
GRUNT-92

Ben Hekster

The
Programming Language

Grunt-92 i

1
Proem
Something stops me from seeing too clear
A misty haze floats 'round the room
The murmurs make it hard to hear
The voices and the words
—Your Name (Has Slipped My Mind Again), Ultravox [Rage

in Eden]

Before you is the report of design theory and implementation of the Grunt-92
programming language, which is the result of the Master's thesis (1000-uurs
opdracht) for the Electronic Engineering degree of the University of Twente.

The language

Grunt-92 is actually less a language and more an integrated ‘object system’ that
supports the construction of language operations. The object system is based on
a very small number of well-chosen primitive principles: the object, the
metaobject, and the message. An object responds to messages, message response
is determined by the metaobject, which is itself an object. The metaobject is the
embodiment of the notion that data and the representation and behavior of this
data are distinct. These trilogy is flexible enough to allow the construction of
more traditional higher-level constructs, and hopefully, new untried mechanisms
as well.

There is, however, a canonical grammar which corresponds very closely to
these object system primitives. This makes it a pretty low-level language,
although it does actually provide some additional support above the strict
primitive level. Its close relation to the primitive mechanisms makes it useful as
a language for expressing higher-level constructs. Because the object primitives
and the canonical grammar correspond so closely they are often identified with
one another— that is, “Grunt-92” refers to both the canonical grammar and the
objects system itself. The simplicity of Grunt-92 is, like Smalltalk, due to the
consistent application of its primitives, and is reflected by an exceedingly simple
grammar (with only 21 productions).

Grunt-92 is a reflective language. Language operations are expressed within
the system itself. New languages can be introduced by expressing their
mechanisms in terms of the system objects.

Unlike other languages, Grunt-92 has measures to improve code efficiency
built in from the start. These measures address efficiency at a more
fundamental level than so-called ‘code optimizers’ found in typical compilers.
Because they operate within the system they are independent of any particular
source or target languages.

Grunt-92 ii

The report

The report begins in Chapter 1 with an introduction into the design rationale and
philosophy of the language, followed by a description of the canonical grammar in
Chapter 2. The grammar is treated so early on because it is used extensively in
the following chapters for the representation of higher-level mechanisms. The
Grunt primitive object model is explained in Chapter 3. Chapter 4 elaborates on
how this object model can be used as a basis for building more complex
mechanisms. Chapter 5 gives details of an ‘external representation’, which is an
external ‘image’ of objects in the system. Chapter 6 explains the workings of the
Grunt interpreter which executes code within the system, whereas Chapter 7
explains how code generators work which generate code to be executed outside of
the system. Finally, Chapter 8 concludes with a summary of this work.

typographical
conventions

Grunt language code is written in Helvetica type. Other source code, for instance,
that used in the implementation of Grunt itself is written in Courier type.

Text set off in a slightly smaller size from the body are annotations, typically
highlighting or elaborating on design and implementation alternatives or
differences with other languages.

▲ Suggestions for future extensions

History

As its name suggests, Grunt-92 is an evolution of earlier versions of the
language. The original Grunt language (also referred to as Classic Grunt) was
developed in 1990 as the assignment for the course in Compiler Design
(Vertalerbouw) [Hekster90] and used the TCGS compiler-generation system
required for that course. Similarly, Grunt-91 was the assignment for the Special
Topics in Compiler Design (Bijzondere Onderwerpen Vertalerbouw) course
[Hekster91], but was written in C and used more widely available compiler-
generation tools based on lex and yacc . The compiler ran on both Sun
workstations and Macintosh computers and generated code for the Motorola
68000 CISC family and tentative code for the Motorola 88100 RISC (the latter
could never be verified because there was no hardware available to run it on).

Although the design of the Grunt languages has benefited ideas from many
existing languages, it is particularly strongly influenced by and owes its name to
the visionary Smalltalk-80 languages. I believe that Smalltalk remains in a class
of its own because of its conceptual simplicity and consistency. The name
“Grunt” is a tongue-in-cheek reference to the rudimentary nature of primeval
personal communication and a hint to the state of the original language relative
to Smalltalk.

Grunt-92 has undeniably and unabashedly been supported very much by
knowledge developed by others. In particular the language uses, and where
appropriate tries to improve on, concepts derived from C in “the new testament”
[Kernighan88], C++ [Ellis90], the “pink book” Smalltalk-80 [Goldberg89] (which
has all the information of [Goldberg83] except implementation details) and
Object Pascal [Tesler85]. In fact, these works are used so often that the explicit
author/year-of-publication reference is usually omitted when it is clear which
language is being discussed— this generic reference is presumed to suffice.

Acknowledgements

I would like to take this opportunity to thank the members of my
‘afstudeercommissie’, for giving me the opportunity to explore, make my own
mistakes, and hopefully correct them— and, in particular, for their help beyond
the call of duty: dr. A. Nijmeijer and dr. H. Alblas, and prof. H. Brinksma.

Grunt-92 iii

August 1992

Ben Hekster
Tankelanden 5
7542 DR Enschede
053-764091
heksterb@cs.utwente.nl
heksterb@apple.com

C
Contents

1 i
The language .. i
The report .. ii
Roots .. ii
Acknowledgements... iii

C iv

2 1
2.1. Rationale ... 1
2.2. Philosophy ... 2
2.3. Compilation ... 2

3 6
3.1. Lexical Conventions .. 6
3.2. .. 8
3.3. Scope .. 9
3.4. Messages.. 9
3.5. Operators ... 12
3.6. Storage Classes ... 13
3.7. Block .. 15
3.8. Program ... 15
3.9. Communication with Interpreter..................................... 15

4 17
4.1. Objects ... 18
4.3. Metaobjects.. 21
4.4. Qualifiers ... 25
4.5. References.. 26
4.6. Messages.. 27
4.7. Block .. 28

5 30
5.1. Scope .. 31
5.2. Typing .. 31
5.3. Code Reuse .. 32
5.4. Encapsulation ... 35

6 36
6.1. Load/Dump .. 37
6.2. Persistency... 38
6.3. Implementation ... 39

7 41
7.1. Message Lookup.. 42
7.2. Methods ... 45
7.3. Metaobjects.. 46

Grunt-92 v

Copyright © 1992-1993 by Ben Hekster

Printed in 10-point New Century Schoolbook

Created on the Apple Macintosh with Microsoft Word and Claris MacDraw Pro
Printed on Monday, October 2, 2000

8 47
8.1. Object Storage ... 47
8.2. External Linkage .. 49
8.3. Identifiers .. 50
8.4. Restrictions of the Target Language 51
8.5. Messages.. 51

9 53
9.1. Bootstrapping .. 53
9.2. Source Code ... 53

10 55

R 58

I 62

2
Introduction
Benedick. Your niece regards me with an eye of favour.
Leonato. That eye my daughter lent her. 'Tis most true.
Bene. And I do with an eye of love requite her.
Leon. The sight whereof, I think, you had from me, from

Claudio, and the Prince.
Bene. Your answer, sir, is enigmatical.
—Much Ado About Nothing

This chapter gives an exposition of the reasoning behind Grunt-92's design, and a
hint of object-oriented concepts and terms— just enough in fact to bring the
reader up to speed with the more detailed information in the following chapters.
It explains that “Grunt” is more of a system of objects that happens to implement
a compiler, rather than a compiler implemented in an object-oriented way.

2.1. Rationale

Why another language? There were a few reasons behind the development of
Grunt-92:
• The SETI vakgroep of the University of Twente's Computer Science

department wanted to gain experience with compilers for object-oriented
languages

• SETI wanted a sort of ‘object language environment’ support in which
students could create their own languages for a laboratory assignment in the
Advanced Topics in Compiler Design course

So there were no particularly specific requirements on the function or the
purpose of the language. In the absence of such, I added some guiding principles
of my own:
• I wanted to learn about different object mechanisms and implement them in a

language of my own
• to create a language that unified as many as possible of the novel and

advanced object-oriented techniques, while
• maintaining efficiency in object code
I do believe this last point to be very important. It is one thing to design a
‘prototype’ or ‘research’ language to develop and evaluate new concepts. It is
quite another to do so in a way that it is actually worthwhile and useful in
practice. My justification for introducing this criterion right from the start as
one basic to the design of a language, is the ubiquity of commercial or ‘production’
software written in ‘efficient’ languages (e.g., C, C++) compared to that written in
what are generally held to be theoretically purer languages (e.g., Smalltalk or
Eiffel).

