue event to report an instance's current value. Instance is the
property atom as given in the event's instance field, and value a string containing the current value. The
string remains the property of the editor program, and should be disposed of by it when appropriate.

void* EGetRefCon(Atom instance);

Returns the reference constant of the specified editor instance, or NULL if the instance doesn't exist.

void ESetRefCon(Atom instance, void* refCon);

Sets the reference constant of the specified editor instance, overriding any previous value. If the specified
instance doesn't exist, this routine does nothing.

FUTURE IMPROVEMENTS

As mentioned, the Editor Manager could maintain an editor process latency policy by allowing some ed-
itor processes to continue to exist while they are not supporting any instances. There would then be a
substantial benefit if the process were indeed called upon to create new instances in the future. The pro-
cess should put itself in a dormant state by disabling all non-critical events, to avoid having itself made
runnable by the operating system scheduler unless absolutely necessary. The drain on system resources
might not be that great as the operating system would probably swap an accordingly blocked process out
pretty quickly. This statement has not been tested quantitatively.

Dialog Manager 30

4 Dialog Manager

And they said that in our time
All that's good will fall from grace
Even saints would turn their face

In our time

Hymn, Ultravox [Quartet]

The Dialog Manager is the interface between the yet to be implemented parts of TRIP and the editor sys-
tem described in this document. (This will probably mean the Structure Manager, which is assumed for
conversational purposes.) It offers the highest level of abstraction of a command editor in terms of other
lower-level constructs such as editors, layouts and regions. An unlimited number of dialogs may be on
the screen at any time.

In the context of this document, a dialog is a window containing all the necessary editors and associated
control structures to specify the parameters to commands required to drive the simulator system:

dialog buttons

list parameter editor

real parameter editor

command name

Figure 4-1. A dialog

The Dialog Manager uses data derived from the command/dialog description file [8, ch. 4] by the
Command Manager to determine the parameters and parameter types which constitute a particular
command. For example, the dialog in the figure was created by the Dialog Manager according to the
following CDD file specifications for the TRENDY ‘Add-Material-Region’ command:

Dialog Manager 31

(Add
(Material

(Region
<material : 'silicon, oxide, nitride, poly, gas, ambient,

back' : 'silicon'>
<impurity = : 'arsenic, boron, phosphorus, antimony,

potential, electrons, holes, vacancy, interstitial' :
'arsenic' >

<value = : posreal : 0.0>
<x.left = : real : 0.0>
<x.right = : real : 0.0>
<y.left = : real : 0.0>
<y.right = : real : 0.0>
)

)
)

METAVALUES

Warning: The metavalue implementation was not complete at the time of this writing. Because
creation of the Phase II software continued after completion of this document, there may be
discrepancies with the implementation described here.

In the specification of the syntax of the CDD file, brackets can be used to indicate that a parameter, or a
group of parameters may be specified an undetermined number of times:

 < … > < … > Specify parameters exactly once (compulsion)

[< … > < … >] Specify parameters either once or not at all (option)

{ < … > < … > } Specify parameters any number of times (repetition)

These constructs make the consistent generation of a dialog much harder. It has been suggested to me
that the user could be prompted to enter the number of times he or she wishes to specify the parameter
before the dialog is opened, and create a dialog according to this value—this, however, does not agree
well with the premise that a dialog should be interactive and forgiving, allowing the user to make and
correct mistakes at will. Also, this method could result in the creation of very large dialogs with a large
number of identical editors in which to enter values, not a very appealing prospect.

Instead a solution was required which consistently results in the creation of an identical dialog for a
particular command (thereby promoting familiarity to the user), does not create gigantic dialogs, but still
offers a maximum of flexibility, allowing a user to change the parameter values and the number of values
to the full extent of the specification, and in fact takes it much further. This has been achieved through
the introduction of metavalues. The next subsections give a somewhat abstract description of
metavalues—they will likely be more comprehensible on a second reading, after sampling the practical
aspects of their appearance in the section on “Metavalues in dialogs”.

Definitions

A metavalue is, in its most general definition, a poly-dimensional space of editor values or other
metavalues. For instance, a repetition represents a single metavalue consisting of an undetermined
number of editor values or other metavalues. With this definition it seems obvious also to state that the
value of a dialog itself is a metavalue of all its constituent parameter's values. A single parameter
delimited by angle brackets can have just a single value which is, of course, a string returned by the
editor. To emphasize this aspect of their relation with metavalues, single values returned by editors are
also called simple values. Where the distinction is irrelevant, metavalues and simple values are in this
chapter together referred to just as values.

Because the bracket constructs can surround more than one specification, we speak of the tuple of the
metavalue as the number of component values. All three of the metavalues in the above examples are 2-
tuples because they contain two separate parameter specifications. Even if one of the compulsions was

Dialog Manager 32

replaced by one of the other two types we would still have a 2-tuple. A dialog metavalue is an n-tuple,
depending on (but not necessarily equal to) the number of parameters to the command.

The number of times that the parameter is actually specified by the user in the metavalue is called its
valence. For example, the valence of a compulsion is always equal to one because it must always be
specified exactly once. An option may have valence zero or one, and a repetition can have any integer
valence. Simple values have neither a tuple size nor valence. The following figure shows some
representations of metavalues with different tuple sizes and valences:

valence 1
1-tuple

valence 1
2-tuple

valence 5
1-tuple

valence 5
2-tuple

Figure 4-2. Rank-1 metavalues

The last term for classifying metavalues is its rank. The rank of a metavalue is the sum of the ranks of
each of its constituent metavalues, plus one, where a simple value has rank 0. Higher-rank values are
always proper metavalues. An example of a rank-1 metavalue is the 7-tuple dialog metavalue in figure 4-
1. The rank of the compulsion is zero and that of the other two is one. (In other words, a compulsion by
itself is not a metavalue but a simple value.) If one or both of the compulsions were surrounded by an
additional level of option or repetition, the respective ranks would increase by one.

rank 2
valence 5

rank 3
valence 5

rank 1
valence 3

rank 1
valence 1

rank 1
valence 3

rank 2
valence 3

Figure 4-3. Higher-rank metavalues (1-tuples)

Metavalues with rank greater than 3 are difficult to picture. Although their usefulness may seem
questionable at this time, no limit is imposed on their definition.