2.2. Philosophy

The basic tenet guiding the design of Grunt-92 is the application of object-
oriented design on the language and the compiler itself.

Grunt-92 2

Consistency in a programming language means the adoption of usually a
small number of axiomatic orthogonal principles as its basis. When these
principles are combined they need to span a sufficiently large part of the
language mechanism domain so that additional ad hoc constructs are not
required to support less basic functions.

Reification is defined by Webster's Ninth New Collegiate as “the process or
result of regarding something abstract as a material or concrete thing”. In the
sense of objects, this means the explicit expression of abstract or formerly
unidentified concepts in terms of objects. Reification requires a much closer look
at the compiler's inner mechanisms and expressing them in terms of objects. The
difficulty in this process lies not just in identifying these objects, but also in
determining which object is in fact responsible for which activity. Reification
forces all the information that is gleaned but usually stored away by the compiler
to the surface, and makes it available to users of the language, who could be
expected to make good use of it. A specific example is type information, including
both name and structure information.

By applying object-oriented design techniques to the language, the features of
the language are themselves expressed as classes in a hierarchy. An elementary
application of this principle was demonstrated by [Wegner87] in his expression of
the object language taxonomy in terms of a class hierarchy. Not only does such
an explicit description of programming languages enable users of programming
languages to better understand the nature and interrelationships of the
mechanisms they are using, but, provided the mechinisms are made available to
the user, to be more selective in choosing the ones that they want.

Once the system is reified, the consistent application of principles makes the
system open and extensible and allows one to apply the same techniques of
prototyping and incremental refinement to the compiler and the language itself.
This is good, because open systems have often shown themselves to be more
responsive to new developments and are much more successful in standing the
test of time. Users do not have to await new releases of the language. A danger
of open systems, of course, is the emergence of diverging standards.

Grunt-92 is like Smalltalk in that it reifies the compiler (or interpreter)
within the system. Because anything in the system is available for modification
or extension by the user, this has two important consequences: first, it is possible
to add and modify mechanisms to the language later on; and second, all the
information available to the compiler is also available to the user. In fact, this
last point proves actually to obviate the need for defining many new mechanisms.

2.3. Compilation

Grunt-92 is a system of objects that can be used to compile programs. Although
compilation is a function of the object system, it is not necessarily a fundamental
one. What the system does depends only on what messages are sent to which
objects.

Compiling a user program involves using objects in the system to create new
objects which represent the program being compiled. Because the entire process
of compilation happens within the system, it is possible to isolate and reify
independent ‘stages’ of the compilation process that are traditionally combined
into one indivisible operation. This means that the results from each individual
stage become available to all the others, so that the progress of information
during the compilation process need not a ‘one-way’ flow. This in turn has many
advantages, as will hopefully become clear throughout this report.

In Grunt-92, compilation consists of three identifiably separate steps: parsing,
interpretation, and code generation (Figure 1.1). Their roles will be highlighted in
this section. Because every object in the system could conceivably play a role in
compilation, there is, however, no single identifiable ‘compiler’ object.
‘Compilation’ means, simply, using the system to generate code. Whenever a
reference is made to a ‘compiler’, all of the system involved in compilation is
meant.

Although the process of compilation is represented as a staged process, not all
parts of a compiled program necessarily pass through all three stages, nor are

Grunt-92 3

Figure 1.1
phases of compilation

canonical grammar

Grunt system
objects

alternative grammars

parsing

interpretation

C++ assembly languages, etc.

code generation

the stages mutually chronological. Some parts are not code-generated because
they are resolved by the interpreter, and indeed, some parts are not parsed
because they are part of the language being compiled and hence are already
present in the system. Furthermore, it is completely possible for one part of a
program to have completed code generation, while another part has yet to be
parsed.

parsing A parser (also commonly known as a front end) object translates a (usually
human-readable) source language into object forms that can be understood by the
Grunt-92 object system. New languages may be made known to the system in
the form of parser objects, thereby providing new ways to write programs in
Grunt. In other words, the system can be programmed in potentially many
different languages. There is a canonical parser provided with the system
which can be used to write programs, including, for example, other such parsers.

A parser translates the statements of the language into new Grunt objects
and messages that can be executed by the object system. This situation is
conceptually very similar to that of the UNIX kernel and its ‘surrounding’
programming shells. The shells are what a user normally sees and uses to write
and run programs, but the actual work is done by the operating system kernel
which the shell invokes appropriately.

Because a Grunt-92 parser is itself an object, its methods can be overridden
and reimplemented, it can even be invoked from within a program, and anything
else that could possibly be done to an object can be done to it. Although it would
in general be possible to modify a language simply by overriding a parser's
methods, the canonical parser was written in C with lex and yacc, and
implemented as a single Grunt method, making it somewhat difficult to
selectively modify that grammar.

The main reasons why the canonical parser was implemented in this object-
unfriendly way is that it was easier to use already available parser-generator
tools to bootstrap the rest of the Grunt-92 object system. It would have been
more difficult to implement the parser in the very language it is meant to
implement before the language even exists. However, doing it this way does
demonstrate the ability to use code written in other languages (external code),

Grunt-92 4

and the manner whereby students can use these widely available and more
generally applicable compiler-generation tools to implement their own compilers.

interpretation The second and most complex phase of compilation is, for lack of a better word,
interpretation of the created messages. Interpretation involves the evaluation
of as many messages and the concomitant elimination of as much redundant
information from the user program as possible. Because Grunt-92 expresses
everything down to a very low level in terms of objects and messages, it becomes
especially important that as many of these objects as possible are ‘resolved’
before they become part of the final program. Grunt's interpretation of messages
is like Smalltalk's message interpretation, except that since Grunt codifies the
notion of ‘ignorance’ (called volatility in Grunt parlance) of the state of an object,
certain messages cannot be interpreted. Non-interpretable messages are
candidates for code generation in the final phase.

A commonly occurring application by compilers of this principle is constant
expression evaluation. However, Grunt interpretation goes much further than
this. Variable names, for instance, are also suffused into the object nature of
parsed code, and unless special care there is nothing to prevent them from being
generated into the final program. Sometimes this is actually desired. Moreover,
very fundamental operations such as message lookup are expressed in terms of
messages and objects, and it is obviously essential that the interpreter take care
of as many of these as possible.

So, where this is usually seen as an ‘optimizing’ step in compilation, in Grunt-
92 it is really an essential quality of the language which permits the practical
formalization of compilation within the language itself.

code generation Finally, a code generator (also known as a back end) is the step that converts
possibly already interpreted messages and objects into a form that can be
executed by the target system. Because the interpreter is in theory itself capable
of executing the entire program, code generation can be regarded as an optional
step, that is capable of greatly speeding-up the execution of the program. As it
turns out, code generation can actually be viewed as a ‘special case’ of
interpretation, the difference being that while an interpreter evaluates messages
immediately, a code generator generates code immediately that evaluates the
messages later.

Two extremes in compilation can be identified. In one extreme it is
theoretically possible that the entire program can be resolved by the interpreter
at ‘compile-time’, so that no output code is generated at all. This is also seen to
happen with highly optimizing compilers for trivial functions. In the other case,
parts of the interpreter itself may be generated into the run-time environment—
in effect, the compiler is generating an interpreter for that program. In
particular, this would be likely to happen when the interpreter was invoked from
within the user's program. Taking this to its extreme, there would be an infinite
progression of compilers, generating compilers. All this is possible because the
parser, interpreter, and code generator, are just objects in the system and
therefore behave no differently from the objects in a user's program.