Each of the n-tuple cube shapes represents a metavalue element. The difference between an element and
a simple value is that an element is a tuple:

element simple values

Figure 4-4. Elements and simple values

The important concept of the active element is used in the section on using dialogs. There is always
exactly one element active, and that is the one whose simple values are currently visible and editable.
Using dedicated field editors in the dialog to select which element is active, each of the elements in turn
and thus the entire metavalue can be edited by the user. As metavalues may be thought of as

Dialog Manager 33

hypervolumes embedded in an n-dimensional value space, each of these special field editors may be said
to specify a coordinate in this space.

Although the use of such exotic and unconventional terms may perhaps seem somewhat extravagant at
first, they will likely make a more effective and durable impression on the reader's mind than something
like ‘number’ or ’limit.’ These have already been overused, and unambiguous descriptions are helpful in
explaining the concepts involved here.

Metavalue specification

The current CDD file command specification syntax defines a subset of the general metavalue. In partic-
ular, it allows the specification of some rank one nonzero-tuple metavalues. A new CDD file syntax
incorporating general metavalue parameter definitions as well as other proposed enhancements is given in
the Command Manager chapter.

If they are necessary, it should be very easy to implement other metavalue constructs than the ones given
here. For example, another form of repetition could be defined which does not allow zero-valence
metavalues, or one with a fixed valence that permits only coordinate selection from a user-specified list.
Such a coordinate selector could be specified with an existing list type. The need for such constructs will
in part be determined by the simulator for which TRIP is used.

Implementation

Metavalues are, not surprisingly, implemented as pointer trees. The basic building block is the following
structure:

typedef struct _Meta {
short tuple, /* tuple size */

allocTuple; /* allocated tuple size */
short valence, /* number of tuples */

allocValence, /* allocated number of tuples */
active; /* active tuple */

Metaeditor *editor; /* editor array */
struct _Meta **value; /* subvolume metavalues or simple */
} Metavalue;

Tuple specifies the tuple size of the metavalue. AllocTuple is its actually allocated tuple size. The
Dialog Manager grows metavalue tuples in chunks specified by the constant tupleAllocClump, to cut
down on memory reallocation requests and fragmentation problems.

Similarly, valence specifies the metavalue valence and allocValence the actually allocated valence.
Metavalue valences grow in chunks specfied by the constant valenceAllocClump. Active indicates the
coordinate of the active element.

Editor is a pointer to an array of the following structures, one for each value in the tuple:

typedef struct {
short ref; /* value editor */
xrEditor *coord; /* coordinate editor */
} Metaeditor;

If the value is a simple value, ref is an Editor Manager editor reference number for the simple value editor
and coord is NULL. Otherwise the value is another metavalue, coord is the Xr editor instance controlling
the valence coordinate, and ref is zero. Recall that actual editor reference numbers are always nonzero.

The last field in the Metavalue structure is a pointer to an array of other metavalues or simple values.

The type of field editor used to specify valence coordinates depends on the particular construct involved.
For options, an Xr check box editor (like the boolean variant internal editor) will do nicely. For the
repetition it will probably be necessary to write a new Xr editor type, like the one suggested and shown in
figure 4-5, below. Metavalue constructs should be surrounded by a rectangle by placing them in
sublayouts and then using an Xr groupbox editor.

Dialog Manager 34

Upon careful consideration it may appear there is some redundancy in the specification, because the
editor is respecified for each element in the valence. Although it will often be the case that the editor will
be the same regardless of the valence, allowing different editors to be used for each element could be
very useful if, for instance, the individual elements represent command options which require different
types of parameters, or parameters with different upper and lower bounds. Furthermore, metavalue ranks,
tuple sizes and valences will practically always be very small so as to minimize any perceived
inefficiencies.

If having separate editors for what amounts to as being the same command parameter in different options
is objectionable, one solution might be to introduce ‘virtual editors,’ which would have different
reference numbers, and so appear different from the Dialog Manager's point of view, would allow
different attributes (such as their bounds) to be specified for them, but would use the same editor in the
dialog. Of course, the CDD file constructs for these facilities have not yet been designed. But the
metavalue model supports them all.

Flat representation

Although the metavalue representation described above is well-suited for the random access required
while a dialog is in existence, or for the generation of simulator input files by the Structure Manager, the
pointer tree is impossible to store in files. For this purpose an alternative ‘flat metavalue’ representation
is defined which can be conveniently stored and converted to and from the regular metavalue pointer tree.

Although it can be used on any type of metavalue, the flat representation will normally be needed only for
long-term storage of dialog metavalues in Structure Manager files. This would allow users of TRIP to
save current work on a simulation file and reopen it to resume editing at a later time.

The flat representation is essentially a one-dimensional ‘projection’ of the value space of the metavalue.
No information on valence limitations or tuple sizes is retained. This information is already specified in
the CDD file. Therefore, it is important that flat metavalues always be correctly matched with their
respective simulator commands so that the pointer tree can be properly rebuilt.

The format of the flat representation is defined as a recursive traversal of the value space. It should not be
accessed directly, but only through Dialog Manager routines. The following C-style declaration is
illustrational only:

union _FlatMetavalue {
struct { /* metavalue */

short valence; /* metavalue valence */
struct _FlatMetavalue metavalue[tuple][valence];
}

char simple_value[][tuple]; /* simple value */
} FlatMetavalue;

Information about the structure of the command is used to determine whether an array of other
metavalues follows, or a simple value represented by a null-terminated C string.

For example, the dialog in figure 4-5 might have the following flat metavalue:

silicon arsenic 0.0 2 0.0 0.0 2.0 2.0

USING THE DIALOG MANAGER

After initializing the Dialog Manager, it may be instructed to create a dialog for a particular command by
means of a single call. Again, there is no inherent limit to the number of dialogs that may be in existence
at any time. After this call, the handling of the dialog proceeds completely asynchronously from the rest
of the system, and independently as well, except for the passing of X events to the Dialog Manager. The
user may at this point start editing the parameters in the dialog.