Obviously for many users, a compiled program is the desired result of the
compilation, so code generation is in fact an essential step. A user can force
certain parts of a program to resist interpretation and pass through to the code
generation step.

Again, code generators are (groups of) objects and such can be modified and
replaced. New code generators for different target systems can be added to the
system. A code generator for C++ code is being written. I chose C++ as a first
implementation of a code generator because Grunt-92 (at least the primitive
part) itself is written in C++, so that the generated code can be used to ‘compile
the compiler’. C++ is obviously far easier to read than assembly or machine code
(facilitating debugging) and much more portable (the compiler can be used and
tested on multiple platforms). This was important because Grunt-92 was
developed on a different system than the one for which it was intended to be
used. A code generator for an assembly language should in theory allow better
code to be generated because Grunt makes all the semantic information of a

Grunt-92 5

program available to the code generator, enabling the code generator to make
better use of a target system's particular features.

Grunt-92 6

3
Canonical Grammar
To put it into words
To write it down
That is walking on hallowed ground
—Sacred, Depeche Mode [Music for the Masses]

This chapter defines the canonical grammar of the Grunt system. As stated in
the introduction, the canonical grammar is simply a straightforward (almost one-
to-one) mapping of Grunt primitives, and other grammars may exist or be
introduced that implement more complex mappings. Because it is so close to the
primitive Grunt level, the canonical grammar is an effective vehicle for
expressing these complex mappings. In that light, it is important to realize that
most of the information presented here really is particular to the canonical
grammar only and not inherent to the Grunt system itself.

The description of Grunt primitives and the complex mechanisms that can be
expressed in terms of these primitives follows in subsequent chapters. The
canonical grammar is given before the mechanisms that it implements because
the code examples used to explain them are written in the canonical grammar.
Therefore, this chapter makes no attempt to explain how the mechanisms that it
describes actually work in detail. It is probably best initially only to peruse this
chapter and try to get a feel for the grammar, and to use it as a reference when
necessary.

Because the grammar is so closely coupled to Grunt itself, its
straightforwardness and orthogonality are reflected in the simplicity of the
grammar. Since most traditional language mechanisms are expressed as Grunt
objects, they do not require explicit grammatical support. This means that the
canonical grammar is as basic or as powerful as the objects that it uses— it is
neither inherently typed nor untyped; class-based, object-based, or neither; and
so on.

The canonical grammar provides just enough expressiveness to prevent
bootstrapping problems. For example, objects are created by sending message
objects, which requires creating the message object— this is why the canonical
grammar incorporates a syntax for creating and sending message objects. There
is also a syntax for sending multiple messages to the same object, or for sending a
message to the result of a previous message send.

The grammar definitions given in this chapter have been taken directly from
the bison grammar specification file, with the following changes: (1)
nonterminals are shown in italic and terminals in roman type, (2) alternative
productions for the same nonterminal are given on a new line without the
vertical bar “|” separator, (3) ε-(empty) productions are shown simply as ε, and
(4) non-keyword terminals (e.g. “integer”) are displayed as nonterminals. The
grammar is strictly LR(1), i.e., has no shift/reduce or reduce/reduce conflicts.

Grunt-92 7

3.1. Lexical Conventions

Whitespace consists of any consecutive combination of the space, tab and
newline characters. Other than that it is used to separate tokens they are
ignored.

comments The two-character sequence // (slash slash) introduces a comment on the rest of
that line (i.e., until the first newline character or end of file). The rest of that line
is completely ignored by the parser:

anObject // this is another Integer /* or Boolean
aMessage

is equivalent to “anObject aMessage”.
The two-character sequence /* (slash asterisk) introduces a nestable comment

which terminates with the corresponding */ (asterisk slash). For example,

anObject /* this is the Integer /* or Boolean */ that we */ aMessage /* send the
message to */

is also parsed as “anObject aMessage”. As in the first example, /* or */ sequences
that appear in an unnested // comment are ignored.

literals A literal is an objects that are created implicitly, without having to explicitly
refer to another object to create it. The type of literals that can be created is
limited and unambiguous. Besides block objects (described later), there are four
other types of literals:
object:

block
literal

Since the number of different Boolean objects is very limited, Booleans named
true and false are automatically created by the Grunt system when it is
initialized— there are hence no Boolean literals. Message expressions also create
(message) objects, but since they also cause them to be sent are thus not strictly
literal expressions.

An integer literal is an optional plus sign + or minus sign –, followed by one
or more digits 0 through 9, representing either a signed decimal value, or when
followed by r (lower-case alphabetic r) the decimal radix of a positionally
represented integer specified by zero or more trailing coefficients.

A single quote ' introduces an integer literal specified by a character string
which terminates with the first whitespace. The character literal is interpreted
as a radix 256 positional representation integer, where the ‘coefficients’ have the
value from their ASCII encoding:

'a write. // writes “97”
'abcd asStringBase: 16; write // writes “16r61626364”

'abcd is interpreted as ' a . 163 + ' b . 162 + ' c . 161 + ' d . 160. The message
asStringBase: takes an integer radix as an argument and returns a string which
is an ASCII representation of the integer receiver in that radix.

The two-character sequence /' (slash single quote) introduces an nonnestable
character literal that terminates with the first '/ (single quote slash):

/'a
cd'/ asStringBase: 16; write // writes “16r610a6364”

This is mainly useful for denoting character literals containing whitespace.
A double quote " introduces a nonnestable string literal which terminates

with the next whitespace:

"hello write // writes “hello”

The two-character sequence /" (slash double quote) introduces a nestable
character string which terminates with the corresponding "/ (double quote slash):

/"hello, world!"/ write

Grunt-92 8

As in comments, no parsing occurs within strings:

/"one two /* four five "/ asWords, count, write. // writes “5”

since the “/*” is not parsed but remains part of the string.

Nestable strings are a cleaner solution to the problem of how to represent text
containing parseable text. A more traditional method of representing such
constructs is through the use of escape characters (such as the backslash in C),
but they have the unfortunate side effect that the escape character is usually
strewn throughout the inner code, making it appear different from outer-level
code. C preprocessor macros, for example, have no terminator character and need
to be written on a single ‘logical’ line, requiring backslashes at the end of each
‘physical’ line. The resulting ugliness is partly to blame for having made
moderately complex macro programming (potentially a very powerful tool)
regarded as bad style. The problem of nesting also occurs very frequently in UNIX
shell programming where three different types of quoting need to be carefully and
selectively protected from certain levels of interpretation by backslashes, often a
nontrivial exercise.

A single quote ' introduces a nonnestable symbol literal which terminates
with the first whitespace:

'hello lexeme, write // writes “hello”

The two-character sequence /' (slash single quote) introduces a nestable symbol
which terminates with the corresponding '/ (single quote slash):

/'hello, world!'/ lexeme, write // writes “hello, world!”

As in comments, no parsing occurs within keyword literals. The difference
between a string and a symbol is that if two symbols have the same value, they
are the same object; whereas two identical character strings may be different
objects. Symbol objects are used extensively in addressing and indexing
operations.

variables Variables are objects that can be referred to after their creation by means of an
identfier.
object:

variable

variable:
identifier

An identifier is any other sequence of non-whitespace characters (including
alphanumeric characters and symbols) that is not a comment, literal, operator,
and is not a separate occurence of any of the following symbols, which are used as
‘punctuation’ by the grammar:

; , . () []

The grammar has no keywords that are reserved identifiers. Upper and lower
character cases are distinct.

The rules for what constitutes an identifier are purposely lax because they must
be able to identify objects that represent many different sorts of language
features, each of which may have very different naming requirements— such as
functions, arithmetic operations, types, etc.

The object that is associated with a particular identifier is determined by
what is currently in scope. The system normally starts up with only the Grunt
system dictionary (named systemDict by an association it contains to itself) in
scope, but the current scope can be modified by creating additional Scopes.
Scoping rules are not made nor enforced by the parser.

Attempting to reference a variable through an identifer that does not have an
object association in current scope is an error.

It is possible to define variables with non-identifier names, but they cannot be
referred to by the normal implicit variable identifier syntax and instead must be
obtained by applying explicitly to the defining scope.

Grunt-92 9

3.4. Messages

The message is the fundamental operation in every object-based language.
optMessage:

cascadedMessage

ε

message:
selector optArgumentList

Identifiers are used to identify message arguments— the selector identifies
the first message argument, if present, and is used in the method lookup when
the message has no arguments.
selector:

identifier
(messageList)

A selector may be specified by an identifier, or as the result of a parenthesized
expression. A syntactically more consistent syntax would have the selector
simply be an object, with traditional selectors then corresponding to string
literals. The additional quotes needed to specify string literals would be a
notational inconvenience (e.g. receiver "literalMessage), which is why the
grammatical asymmetry is introduced.

If the message send returns an object by the name result, this object is made
the result of the message.

1 + 2; write

takes the result returned by sending count to anArray and writeing it to standard
output. If there is no result object in the message, the message expression refers
to the message object itself, from which results (of which there may be several)
can be explicitly extracted:

anArray bounds; `lower write; `upper write

The bounds message to anArray returns two objects lower and upper in the
message, which can be referenced with the meta operator (§2.5). Note that
results are simply arguments which are modified by the method.

In languages that do not directly support messages (or their equivalent) returning
multiple results, they can sometimes be simulated by explicitly defining a single
compound structure type containing the required individual results. However,
this is hardly natural or symmetric with argument passing.

arguments Messages may have arguments, which are objects that are communicated from
its sender to its receiver.
optArgumentList:

operatedObject argumentList

ε

argumentList:
argumentList identifier operatedObject

The first argument is added to the message under the name of the message
selector (see above). Subsequent arguments are added under additional specified
identifiers. It is possible and legal to specify more than one argument with the
same name. The parser automatically also an argument named self to the
message which refers to its receiver.

Other object-oriented languages also treat the receiver object as a special
argument (e.g., this in cfront).

Grunt-92 10

3.4. Compound Messages

Message sequences and cascades often allow one to express certain operations
more compactly than if they are written out as a list of individual messages.
Individual messages may be sequenced or cascaded to form more complex
constructions.

message
sequences

A message sequence is a list of messages to the same receiver.
messageSequence:

messageSequcnce ; operatorList optMessage messageCascade
messageCascade

For example:

MetaInteger [] 'instanceObjects
; add: "minimum
; add: "maximum
.

causes two fields minimum and maximum to be added to the instanceObjects
dictionary of MetaInteger.

The result of the messageSequence is its receiver; in other words, the results
of the messages in the sequence are lost. If an unrecoverable error occurs while
sending a message in a sequence, the message is discarded, and execution
continues with the next message, if any.

message cascades A message cascade is a list of messages, the result of each being the receiver of
the next.
messageCascade:

messageCascade , operatorList message

For example:

MetaInteger [] 'instanceObjects
; add: "minimum , = pointer-to-meta-of-long-int-pullBack
; add: "maximum , = pointer-to-meta-of-long-int-pullBack
.

creates two fields minimum and maximum in the instanceObjects dictionary of
MetaInteger, to each which is assigned the value of the variable pointer-to-meta-of-
long-int-pullBack.

The result of the messageCascade is the result of the last message in the
list. If an unrecoverable error occurs during sending of any of the messages in
the cascade, any messages remaining in the cascade are discarded.

3.8. Program

A program is simply a list of messages that are sent when it is run:
program:

messageList

messageList:
messageList operatedObject optMessage messageSequence .

ε

Note that the dot character (or ‘period’, or ‘full stop’) “.” is a separator rather than
a terminator, in contrast to ordinary usage in natural language but in accordance
with the other punctuation used in the canonical grammar. In other words, a
message ends only in a period if it is followed by another message.

Grunt-92 11

The value of the program is the value of the last message expression
(operatedObject optMessage messageSequence) in the messageList. If
an unrecoverable error occurs in its evaluation, the rest of the message
expression is discarded and its result is null.

The messages in the messageList are created and sent immediately. They
execute within the context that is established by the Grunt system, and as if in
response to a message that was sent to the system itself (so that self is grunt).

Since messages at the outer level are executed straight away, the Grunt
compiler can be used interactively:

$ grunt # sh command line
> (2 + 3) write. // prints “5” on standard output
> [(5 – 2) write] | aBlock. // create aBlock
> aBlock do // prints “3” on standard output
> control-d // end of input
$

Often, however, input to the Grunt compiler comes from a file which contains
messages that create classes and add methods:

$ grunt hello.grunt

3.5. Operators

Operators are built in to the grammar to express certain basic operations on
objects. The messages required to perform these operations are created and sent
by the parser. The grammar contains three such operators.
operatedObject:

object operatorList

operatorList:
operatorList operator

ε

Operators are evaluated left to right. The value of an operatedObject is the
result of the last (rightmost) operator.

Note that since operators are not messages in the normal sense, they cannot
be looked up:

1 lookup: '@ ; @ write # writes “null”

reference operator The @ ‘at’ sign or reference operator returns a reference to the object it is
applied to.
operator:

@

The reference is an instance of Reference:

(meta-of-long-int pullBack: null) @

is a reference to the object returned by the message within parentheses.

meta operator The ` backquote or meta operator returns the metaobject of the object it is
applied to.
operator:

`

For example,

1 `

Is the MetaInteger describing the integer literal 1.

Grunt-92 12

tag operator
The vertical bar | or tag operator associates an identifier with the object that it
is applied to in the current scope. The result of the tag is simply the object it is
applied to.
operator:

| identifier

For example,

(static allocate: sizeOfMetaInteger) | meta-of-long-int.

associates the name meta-of-long-int to the result of the message within
parentheses. Note the semicolon is needed to prevent the tag from applying to
the message argument sizeOfMetaInteger.

message scope The Message in response to which a method is executing is also a scope,
containing the message arguments and an association called self to the object
that is executing the method. The context in which a message operates is the
message to which it responds.

Note that self is not a pseudo-object like in Smalltalk. There are no pseudo-
objects in the canonical grammar other than scope. One of a Message's fields is
self, which corresponds to the usage by Smalltalk. Method scopes of instance
objects (i.e. those with MetaInstance metaobjects) contain the association between
super and the receiver with the metaobject class set to the superclass, which also
corresponds to the Smalltalk usage. Because these are not parser-specific
pseudo-objects it is possible to implement extensions such as a separate client
association in delegated Messages, which solves the inheritance anomaly as
described by .

The Message contains associations for the message arguments.
The outer level of a Grunt program, although not technically a method, has a

scope automatically created for it.

3.7. Block

A block is a list of messages which can be executed. A block does not establish a
scope; there is no specific block result and there are no block arguments,
although objects may be passed and returned through the scope in which the
block executes.
block:

[messageList]

Blocks are made constant volatile (§3.2) by the parser by default, unless the
meta operator is used on the block— this is done to correspond more closely to
the typical use, where they do not change once defined and are always generated
into the target language.

Inconstant block variables can occasionally be useful. Consider the instances of
Smalltalk's SortedCollection, which contain a sortBlock which defines an ordering
on a pair of elements in the collection. The sort order of the collection can be
changed by attaching a different sortBlock to it.

3.2. Parser Directives

Since the parser is just an object in the system, parser directives (or pragmas)
are simply messages to the parser object and do not require any special
‘preprocessor’ syntax.

For example, the message include: "filename" instructs the parser to suspend
parsing of the current file while the specified file is parsed, e.g.

Grunt-92 13

parser include: /"Initialization.grunt"/

parser is the name defined by the parser referring to itself. Other parser
implementation-specific information can be introduced by similar messages, e.g.

parser segment: "Initialization

A parser can choose to ignore messages it does not understand.