These changes, however, are not communicated back directly. Instead, the editors themselves keep track
of the current settings, which allows the user to experiment with the various settings before committing
them. Only when the user indicates he or she is satisfied with the settings (by clicking an appropriate

Dialog Manager 35

button in the dialog), or when the Structure Manager explicitly requests it, is the dialog metavalue
changed.

The dialog metavalue contains the selected values of the command parameters in the pointer tree, which
can be accessed by the Structure Manager. When the dialog is disposed, the metavalue can be converted
into a flat metavalue which should be saved by the Structure Manager as the command value
representation. Whenever the user wishes to reopen a command dialog to change the parameter settings
of a command, the block can be unflattened by the Dialog Manager which will then use those values as
initial values for the command parameters. Whenever the user introduces new simulator commands in
the Structure Manager, no value is passed and the Dialog Manager uses default values which were
specified in the CDD file.

The dialog is removed when the user indicates he has finished with it by clicking a button in the dialog.
Note that this does not necessarily entail communication of the most current dialog settings to the
Structure Manager. The dialog can also be closed under program control by calling a Dialog Manager
routine.

When the Dialog Manager is shut down all remaining dialogs are automatically closed.

Commands selected by a user from a menu hierarchy which should result in the creation of a command
dialog are specified to the appropriate Dialog Manager routine by means of the Command Manager
PathCD structure, rather than (as originally intended) by a character string containing a literal represen-
tation of the path traced through the menu tree. This has prompted some changes to be made to the
Command Manager. More information on this and the rationale for the change, as well as other changes
introduced can be found in the following chapter on the changes to the Command Manager.

While the Dialog Manager is running it keeps a linked list of open dialogs, and which, if any, of the di-
alogs is active. When running under a window manager, the active window is the one currently receiving
keyboard input. How active windows look different from others, and the way in which windows may be
made active depends on the window manager used. The window manager which currently runs on the
ICE's HP system (hpwm) shows active windows by highlighting its border, and windows may be made
active by clicking in this border.

Dialog creation algorithm

There are many different ways in which the Dialog Manager may possibly create a dialog for a particular
command. It uses the following algorithm:

• First, it tries to find an external command editor for any command in the command
hierarchy starting with the original command, with the original command as the editor
variant. Using the example CDD specification shown above, since the selected command
was ‘Add-Material-Region’ the Dialog Manager attempts to create variant
‘AddMaterialRegion’ command editors for, in turn, ‘Add-Material-Region’, ‘Add-Material’
and ‘Add’.

Note: As of now, the Command Manager only allows the definition of command editors at the top
level of the command hierarchy. Searching for command editors from the lowest level was incorpo-
rated in the Dialog Manager in anticipation of an enhanced future version of the Command Manager.

If no such editors exist, or if the attempts to create them were unsuccessful, the Dialog Manager will
instead create a dialog from individual parameter editors. For each of the parameter types in the com-
mand specification,

• It tries to find an external parameter editor for any type in the type hierarchy, starting with
the original parameter type, with the original type as the variant. For example, if the
parameter type is ‘temp’ the Dialog Manager attempts to create variant ‘temp’ parameter
editors for, in turn, ‘temp’, ‘posreal’ and ‘real’.

Note: As of now, the Command Manager does not allow the specification of external parameter ed-
itors. Searching for parameter editors along the hierarchy of the type was also incorporated in an-
ticipation of future Command Manager versions.

Dialog Manager 36

Note the analogy between parameter and command editor hierarchies. If this fails for a particular pa-
rameter,

• It tries to open the internal editor for the parameter type's primitive type. In the preceding
example, it will open the ‘real’ internal editor. This request can fail only due to extrinsic
factors (such as a lack of memory).

If the algorithm seems somewhat elaborate, it can actually be performed quickly because of the improved
Command Manager interface. In fact, practically all dialogs will be created according to the last step in
the algorithm. Also, the number of parameters to a command and the hierarchy depth of commands and
parameters will not normally be prohibitive.

I briefly considered, from a symmetrical standpoint, to also insert a test for the presence of an internal
command editor in the dialog creation editor. Although the Editor Manager would certainly be able to
support such a concept, I did not incorporate this capability because the TRIP system should be indepen-
dent of the particular simulator system it is being used for, and it is very difficult to conceive of a general-
purpose command editor which could be used by many different simulators.

USING DIALOGS

This section is concerned with dialog interaction from the user's point of view. Refer also to figure 4-1 at
the beginning of this chapter.

When the TRIP software is completed, the user will be able to select a simulator command step from a
hierarchical pop-up menu. Simulator commands appear as icons in a Structure Manager window.
Double-clicking or a similar action on one of these icons will cause the respective command dialog to ap-
pear.

Although it should be reasonably clear how to interact with the editors in a dialog, (the editors are meant
to be designed for this!) express information may be found in [1, 2]. Details on working under the
Hewlett-Packard or Motif window managers may be found in [11].

Dialog buttons

Each dialog has a standard set of dialog buttons at the top which are used to control its interaction with
the rest of the TRIP system. The particular positioning of these buttons may be changed in other versions
of the Dialog Manager.

To avoid confusion, care should be taken that they always appear to the user in a consistent location.
This is currently ensured because they are always the first to be placed in the dialog layout. In general,
any changes which affect the user interface should be made with the greatest care and consideration for
the user. An indication of how such an interaction policy might be implemented can be found in the
Macintosh User Interface Guidelines [7, vol. I ch. 2, vol. IV ch. 1, vol. V ch. 1]. Many of the principles
delineated here carry over directly to other systems as well. It is my opinion that the importance of a
well-designed, consistent user interface cannot easily be overestimated.

Changes made by the user to the values in the dialog are stored locally with the editors and do not have
any immediate effect on the rest of the system. This allows the user to freely experiment with the dialog
without necessarily affecting previous values. The dialog buttons control the relationship of the values in
the editor with the Structure Manager's idea of the values:

• OK. Clicking in this button causes the command's previous values to be replaced by the
current values in the dialog, and the dialog to be closed.

• Cancel. Simply disposes the dialog. Changes made to the dialog since opening or the last
‘confirm’ operation are not applied.