3.9. Communication with Interpreter

The parser converts the input program into objects, using mostly primitive (i.e.,
implemented in the host language) object construction and destruction routines.
A parser does not do any ‘real’ processing on the program itself, such as constant
expression evaluation.

Figure 2.1 shows how an innocuous-looking expression such as 2 + 3 is
translated into objects by the canonical parser (remember that other parsers may
have different interpretations for this particular message). While it would be
difficult at this stage to explain all its subtleties in complete detail, it is
nonetheless worthwhile to take a quick look at it.

The root of the structure is the Message object representing the expression as
a whole. The Message starts with a reference to its receiver, and contains
further references to a Dictionary of its arguments (a Dictionary is an object that
associates names with other objects). Note that references to objects consist of
two pointers (pointers are represented by the ‘wires’ in the figure)— one pointer
to the data itself, and another pointer to a MetaInstance. A MetaInstance is an
object that describes the structure of a class-instance object. Grunt-92 maintains
a strict distinction between an object's data and the data describing that data
(called ‘meta’ data). The Class objects contain code and data common to their
instances.

This example has both literal receiver and argument, but the case with
variables is exactly the same, except that the objects referred to were not created
by the parser but were found by it in one of the scopes. In fact, this is also how
the parser found references to the Integer class object (in the system scope).

Grunt-92 14

Figure 2.1
parsed message

Message

arguments

receiver

+

2

MetaInstance

classReference

MetaInstance

classReference

3

MetaInstance

classReference

Class

“Dictionary”
subObjects

Class

“Integer”
subObjects

Grunt-92 15

4
Object Model
Every artist is a cannibal
Every poet is a thief
All kill their inspiration
and sing about the grief
—The Fly, U2 [Achtung Baby]

Objects in modern languages come loaded to the brim with functionality and
mechanisms for using them. For example, a Smalltalk object has named and one
set of indexed instance variables, is a class instance, and has (fixed)
encapsulation characteristics. A C++ object has instance variables, has a class, is
never a class, and has a particular encapsulation mechanism. Object Pascal
objects are dynamically allocated instances.

These characteristics reflect the various decisions and trade-offs made by the
language designers, and are almost always hard-coded into it. In an attempt to
provide every user of the language with all the expressive power needed for any
specific programming task the language must at once support the complete set of
features and mechanisms. This often imposes an additional programming and
run-time burden when all the functionality is not actually needed at the same
time.

There is hence a trade-off between functionality and efficiency. The trade-off
is inherent to the programming problem itself— a persistent class object with
run-time method extensions and naming simply requires more processor
resources than, say, a stack-based Pascal RECORD. A key concept of Grunt is that
the programmer, not the language designer, is usually the best person to make
the trade-off because he has the best understanding of the requirements of the
specific problem. When Grunt is being used with a different parser front-ends for
compiling other languages, the ‘user’ is the designer of the source language, so
the decision of what ‘an object’ is has already been made. It is essential to make
as few assumptions as possible.

In Grunt-92, everything is an object. However, instead of loading up every
single object with all possible functionality, Grunt-92 concentrates on providing
the basic machinery to allow all these different mechanisms to be implemented.
The next chapter shows how traditional and some of the more novel object-
oriented concepts and mechanisms can be described in terms of it.

This chapter applies the design technique of separation to identify orthogonal
(i.e. mutually independent) features and mechanisms that may be found in
languages. Because objects are the fundamental concept in Grunt-92, this
separation is expressed in terms of objects. Returning to the basics to ask
ourselves what really constitutes the barest essence of an object, we find an
object in its purest and most denatured form. At the same time the foundation is
made for providing the user with mechanisms with which these basic features
can be combined, in such a way as is most applicable for the specific
programming task at hand.

Grunt-92 16

4.1. Objects

So what is an ‘object’? [Micallef88] characterizes an object as a “data structure
coupled with a set of operations that describe how the data can be manipulated”,
and with an explicit interface. The interface consists of messages that can be
sent to the object. Wegner's language taxonomy [Wegner87] defines objects as
having state and an associated set of operations. An object-based language is one
which supports objects as a language feature. Grunt is object-based by these
definitions.

Grunt-92 objects are a slightly more generalized notion: they represent but do
not necessarily consist of data, and need not actually be able to respond to
messages at all. Object operations, or methods, are not so much “coupled” as
‘associated’ with an object, in that they can but do not need to be defined by the
object itself— in particular, the methods of class-instances are not defined by the
instances themselves but by the class-object. In the case that a method of an
object is defined by the object itself, the operation is part of the data of that
object. Indeed, methods are themselves represented by objects.

In any case, the operations that an object can respond to are invoked by the
sending of a message to the object. The messages that an object responds to, or
understands, do not necessarily allow manipulation of this data but rather are
requests to the object to perform certain services. Carrying out an operation and
answering an operation as data are two different things.

Everything is an object in Grunt. Objects usually have a definite internal
structure, formed by an internal layout of subobjects (sometimes called “fields”, or
“members”), but this is not strictly necessary— there are structureless objects
representing ‘raw’ data without any ‘meaning’. Any structure that an object does
possess is not defined by the object itself but by an associated object called its
metaobject. Certain types of metaobject refer to other objects (e.g., a class-object)
to completely define their referents' structure, other types do not. Separating the
data itself from its interpretation proves to have a number of advantages.

Also not part of the standard equipment of an object is a name that identifies
it. Any name which can be used to access an object is bestowed by specialized
dictionary objects. This is analogous to a file on a file system— the file name is
not part of the file itself but provided by the file system. The separation makes
sense because the object-to-name mapping is not one-to-one: there can be objects
without names, or multiple names referring to the same object.

creating objects Object creation, although often conceptualized as an atomic operation, typically
achieves a number of quite distinct aims: storage allocation, construction, and
name association. Storage allocation reserves memory for the object to live in;
construction builds an object in this storage; and name association provides a
means by which users can refer and hence use the object. However, the language
designer has tied these operations together in such a way as to give the user the
impression of a seamless instantiation process. When an object is destroyed,
these actions are reversed: names are disassociated, the object is deconstructed
(or, “destructed”), and the storage previously used by the object is deallocated.
Each of these separate operations will now be discussed separately.

It is useful to think about what it means to ‘create’ objects. The word “creation”
implies that something is made out of nothing. It is true that the storage used to
hold a new object existed before. When the object is created, this storage may
need to be initialized but even this is not always really necessary. In fact, the
only new ‘thing’ that is created is our interpretation of this storage— that is, the
metaobject.

allocation An object occupies storage. Before an object can be constructed, storage must be
reserved for it; this is called allocation. Allocation does not affect the storage
itself; it is merely put aside and made unavailable for other use.

The reverse of this process is deallocation. The compiler can and should
warn when storage is deallocated that is being used for objects that were neither

Grunt-92 17

explicitly nor implicitly destructed. It should also warn when an object is
destructed for which there are still other references in existence.

Different kinds of storage are called storage classes. Storage is managed by
instances of Storage.

construction and
destruction

Specific methods called constructors convert raw structureless storage into
proper objects. A constructor is simply a type conversion that converts raw data
into an object. There is no special grammatical or functional support. The
system inherently forces a constructor to be invoked before storage can be used
as an object of the specified type, because otherwise no corresponding metaobject
exists (unless, of course, the storage is type-coerced). By convention, constructors
have names which begin with new:.

Similarly, an object destructor disassembles an object to leave only the raw
storage. Destructors' names typically begin with old:.