• Confirm. Commits the current dialog settings without closing the dialog, allowing further
editing in the dialog.

Dialog Manager 37

• Revert. The dialog reverts to the settings it had either when it was first created, or at the
time of the last ‘confirm’ operation, whichever occurred most recently.

Metavalues in dialogs

The following figure shows how a metavalue dialog might be generated in response to the TRENDY
‘Add-Material-Polygon’ command specification:

(Add
(Material

(Polygon
<material : 'silicon, oxide, nitride, poly, gas, ambient,

back' : 'silicon'>
<impurity = : 'arsenic, boron, phosphorus, antimony,

potential, electrons, holes, vacancy, interstitial' :
'arsenic' >

<value = : posreal : 0.0>
{ <x = : real : 0.0> <y = : real : 0.0> }
)

)
)

2-tuple n-valence rank-1
metavalue editor

coordinate editor

Figure 4-5. Simulated metavalue dialog

In this simulated dialog, the repetition construct parameters appear together in a rectangle. The value
editors in the rectangle show the values of the active element and can be edited as expected. The special
valence coordinate editor at the bottom allows the active element to be selected, as well as the valence to
be changed. The scroll bar-part selects the active valence coordinate. The gadget (in Xr terminology)
marked ‘+’ inserts a new element into the metavalue at the active coordinate, and the ‘–’ button deletes
one. In this way, metavalues can be edited to the full extent of the CDD specification.

Since the implementation of metavalues should be completely hierarchical, other more complex examples
can be easily extrapolated from the one shown here.

Because of the way metavalues are implemented, changing the active element also confirms the previous
element's value.

ROUTINES

The Dialog Manager routines are spread over two sets of files. The dialog management routines are
contained in the ‘dialog’ files. These routines will need to be used by the Structure Manager. Internally,
the dialog routines use the metavalue routines in the second set of files, ‘meta’.

Dialog Manager 38

Warning: Because writing of the Phase II software continued after completion of this document,
there will very likely be discrepancies between the set and interfaces of the Dialog Manager routines.
At the time of this writing, the implementation of metavalues had not yet been completed. If you are
planning to use the routines or modify their implementation, be sure to first check the appropriate
source files.

Dialog management

void InitDialog(int argc, char *argv[], void (*closeDlgProc)(), void
(*valueDlgProc)());

Initializes the Dialog Manager for use. Call this routine once at the start of the program, before using any
of the other Dialog Manager routines.

Argc and argv should be set to the argument count and argument value list parameters to the main() rou-
tine of the TRIP program. Window manager properties can be set to these values which, when a window
manager is running which uses them, will allow the TRIP application to be restarted or a duplicate to be
launched without having to retype the command line that originally started the application.

CloseDlgProc and valueDlgProc are both pointers to functions you supply which are called by the Dialog
Manager whenever a particular event occurs, or NULL if you don't want a routine to be called. The
routines should be of the form

MyCloseDialogProc(Dialog *dialog);
MyValueDialogProc(Dialog *dialog);

The closeDlgProc is called whenever a dialog is about to be closed, but before it has actually happened.
This allows any additional actions to be performed, such as keeping track of how many and which dialogs
are currently in existence. A dialog can be closed by the user by clicking in an appropriate dialog button,
or under program control by using either ShutDownDialog or DisposeDialog.

ValueDlgProc is called when a dialog value is committed. At this time the dialog value will have
changed already. This kind of ‘event’ can be used to keep track of which dialogs have changed since
they were last saved. This too can occur unpredictably, at the user's demand by clicking in one of the
dialog buttons or induced through a call to CommitDialog.

InitDialog also selects PropertyNotify events on the root window of the display and screen on which
TRIP is currently running, which are needed by the Editor Manager.

void ShutDownDialog(Boolean saveChanges);

Terminates all current activities of the Dialog Manager, including closing any dialogs which may still be
in existence at this time.

If there are indeed any dialogs, and if any of these have changed value since they were last saved, the user
should already have been queried as to whether these changes should be saved. passed the answer in
saveChanges. If this is TRUE, the Dialog Manager will update the dialog values and generate ‘value
events’ for every changed dialog through the valueDlgProc passed to InitDialog. The closeDlgProc is
also called for each dialog.

Dialog *NewDialog(PathCD *cmdPath);

Creates and displays a new command dialog on the screen and returns a pointer to the associated Dialog
structure, or NULL if the dialog could not be created.

CmdPath specifies the command which is to be dialoged. This parameter should be naturally available by
using the available Command Manager routines for manipulating the PathCD data structure while the
user makes the menu selection.

Dialog Manager 39

NewDialog initially creates an unmapped window, registers it with the Xr toolkit and sets the standard
window manager properties for it, which include the window's icon and window and icon titles. The
window title is set to the name of the command being dialoged. It opens a layout for adding editors by
the Editor Manager. When this is done, it closes the layout and maps the window, causing it and the edi-
tors to be displayed. Note that if there is no window manager running, there is no explicit window title so
that it may be difficult to tell which command a dialog belongs to when there are many dialogs on the
screen.

void DisposeDialog(Dialog *dialog);

Disposes of the specified dialog without committing any recent changes which may have been made. A
‘dialog close’ event will be reported through the closeDlgProc passed to InitDialog. There should
probably be no reason to explicitly dispose of dialogs, except when the program terminates. In that case,
use ShutDownDialog instead to dispose of all the dialogs at once.

Metavalue* ValueDialog(Dialog *dialog);

Returns the specified dialog's metavalue. This is always the same data structure which is used by the
Dialog Manager, and will therefore change value automatically whenever they are committed.

void CommitDialog(Dialog *dialog);

Causes the dialog metavalue to be updated to reflect the current settings of the dialog editors. There
should probably be no reason to explicitly commit new dialog settings, and the user may not expect to see
what may be ‘experimental’ settings suddenly incorporated in the real simulator input.

Boolean DialogEvent(XEvent *event);

Examines the event and returns TRUE if it ‘belongs to’ the Dialog Manager. If so, DialogEvent will
perform all the necessary event processing, and the event may be ignored by the caller. If the routine
returns FALSE, the event was not a Dialog Manager event and should be processed normally by the
calling routine.