The notion and terminology of construction/destruction is obviously derived from
that in C++. However, because constructors and destructors are ordinary
methods, they do not have all the additional restrictions that they do in C++:

• Construction of subobjects is completely under program control. In C++,
construction of base classes and members is in declaration order [§12.6.2] and
hence impossible to change the manner, order, or necessity of construction at
run-time. Object Pascal does have this flexibility, but at the cost that the
compiler does not guarantee that all or any object fields have actually been
constructed

• Furthermore, bases and members must be constructed in a simple invocation
of a constructor, which is executed before the constructor function body. Any
actions to be performed prior to the constructor call must therefore be written
as expressions, which precludes using statements and declarations

• Named constructors/destructors, because in C++ constructors and destructors
are specified using special names [§12.1, .4]

• Parameters in destructors, which is not possible in C++ [§12.4]
• Multiple distinct constructors/destructors with identical argument lists,

because constructors can only be differentiated based on their argument lists
and destructors cannot have arguments

Because objects can define their own behavior without having to rely on classes, a
class-object can define any number and kind of constructors specific to its
instances without the need of resorting to metaclasses (§3.2), as in Smalltalk [pp.
269-272].

A constructor or destructor that is invoked by a language without an explicit
specification from the user is called implicit. Constructors and destructors
without parameters are natural choices for implicit use, since the compiler does
not have to supply any other information to complete the process.

naming Grunt objects do not have names inherently. Any object-name associations must
be made externally to the object itself. The separation of the name from the
object itself is quite natural; consider first of all that certain types of objects (such
as literal and temporary objects) have no name at all:

a + (Integer TEMPORARY new: 2)

Here, the literal 2 is unnamed, as is the explicitly instantiated Integer object
which is initialized with the value of the literal. On the other hand, some objects
have more than one name:

Window DYNAMIC new | aWindow.
aWindow | theSameWindow

Here, aWindow and theSameWindow have been made to refer to the same
dynamic Window object with the tag operator.

This is akin to references in C++, but note that where Grunt allows the name to
be subsequently reassociated with a different object, in C++ is not possible to
‘reseat’ references.

The Scope system objects support object-name links.

Grunt-92 18

data A structureless object (data) is created by obtaining storage from a storage
allocator:

static new: 10 | data

creates a new data object and metaobject (which is an instance of Meta) and
returns a reference to this object. The tag associates the name data to the object.
The created object is not an instance of any class, does not have any subobjects,
and indeed doesn't have any data at all. Additional structureless data may be
added to the object by sending its metaobject the message addData:

data` addData: 10

adds ten bytes of data to the object. (Since this is ‘pure, non-object’ data some
other object would presumably put it to use for itself, e.g., for some type of
buffer.) This and the corresponding message removeData: can be sent repeatedly
throughout the lifetime of the object. If it is known that the size of an object will
not change in its remaining lifetime, its metaobject can be sent the message
constant (cf. §4.7), which prevents further changes to the size or structure of an
object:

data` constant

This is important information, since it may allow the interpreter or code
generator to make certain assumptions that may increase the efficiency of using
this object, and hence other objects that use it.

objects Whether one considers the data created above as an object or not, since it does
not actually respond to any messages, is a matter of definition. A more
conventional kind object that responds to messages and has internal subobject
structure can be created from Object:

static new: 0 | object.
Object new: object.

is an ‘singleton object’, not an instance of a class, but with a definite internal
structure that is currently void. New objects can be added to it:

object` add: (static new: (Integer sizeof)) as: "i.

This new subobject can be subsequently referenced as anObject [] "i. The
subobject can be created in the object itself by first allocating storage in the
object:

object` new: (Integer sizeof) as: "j.
Integer new: (object [] "j).

In fact, any message that returns a result can be used to add new objects:

object` add: (2 + 3) as: "sum.

Subobjects can be removed from the object with remove:

object` remove: "sum.

Again, once it is known that the structure of an object will not change, it can be
fixed:

object` constant.

Grunt-92 19

4.3. Metaobjects

A metaobject is an object that defines structure on and provides access to
another object, called its referent. There is a one-to-many correspondence
between objects and metaobjects, that is, an object may have any number of
metaobjects referencing it. The existence of metaobjects results in a clearer
separation of the actual ‘entity data’, the data that actually represents what the
object is modeling; and the ‘meta data’ that does not actually have anything to do
with the entity modeling but is necessary to get the object ‘working’ correctly.

Sending a message to an object or accessing its internal structure, requires
knowledge about the object's structure and hence access to both the object and its
metaobject. Since an object does not generally store pointers to its metaobjects,
nor is it necessary that a metaobject contain a pointer to its referent, the
responsibility of correctly maintaining the association lies outside of the object.
This is usually done automatically by the system objects or the parser in the form
of references (§3.4) so that a programmer normally should not need to worry
about maintaining the proper association at all.

Metaobjects are created whenever a reference to an object is created. Since
metaobjects are themselves proper objects, a metametaobject is created when a
reference to the metaobject is created. This happens in particular when
accessing subobjects through the metaobject, for example, in message sending.
In principle any level of metaobject can be created, but in practice the ‘hard-
coding’ of primitive code limits the typical use to these two (the metaobject and
the metametaobject).

Metaobjects are really not as radical a concept as it may appear at first— in fact,
they are used implicitly by any typed programming language. The difference is
that in other programming languages the metaobject is not accessible to the user,
but internal to the compiler. Formalizing the metaobject concept allows the
programmer to obtain and use this structure information, and permits the
introduction of new kinds of data structuring that were not built in to the
standard system.

A metaobject responds to most messages (other than constant or volatile, for
example, cf. §3.3) by returning a reference to its referent's subobject with the
same name as the name of the message— for example,

Point new: 2, 3;` x; write // writes “2”

which creates a new instance of Point with initial value (2, 3), and then writes the
value of the subobject with the name x— or

Array new; `3 // references the third element

which would create a new instance of Array, then sends the message 3 to its
metaobject, causing a reference to the third element in the array to be returned.

Although metaobjects are limited to being instances, this is not a very serious
restriction as inheritance is usually a sufficiently powerful mechanism (although
not necessarily the most expressive or efficient). On the other hand, this
limitation greatly simplifies the implementation of the compiler— for instance, it
means that primitive code always knows where to find a metaobject's class,
because Meta's fields are common to each of them. The fact that metametaobjects
are always instances allows a primitive implementation of metameta behavior
(specifically, the lookup).

meta Metaobjects are implemented as instances of Meta or one of its subclasses. The
way in which different metaobjects provide different types of referent structure is
through their different methods of response to messages. Plain Meta instances
never return any reference in response to a message, corresponding to the fact
that their referents have no identifiable subobjects. Metaobjects of unstructured
Data are such instances. Figure 3.1 shows the structure of instances of Meta:

Grunt-92 20

Figure 3.1
meta structure

Meta

next
class

isConstant
isVolatile

The class field is a pointer to the class of the metaobject itself, in casu Meta. The
knowledge that metaobjects are always instances and the availability of the
metaobject class means that the MetaInstance metametaobject can be created,
and hence that a pointer to a metaobject can always be converted into a reference
to the metaobject.

There is a separate metaobject for each reference to an object. Once the last
metaobject is gone, the object cannot be referred to by anyone and is therefore no
longer accessible. All metaobjects with the same referent are circularly linked
through the next pointer. So, an object destructor can tell if it is really the last
one to refer to the object by checking whether the metaobject's next points to
itself.

The object qualifiers isConstant and isVolatile are explained in §3.3.

metaobject MetaObjects provide name-associative (also called “record” or “struct”) structure
through a dictionary: a readable name is used to identify a particular subobject of
the containing object (Figure 3.2):

Figure 3.2
metaobject structure

MetaObject

link

subObjects

class

isConstant
isVolatile

The first four fields are inherited from Meta. subObjects is a reference to a
Dictionary that contains the associations between the names of the subobjects and
the subobjects themselves.

Since metaobjects are themselves instances of a class, a metametaobject is
always an instance of MetaInstance.

metainstance MetaInstance provides a similar type of structure to MetaObject, except that the
actual structure definition is not contained in a dictionary private to the
metaobject itself, but in a class-object that is shared by all instances of the class.
This shared definition implies that when the class itself changes, all the
MetaInstance interpretations of its instances change as well.