Call this routine whenever an X event is removed from the queue, from either X or Xr event-gathering
routines. It is particularly important that DialogEvent receive all FocusIn/FocusOut events on dialog
windows so that it knows when one becomes active.

void DialogTask();

This routine takes care of dialog input event processing for the Dialog Manager. You should call this
each time through your event loop if you want active dialogs to respond to user input, such as mouse
clicks and keypresses.

Metavalue routines

void* DeflateMeta(Metavalue value);

Returns a flat representation of the specified metavalue, or NULL if there was an error.

Boolean InflateMeta(Metavalue value, void* flat);

Sets the metavalue to the values as specified in the given flat representation. The result indicates whether
the operation was successful.

Dialog Manager 40

FUTURE IMPROVEMENTS

Text edit breaks, caused by pressing the ‘tab’ key when using a text edit Xr field editor, should be used to
skip the text insertion cursor to the next text editor in the dialog. Currently, text edit breaks are detected
but ignored.

Type checking and subtype range checking have not yet been implemented due to lack of time. Also, it is
possible that the extension of the Command Manager with a dynamic attribute definition capability will
introduce substantial changes to the way in which subtypes are defined in terms of parent type attributes,
such as upper and lower bound.

In future, the use of a different toolkit should be seriously considered. Although the Xr toolkit suffices
for the current implementation, some of its limitations are already becoming clear. The use of multiple
panels and in particular, the correct handling of exposure events in such situations is not at all obvious.
Even the Xr example programs (such as RB) do not correctly support multiple panels where they use
them. Also, the only available documentation on Xr [1] was inadequate. For one thing, it is extremely
difficult to determine how long particular structures need to remain in existence, and whether they are
freed by Xr or if this is the caller's responsibility. And lastly, the fact that the Xr field editors have
suddenly gained the characters “10” in their manual page titles is foreboding. It appears that the Xt
toolkit may hold more promise for standardization and widespread use within the ‘X community.’

Command Manager 41

5 Command Manager

I've had my fun and now it's time
to serve your conscience overseas

—Orange Crush, R.E.M. [Green]

This chapter describes the version 1.1 changes and extensions to the Command Manager described in [8].
In addition to the intentional amendments made to the functionality, some bugs were also corrected. As
far as it describes existing features of the Command Manager the material in this chapter supersedes the
older material. The reader is assumed to be familiar with the appropriate chapters of that report.

The main purpose of the Command Manager is the parsing of the Command/Dialog Description file. The
CDD file contains the specifications for the commands and their parameters of a particular application for
which input is being generated. The Command Manager uses the information in this file to build an
internal representation which may be randomly accessed by the other managers whenever they need this
information.

The Dialog Manager uses Command Manager routines to dissect commands into their component
parameters, to find out how certain data types are defined in terms of other data types, and to inquire
whether a particular command or data type has a dedicated editor program associated with it.

SUMMARY OF CHANGES

• Printing of error and diagnostic messages was rerouted to stderr. Other than being standard UNIX
practice, this is necessary to avoid confusing the simulator if ever a solution is realized in which TRIP
command output is routed directly to the simulator through a pipe. This would be done by starting TRIP
from the command line by something like

trip | trendy

• Instead of assigning the name “DefaultEditor” to any command editor which is not specified in the
CDD file, NULL is used instead to indicate no external editor. This is more convenient and eliminates
some failure modes. An explicit name was not needed because the ‘default editors’ do not run in a sepa-
rate process.

• There is a slight typographical error in the formal grammar [8, p.19]. The line containing the definition
for the “par spec” nonterminal should read:

<par spec> ::= { <par> { '{' { <par> } '}' | '[' { <par> } ']' } }

or, alternatively,

Command Manager 42

[

{

par]

}

par

par

Figure 5-1. par spec nonterminal syntax flow diagram

to include both the sequential and optional parameter definition forms. Also, the “type” nonterminal
should include a branch for the specification of quoted strings for list types:

<type> ::= <identifier> | ' <string> '

Note that single and not double quotes are used to delimit list type strings.

An alternative syntax for the specification of commands, which more fully exploits the capabilities of the
new Dialog Manager is given later on.

• The nature of the parsing of the CDD file is that it translates a literal, one-dimensional representation of
the command hierarchy and specification into a structured poly-dimensional pointer-tree abstraction
which is more suitable for processing and examination. At the time of the writing of version 1.0 it could
not be foreseen that the Dialog Manager would still need to be able to examine the structure and
hierarchy of the command, so that communicating commands by means of their literal representations
(e.g., “Add-Material-Region”) seemed sufficient .

However, in order to support some of the suggested enhancements of TRIP's capabilities (stressing the
hierarchy of command definition), the Dialog Manager needed greater access to command structure in-
formation. The literal representation is unsuitable for this purpose, because each time command infor-
mation needs to be accessed the command's name itself must be compared against existing names in the
‘command data base’ (as the case is, in a linear fashion).

Therefore, a mechanism which was already in place is now used to specify commands, namely the
PathCD structure. This data type specifies the path from the root of the command hierarchy to the
selected command by a list of ordinal numbers of branches which must be followed to reach it. Although
it is certainly true, that to access command information it is still necessary to traverse the command tree,
the effort involved here is practically negligible as there is no ‘searching’ or comparison involved in the
traversal and the depth of command definition is bound to be extremely limited. An even more efficient
solution, the use of simple pointers to the command information structures (e.g., CElement or OElement)
was briefly considered but abandoned, as it is possible that the structure of the command definition tree
may change significantly when further enhancements are introduced in a later version.

External editors

In the version 1.1 Command Manager the concept of external editors was generalized. Previously, speci-
fication of external command editors was possible only for the first level of command definition, e.g. for
“Add” but not for “Add-Material-Region.” In the following discussion, note the symmetry between the
handling of commands and parameters.

Note: Unfortunately there was not enough time to rewrite the Command Manager to fully
incorporate these changes—there is still no way to specify use of the new editor types in the CDD
file. Furthermore, it was deemed best to defer any substantial changes to the CDD file syntax and
semantics until after the expected additional enhancements have been completely specified.
Specifically, enough was done so that the Dialog and Editor Managers could already take advantage
of the new extensions and would not have to be modified when these are fully implemented. In
effect, the Command Manager now only ‘pretends’ to support the new editor types.

Command Manager 43

In general, the particular operation of an editor will depend on subcommand (‘option’) selections. For
instance, an editor for the “Add-Material-Region” command would probably differ greatly from one for
“Add-Profile.” Therefore, command editors may now be attached to any branch of the command, so that
different editors can be attached to the aforementioned commands.

Conversely, it is reasonable to assume that editors for “Add-Material-Region” and “Add-Impurity-
Region” might be very similar. In these cases it would be a waste to have to duplicate much of the code
to write another editor which differs only in a few details. For this reason it is now possible to attach the
same external editor to different commands. In fact, subcommands already inherit a parent command's
editor. If necessary, the external editor can differentiate between its different instantiations through the
editor variant it receives from the Editor Manager. For command editors, this variant is simply the full
name of the command which invoked it, e.g. “AddMaterialRegion”. A command editor may choose to
refuse requests to handle certain commands.

Instead of writing editors to handle complete commands, it will also be extremely convenient to be able
to write editors to handle only a particular parameter type. These parameter editors, which are identical
in structure to command editors, are invoked whenever a particular data type is needed for a command
parameter. For instance, it might be appealing to write an editor for temperature data which displays it-
self in the form of a thermometer.

Again, different types may make use of the same external editor. In fact, subtypes already inherit a parent
type's editor. If necessary, the external editor can differentiate between its different instantiations through
the editor variant specification it receives from the Editor Manager. For parameter editors, this variant is
simply the name of the type which invoked it, e.g. “temp” for temperature type data values. A parameter
editor may choose to refuse requests to handle certain types when it deems they are inappropriate for it.

CDD GRAMMAR

The functionality of the new Managers has been greatly enhanced from the original definition. The
Command Manager, and specifically the CDD file, do not use these features yet. A new CDD file syntax
for command specifications is proposed here which allows the user to fully exploit the new capabilities.

The part of the grammar dealing with single command specifications is, with one exception, a superset of
the existing one—i.e., most of the specifications written under the existing syntax will be compatible with
the new syntax. Command specifications are actually not parsed by the Command Manager but by the
Dialog Manager at the command level, by the Editor Manager at the parameter level and by the
individual editors at the level of individual parameter specification components. They are described here
to keep the grammar in one place, and because users writing CDD files do not really care which part of
TRIP parses what. The careful design has also made it possible to implement the new Managers so that
they already support the new format, even though they currently never actually get to ‘see’ it. In other
words, when the Command Manager parser is changed the Dialog Manager will automatically
immediately support the enhancements.

The compatibility exception is the specification of list type parameter default values. The requirement
that they must be delimited by single quotes, like the list type specifications themselves, has been
removed in the proposed grammar. The quotes were not necessary anyway but introduced a special case
which had to be detected and excepted to remove the quotes. This change could not already be
implemented because it would have made the existing CDD files and Command Manager parser
incompatible.

The new formal grammar for single command specifications is, like the original, given in Backus-Naur
Form. Although grammars written using it are not always immediately obvious, they have the
undenyable advantage of providing a consistent representation which has become widely popularized,
first through its use in [16]. Because the CDD syntax itself uses some of the BNF metasymbols (square,
curly and angle brackets) as terminal characters, they are surrounded in single quotes in these instances.

Command Manager 44

<command specification> ::= <metaparameterlist>
<metaparameterlist> ::= { <metaparameter> }
<metaparameter> ::= <option> | <repetition> | <aggregation> |

 <simple parameter>
<option> ::= '[' <metaparameterlist> ']'
<repetition> ::= '{' <metaparameterlist> '}'
<aggregation> ::= '(' <metaparameterlist> ')'
<simple parameter> ::= '<' <label> : <type> : <value> '>'
<type> ::= <identifier> | <list type>
<list type> ::= ' <list item> { , <list item> } '
<list item> ::= <string>
<label> ::= <string>
<value> ::= <string>

The introduction of the <metaparameter> nonterminal is analogous to the metavalue. Note that there is
no longer any restriction on the level of nesting (the rank) of the metaparameter grouping constructs, nor
is it required any more that a variable-valence metaparameter always be preceded by a valence-one
compulsion.

Note also the definition of the <type> nonterminal clearly shows the special status of list types. As noted
at the end of the chapter, it should also be made possible to define list subtypes in terms of other list
types, so that an identifier can also be associated with a list type.

An option is a construct of parameters which may be specified zero or once in a command. For instance,
in the TRENDY grid definition command the ‘number’ parameter is optional, as the following fragment
of CDD source adapted from [8] shows:

<direction : 'X-dir, Y-dir' : X-dir>
<position : real : 0.0>
<spacing : posreal : 0.0>
[<number : posint : 1>]

A repetition allows a set of parameters to be specified any desired number of times, as in the TRENDY
Add Material Polygon command. Here, a polygon is defined as a repetition of x, y-coordinate pairs:

<material : 'silicon, oxide, nitride, poly, gas, ambient, back' : silicon>
<impurity : 'arsenic, boron, phosphorus, antimony, potential, electrons,

 holes, vacancy, interstitial' : arsenic>
<value : posreal : 0.0>
{ <x : real : 0.0> <y : real : 0.0> }

Finally, a new construct, aggregation, is introduced. It does not affect the parameter valence (the
number of times that it may be specified) but instead indicates that a group of parameters is semantically
related and should be kept together in a dialog, making use of the Layout Manager sublayout feature. Its
value is demonstrated in the much-quoted Add Material Region command specification:

<material : 'silicon, oxide, nitride, poly, gas, ambient, back' : silicon>
<impurity : 'arsenic, boron, phosphorus, antimony, potential, electrons,

 holes, vacancy, interstitial' : arsenic>
<value : posreal : 0.0>
(<x.left : real : 0.0> <x.right : real : 0.0>
 <y.left : real : 0.0> <y.right : real : 0.0>)

We are thus ensured that the rectangle's coordinates appear together as a related group. The first two
constructs are actually implied aggregators, causing their enclosed parameters to be grouped also.