Figure 3.3 shows the structure of MetaInstances. referentClass refers to the
referent instance's class. ofSubClass indicates whether the referent may actually
be an instance of a subclass of referentClass. This usually requires a more costly
run-time method-lookup than if the instance class is known exactly, because
instance subobjects may be overridden by subclasses.

Both C's structs and unions can be represented by instances of MetaInstance. In
the case of a struct different names are associated with different metaobjects
and referents, while a union may associate different names with the same
referent but different metaobjects.

Grunt-92 21

Figure 3.3
metainstance

structure

MetaInstance

link

referentClass
orSubClass

class

isConstant
isVolatile

system overview Figure 3.4 gives a diagram of some of the fundamental system objects and how
they relate to one another.

First of all, note that the referent objects are shown on the left side with
progressively higher meta levels to the right. For instance, near the bottom of
the figure, anInstance is the referent of its metaobject anInstance`, which in turn
has a metaobject anInstance``, etc. Remember that higher-level metaobjects are
created when they are needed, that is, whenever a reference to a referent is
created.

Class-subclass and class-instance relationships are shown vertically.
MetaObject and MetaInstance are both direct subclasses of Meta. All metaobjects
are instances of Meta (such as someData`, meaning that its referent is a simple
chunk of data) or one of its subclasses, MetaObject (anObject` and all of the
metaclasses), or MetaInstance (e.g., anInstance` and all of the metametaobjects).

Grunt-92 22

Figure 3.4
system overview

meta of

class of

superclass of

referent of

instance of

subclass of

MetaInstance

MetaObject

Meta

Class

MetaInstance`

AClass

anObject

anInstance

anObject` anObject`` …

anInstance` anInstance`` …

someData someData` someData`` …

MetaObject`

Meta`

AClass`

Class`

Data Data`

Object Object`

Note that classes are objects and not instances of a metaclass, as they are in
Smalltalk. The reason that Smalltalk uses metaclasses is that only a class can
define behavior for objects (i.e., always instances), and objects (even classes)
cannot define their own behavior. This means that class methods, such as
methods for creating instances, must be contained in another class. Early
versions of Smalltalk [p. 76] had a single metaclass called Class that contained
the instantiation methods for all classes, but this presents the obvious problem
that either the instantiation behavior of all classes be identical or that some
naming scheme be used to discriminate the classes' individual instantiators.
Smalltalk-80 solves this problem by automatically creating a separate metaclass
to hold the class methods. Since Grunt allows an object to define its own
behavior, the unnatural definition of a whole new metaclass for the one class-
object is unnecessary, as is the unintuitive requirement that methods for
instantiating objects belong in the metaclass and not in the class itself.

Grunt-92 23

other metaobjects Because other kinds of metaobject may be defined by the programmer by
subclassing the appropriate Meta class and redefining the way in which messages
to the meta object are converted to subobject references, the range of object
structure types is similarly flexible.

One other kind of structure that could naturally be provided by MetaArray
metaobjects is index-associative (array), which could calculate the location of any
of its subobjects from the index. A MetaInstanceArray could do the same more
efficiently for an array of instances of the same class.

There are probably other more esoteric, as-yet unexplored applications. For
example, it is common practice to represent a file on disk by instances of a class,
say, File. But actually this is a misrepresentation, because the instances of File
are not really files themselves at all, nor do they contain the file's data. Instead,
they really represent access paths to the files and impose structure on them
(through a ‘byte offset’ scheme) and are therefore perfect candidates to be
represented by MetaFiles.

4.4. Qualifiers

Object qualifiers are properties which affect the manner in which an object's
contents as a whole can be accessed. They correspond to and extend ANSI C's
type qualifiers. Because object qualifiers affect object access they properly belong
in the metaobject.

Object qualifiers transfer to any subobjects an object may have. That is, when
a metaobject returns a reference to a subobject in response to a message, it
constructs the metasubobject with a particular object quality if either the
subobject or the referent itself has that quality. For example, if an instance of
Point is constant through a particular metaobject, then both subobjects x and y
are also constant when accessed through that metaobject.

constant An object can be constant, meaning that its value can be read but not changed.
An object is given the constant quality by sending its metaobject the message
constant. Proper use of the constant qualifier can greatly increase efficiency of
the program since it allows the interpreter and the code generator to complete
the sending of messages at ‘compile-time’. Also, a constant method is available
for inlining by the interpreter or code generator.

The existence of the constant qualifier makes it possible for the exact same object
mechanisms to be used in defining both compile-time and run-time expressions.
In C, for instance, the const qualifier on an object does not necessarily mean that
expressions involving it will be evaluated at compile-time: this may actually
require reverting to other mechanisms, such as #defineing the object as a macro
or making it an enumerator. Unfortunately, these mechanisms place severe
restrictions on the type of object on which they can be used. A macro is only
actually a run-time saving if the expression is of a type that can be evaluated at
run-time (although it is still evaluated every time by the compiler), e.g. 2 + 3,
but not ln(2). An enumeration must always be an integral type.

A side-effect of the compile-time interpretation of expressions involving constant
(or any other kind of) objects is that it helps reduce the number of references to
that object. In the extreme case, the object is not referred to any more at all and
can hence be eliminated completely.

The constant quality transfers to the metaobject as well— in other words, a
metametaobject created through a particular metaobject ‘inherits’ the qualities of
that metaobject. This is because a constant object whose structure was variable
would not make much sense. Hence, a constant object cannot have its constancy
removed through that metaobject, although the object could be accessed through
another nonconstant metaobject.

The result of accessing an object that is constant by one metaobject through a
nonconstant metaobject is undefined, since the interpreter may have interpreted
messages using that object on the assumption of constancy. If the object is
subsequently modified through a nonconstant metaobject, the evaluation of

Grunt-92 24

already interpreted messages may be invalid. Under some target architectures
constant objects may be placed in read-only or protected memory. Also, a code
generator may generate completely different code depending on whether an
object (especially a block or block interface) is constant or not, so using that block
correctly may depend completely on the quality being consistent.

Most of the Grunt system objects (including the class objects) have the
constant qualifier set. This allows the interpreter to make certain assumptions
that make the eventually generated code more efficient. In particular, a message
lookup can generally be performed by the interpreter only if a metaobject or
class-object is constant— if Integer were nonconstant, for example, + could be
made to refer to different methods, or could be removed altogether, forcing an
explicit Smalltalk-style message lookup to be performed at run-time.

volatile A volatile object in ANSI C is one whose value cannot be relied on to remain
constant even though it is not explicitly changed by the program itself. Its
primary purpose in C is its use on objects representing memory-mapped I/O, to
force the value to be read each time it is used. In Grunt, making an object
volatile prevents the interpreter and code generators from evaluating expressions
with it and generally prevents ‘optimizations’ on that object. It is useful for
ensuring that certain expressions or methods are processed through the code
generator and actually become part of the object program— there is nothing
otherwise preventing the interpreter from executing the entire program. An
object is made volatile by sending its metaobject the message volatile.

For example, it might be a good idea to make read and write operations
volatile, to prevent the interpreter from attempting user input/output at compile-
time, but force them to happen at run-time.

There is such a thing as a constant volatile object. Blocks in the canonical
language, for example, are such— although their volatility ensures that they are
generated into the target code of a compilation, constancy makes that the code
generator can generate an efficient copy of the block in the target language. If a
block is nonconstant it is generally not possible to transform it into a single
corresponding function

4.5. References

A reference represents an ‘access path’ to an object, which is called its referent.
It consists of a pointer to the referent and a pointer to the referent's metaobject.

Although functionally similar, references are not a grammar concept as in C++
where the user cannot, for example, take a pointer to it. The C++ reference
functionality is partly provided by the tag operator and partly by the pointer
operator.

For example, a reference to a Point object is shown in Figure 3.5. The reference's
object link points to the data of the point object itself (the values 2 and 3) while
the meta link points to an instance of MetaInstance which identifies the object as
an instance of Point.