ROUTINES

Following is a summary of the new or modified routines in the Command Manager. For the modified
existing routines, a full function specification has been restated so that the reader need not also refer to
the original definition.

Routines which are said to return “a new string” create a new string which must be deallocated by the
caller when it has finished using them. Failure to do so will not only waste precious resources but will
result in the buildup of large numbers of small objects and slow down the allocation process [9, vol. 1, p.

Command Manager 45

275]. Most of the version 1.0 Command Manager routines create and return new strings. On the other
hand, routines which return “a Command Manager string” do not create a new object but return a
reference to an existing string previously created by the Command Manager. These strings must not be
changed in any way and must not be deallocated by the caller.

int GetParentCD(char *vname, char **parent);

Returns in *parent a pointer to a new character string containing the name of the parent of the type
vname, or NULL if the specified type has no parent (i.e., it does not exist or it is one of the primitive
types integer, real, string, Boolean, or a list type) or if an error occurred. Error codes returned by this
function are unchanged from the previous version: 0 if there was no error, –1 if the specified type has no
parent, and –2 in the case of a memory allocation error.

This routine was changed to return NULL in *parent if the parent doesn't exist rather than creating re-
turning a zero-length string object. Returning an empty string is appropriate when the string needs to be
printed but in type tree traversal the NULL result is more natural.

int GetSuperParentCD(char *vname, char **parent);

This routine is like the one above, except that instead of returning a new string containing the name of the
direct parent of the type, it returns its superparent, which is always one of the primitive types, or NULL if
there was an error. Primitive types are also defined to be their own superparent. The function returns 0 if
there was no error, –1 if the specified type does not exist, and –2 in the case of a memory allocation error.

In the previous version of the routine, it was an error to ask for the superparent of a list type.

char *NextParameterSpec(char **cmdSpec);

Returns a new string containing the next parameter specification in the given command specification, or
NULL if there are no more or if there was an error. The pointer *cmdSpec is changed to point to the first
character following the end of the parameter specification just returned in the command specification.

This routine is used to convert a command specification into a series of constituent parameter specifica-
tions.

Command specifications are returned by the CommandSpec routine, below.

char *ParameterType(char *param);

Parses the given parameter specification and returns a new string containing the parameter type, or NULL
if there was an error.

char *ParameterEditor(char *type);

Returns the Command Manager string containing the name of an external parameter editor for the speci-
fied type, or NULL if there is none. What it does not do is to return the name of a parent type's editor if it
has one. In other words, the type hierarchy must be explicitly retraced in order to find a parameter editor
at any level.

Note: As there is currently no provision in the Command Manager for the specification of external
parameter editors, this routine always returns NULL. One exception is the “temp” parameter type, for
which it returns the same string as the name of an external editor. This is necessary for demon-
strational and validational purposes.

short CommandDepth(PathCD *cmdPath);

Returns the ‘definition depth’ of the command specified by cmdPath. The first level of commands (i.e.,
those which would be selected from the first level in a menu) has a definition depth zero, and deeper lev-

Command Manager 46

els (also called options) have successively higher depths. If the path does not represent a valid command
selection, the result of this routine is undefined.

This routine is used by the Dialog Manager in conjunction with the CommandEditor routine below, to
retrace a command definition back up to the root of the hierarchy when looking for command editors.

char *CommandName(PathCD *cmdPath);

Returns a new string containing the full name of the command specified by cmdPath, or NULL if there
was an error. A full name consists of the concatenation of all the subcommand names in the command's
derivation hierarchy, e.g. “AddMaterialRegion”.

char *CommandSpec(PathCD *cmdPath);

Returns the Command Manager string containing the command specification of the command specified
by cmdPath, or NULL if there was an error. The specified path must actually refer to a command and not
a menu option with additional subcommands, or NULL will be returned. A command specification is the
concatenation of all the specifications of the parameters to the command, i.e. the <par spec> nonterminal
in the formal grammar. A command specification would therefore typically have the form of something
like “<…> <…>”

char *CommandEditor(PathCD *cmdPath, short level);

Returns the Command Manager string containing the name of the external command editor for the spec-
ified level of the command derivation, or NULL if there is none or there was an error.

For example, if the selected command corresponding to cmdPath was “Add-Material-Region,”

CommandEditor(amrPath, 2);
CommandEditor(amrPath, 0);

will return the names of, respectively, external command editors for “AddMaterialRegion” and “Add.”

Note: As there is currently no provision in the Command Manager for the specification of external
command editors at any other than the first command level, this routine always returns NULL for
nonzero levels

FUTURE IMPROVEMENTS

The following suggests some improvements for a future version of the Command Manager.

The practice of returning explicit error codes as function results is questionable, since it monopolizes an
important fraction of the function communication ‘bandwidth’, most of the time merely to indicate that
the function executed correctly. The actual functional result of the routine must then be communicated to
the caller through some other, less obvious, way—for instance, through the use of a call-by-reference
function parameter. On the other hand, if this functional result were indeed to be returned as the function
result, it is practically always possible to indicate the fact that an error occurred by returning an unusual
function result (such as a NULL pointer). The actual error code could then be accessed, for instance, in a
designated global variable or through an error routine.

The current handling of types definitely needs also to be changed, in a similar fashion and for similar rea-
sons as the handling of commands was. This has not already been done in the current version. Types
could be specified and communicated using an integer number assigned by the Command Manager when
the CDD file is parsed.

If the Command Manager were to assume the task of parsing the parameter specifications (i.e., the <par>
and <type> nonterminals), efficiency of the Editor Manager could be improved. As the case is, the Editor
Manager parses and needs to create many small objects each time, for instance, a list type is dialoged.

Command Manager 47

Such a redefinition of the handling of types should also allow a change in the way list types are used in
the CDD file. Currently, a list type must be entirely restated each time it is used in a parameter specifi-
cation. By allowing the definition of list types in a similar way as that of other types, i.e. in a separate
statement outside of the command definition statements, this retyping would be avoided. The Editor
Manager could also be made to run more efficiently because it would be working with a single, rather
than many identical types.

An improvement to type handling should also disallow the redefinition of existing types or their attributes
(such as the lower and upper bounds of the type), which might conceivably cause problems in some
cases.

The parameter structuring capability in the proposed new grammar might conceivably improve the layout
of certain command dialogs under some conditions, by keeping related parameters together in the dialog
in a consistent manner.

If the CDD syntax is to be enhanced, it would very likely be worthwhile to completely rewrite the parser
using the excellent UNIX parser-generator tools, lex and yacc.

Bibliography 48

Bibliography

[1] Hewlett-Packard, Programming With the X Window System, HP 9000 Series 800 and 300
Computers

[2] Hewlett-Packard, Getting Started With the X Window System

[3] Xlib Programming Manual for Version 11, ed. Adrian Nye, O'Reilly and Associates, Inc.

[4] Xlib Reference Manual for Version 11, ed. Adrian Nye, O'Reilly and Associates, Inc.

[5] Brian W. Kernighan, Dennis M. Ritchie, The C Programming Language, second edition,
Prentice Hall

[6] R. Remmers, Spreading Resistance and SIMS Profiling of Silicon Structures, 250-hour
assignment report, July 1990

[7] Apple Computer, Inside Macintosh, Addison-Wesley, Reading, Mass., 1985

[8] P.F.A. Middelhoek, Design and Partial Implementation of TRIP, a Flexible Input Processor for
TRENDY, 250-hour assignment report, October 1989

[9] Bell Telephone Laboratories, UNIX Programmer's Manual, Murray Hill, New Jersey

[10] Hewlett-Packard, Using the X Window System, HP 9000 Series 300/800 Computers, part num-
ber 98794-90001

[11] Hewlett-Packard, A Beginner's Guide to the X Window System, HP 9000 Series 300/800
Computers, part number 98794-90001

[12] Kemal Efe, A Proposed Solution to the Problem of Levels in Error-Message Generation,
CACM (30) 11, November 1987, pp. 948

[13] Hewlett-Packard, HP C/HP-UX Reference Manual, part number 92453-90024

[14] S.R. Bourne, The UNIX System, Addison-Wesley, Reading, Mass., 1982

[15] James D. Foley, A. van Dam, Fundamentals of Interactive Computer Graphics, Addison-
Wesley, Reading, Mass., 1984

[16] P. Naur, et al., Report on the Algorithmic Language ALGOL 60, CACM (3), 1960, pp. 299

Index 49

Index

.Xdefaults 4, 10, 28
aggregation 44
alien 2
anchor point 11
ANSI C ii, 4
bake 4
bitimage 4
BNF 43
Boolean 6
CDD file ii, 4, 20, 24, 30, 41, 42

grammar 41, 43
closeDlgProc 38, 39
color 4, 25
command

depth 46
editor 46
full name 43, 46
specification 20, 45, 46

Command Dialog Description file
see CDD file

Command Manager 4, 35, 41-47
compulsion 31
dialog 3

active 35
creating 39
creation 35
defined 30
disposing 39
metavalue 31, 39
productivity 3

dialog buttons 36
Dialog Manager 3, 30-40

event 39
initializing 38
terminating 38

EDisposeInstance 26
editor see also under Xr

boolean variant 19
command 18, 35, 43
creating 27
default 19, 41
default value 20
external 2, 3, 19, see also

external editor
fitting 10
initial value 23, 26
instance 18
int variant 19
internal 3, 19, 36
list variant 19
parameter 18, 35, 43
real variant 19
reference number 18
specification 23
string variant 19
value 18
variant 35
virtual 34

Editor Manager 3, 18-29
event types 25

EError 25
EGetValue 26

element 32
active 32, 37

ENewInstance 26
EQuit 25
error handling iii, 46
ESetValue 26
evaluation function 17
extedit 24
extension direction 10, 14
extent 10
external editor 41, 42-43

communication 21
instance creation 23, 26, 28

denial 25, 29
instance disposal 24, 26
process see process
protocol 22
return instance value 29
value modification 24, 26
value query 23, 26
writing 24

hpwm 1, 35
layout 8-9

closing 14
creating and opening 14
data structure 9
defined 8
disposing 15
external editor 23

Layout Manager 3, 6-17
initializing 14

metavalue 31-34
implementation 31, 33
in dialogs 37
flat 34

methodology ii
Motif 1, 36
mwm see Motif
option 31, 42, 44
OSF/Motif see Motif
panel 6, 9, 14, 23, 40
parameter

editor 45
grouping 8, 44
label 20
specification 20, 31, 41, 45
type 45

PathCD 35, 39, 42
pipe 21
Point 6
process 21

close communications 28
creation 22
disposal 24, 25
event processing 28
open communications 28

process latency 24, 29
property 21

atom 21
instance 22, 23
name 21, 22, 28
process 22, 28

PropertyNotify 21, 25, 27, 28, 38
protocol

error 25
QuickDraw 5, 6
rank 32, 44
Rect 6
rectangle

empty 12
reference constant 25

get 29
set 29

region 4, 6-8
data 7, 16
data structure 7
defined 6
empty 12
evaluation function 10, 14
fitting 11
intersection 17
laying out 15
munger 17
X 7

RegionOperation 16
repetition 31, 37, 44
scan line 8

computing 16
intersection 17
munger 16

sequence 42
shell scripts 4
simple value 31
span 8
specification

parameter 47
stderr 41
Structure Manager 2, 36
sublayout 9

closing 15
data structure 9
opening 15

temp 24, 45
toolkit see specific toolkits
TRENDY ii, 4, 30, 37, 44
TRIP 38

files 1
Phase I ii
Phase II ii
Phase III ii, 4
user 4, 25, 31, 36-37

tuple 31
type 19, 20, 46

list 20, 42, 43, 44, 45, 47
parent 45
primitive 19, 45
redefinition 47
superparent 45

UNIX 1, 2, 47
valence 32, 44

editor 37
valueDlgProc 38
variant 19, 23, 24, 43
window manager 1, 21, 35, 38, 39
X 1, 4, 24

event processing 28
window images 4

X11 see X
Xbitmap 5
xbs 4
Xr 1, 6, 24, 39, 40

editor function 15
editor information structure 15
field editor 15, 18

Xt 10, 40