Grunt-92 25

Figure 3.5
reference example

Reference
objectLink
metaLink

Point
2
3

MetaInstance

link

referentClass
orSubClass

class

isConstant
isVolatile

Because every metaobject either contains a pointer to its metaobject, or
contains enough information to allow its construction, the pointer to a metaobject
can always be manufactured from a pointer to its referent. After the metaobject
pointer has been made, it is conceptually indistinguishable from a pointer to an
‘ordinary’ (non-meta) object.

An object cannot contain a direct pointer to its metaobject because different
metaobjects may be used to access an object. Note that the class field of a Meta is
a reference to the metaobject's class, and is used as a source for manufacturing
references to the metaobject.

A reference representing an unknown or indeterminate object identity or
value has referent as NIL. An object with unknown structure is represented by a
reference with a m_referent of NIL.

4.6. Messages

A message is a request to an object to perform a certain task. There are three
parties involved in the handling of a message: its creator, which is the object
that created the message; the sender, which is the object that initiates the
sending of the message; and finally, the receiver of the message. The receiver's
response to the request is its method. A message represents the request, the
objects communicated from the sender to the receiver (arguments) before the
method has executed, and vice versa, those communicated from the receiver back
to the sender (results) after the method has completed. Finally, a message may
allocate storage for objects used only during its execution— these are called
temporary objects from the sender's point of view, and automatic from the
receiver's.

In Grunt-92, messages are reified as instances of Message. Objects
themselves do not have the capability of responding to messages— this is
behavior is provided by Messages and Methods. It is not even necessary for an
object to contain its own Methods— an object's meta provides the method lookup
and hence its referent's response to messages.

A message consists simply of a Dictionary used to store arguments and results,
and a storage allocator for temporaries which are used during execution of the
message. The dictionary is also used for associations which are traditionally
regarded as ‘pseudo-objects’; for instance, every Message must contain an
association for the name self, indicating its receiver, which is the object for
which the message is intended. Other Message types might define other such
associations, such as sender, which would refer to the object that is sending the
message (which is not necessarily the object that created it).

Note that there is no separate message ‘selector’. The method that
corresponds to a given message is determined by the receiver's lookup, which can
use any or all of the message arguments, as required.

Grunt-92 26

Integer new: (automatic new: (Integer sizeof)) | i; := 3.
Message new: (automatic new: (Message sizeof));

at: "write;
at: "self put: i;
deliver.

This creates a new Message with the single entry write, and asks the message to
deliver itself. The delivery method adds the ‘selector’ write to the message,
followed by the required association for the receiver.

In the above example, it takes a message to create and a message to send a
Message. If this were always the case, there would be an unterminated
recursion and no work would ever get done. The canonical grammar defines
specific rules which allow one to create and send messages implicitly. A synonym
for the above is:

Integer new: (automatic new: (Integer sizeof)) | i; := 3.
i write.

The parser creates a message, determines its receiver and arguments, and adds
them to it. Message delivery is a primitive operation in the system. It is
possible to override message delivery by subclassing Message, but ultimately the
primitive delivery method will have to be called, or a new primitive implemented.
In ‘interactive mode’ (this is every message not inside a block), the parser then
delivers the message to the interpreter. While building a block, the message is
added to the block rather than delivered immediately.

A default behavior of deliver is to add its associations to the current scope,
thereby making the arguments available:

scope push: self. // message fields
receiver` receive: self. // make the object receive us
scope pop.

The standard MetaObject response to receive: is to locate the object named by the
selector, confirm it is a Block and execute it:

(self lookup: name) | method ` isSubclassOf: Method ifTrue: [method do]

It is the Method's responsibility to perform any required argument type checking.
The manner of the name lookup largely determines the type of code reuse that

results. For example, the standard MetaObject lookup uses an internal
dictionary subObjects that contains references of the subobject of that object:

result = subObjects`(name) @

This looks for the object called name in the subObjects dictionary, and returns a
pointer to that object in the result reference.

Arguments Message arguments are added to the dictionary as additional associations.
Because associations contain only references to objects, message arguments are
always by-reference. By-value arguments must be implemented by the method
copying the required argument. Note that because the dictionary is name-
associative, the order in which arguments are added to the dictionary is
irrelevant. The only case where order matters is when multiple associations with
the same name are added. This would only make sense in cases where the
arguments are treated equivalently and the order really is unimportant.
Consider Smalltalk's explicit messages for creating instances of a Collection:

Collection with: anObject.
Collection with: firstObject with: secondObject.
Collection with: firstObject with: secondObject with: thirdObject

All three messages obviously achieve the same thing, the only difference being
the number of arguments added.

C provides a similar ‘variable argument declaration syntax’, but there is never
any type checking on the arguments.

Obviously this flexibility requires more work by the compiler. In the absence
of explicit information to this effect, the code generator must decide on an
argument order itself. It must also decide whether it is possible to send the

Grunt-92 27

message with an unknown number of parameters. If these are undecidable
problems in the general case, the user must be asked to provide this information.
This is not unreasonable.

I believe this is a welcome addition. Even though it introduces some problems for
efficient code generation, they are not unsolvable.

Arguments are passed by name-object associations in an argument Dictionary
within the Message object. In this sense, arguments are always passed by
reference. However, a Message also has an allocator from which storage can be
obtained for objects whose lifetime is not longer than that of the Message. When
the storage for an argument object has been allocated from the Message
allocator, the argument effectively has been passed by value.

The order in which arguments are added to the message may or may not be
relavant, depending on the responding method.
All listed parameters are added to the message, but the order is not necessarily
the same as the order in which they are listed. In fact, in the following example

Window newWithTitle: "Hello! at: originPoint size: sizePoint.
Window newWithTitle: "Hello! size: sizePoint at: originPoint

both these messages are equivalent, except in the order of evaluation of their
arguments, which is always left-to-right.

Many languages have discrepancies in the way that they associate formal with
actual parameters. Many procedural languages are name-associative with
respect to function arguments in the implementation (that is, formal names may
be referred to in the function body) but ordinal-associative in their interface (i.e.,
callers specify arguments by means of their argument list order). Some object-
based languages are name-associative in the implementations, and both name-
and ordinal-associative in the interface (Smalltalk requires both the argument
order and formal name in a message expression). Grunt attempts to uniformize
this by providing parameter association by name both for the interface and the
implementation.

At least some of this asymmetry may be due to confusion as to what formal
arguments exist for. Conceptually, at least, a programmer refers to an argument
(or, for that matter, any other variable) by means of its semantics— that is, he
usually does not particularly care that it has such and such a name, or occurs in
that particular place in a declaration, but rather, that it contains a particular
piece of information or serves some certain purpose. Unfortunately, compilers
cannot infer such information (nor is it obvious how a programmer would specify
it, even if it were available), so a different means of association is necessary. A
formal parameter serves as a link for the programmer (which may be either the
implementer or the user of a function) between a semantical idea and an actual
argument that is passed when the function is invoked.

The question is what is the most useful way of referring to an argument in the
absence of such semantical references. Although in some cases the order of an
argument may be exactly relevant (e.g. initialization of ordered sets, such as
arrays; or non-commutative operators), such ordinal-associative cases are, on
average, rare. Programmer-defined names are much more expressive substitutes
for semantical references. This makes it all the more surprising that the former
method of argument association should be so prevalent. Other signature-based
languages use an object's signature (the messages that it accepts) as an
approximation to its semantics. Although Grunt, in the end, supports any of
these types of association (by the redefinition of appropriate methods), a language
should, at a minimum, be consistent.

An argument in favor of name-association is the self-documenting quality of
messages. This avoids one common (at least in my experience) cause of errors,
where the argument order is unwittingly reversed but not detected by the
compiler because the types are the same:

Window::Window(char *title, Point origin, Point size);
Window window("Hello!", sizePoint, originPoint);

This demonstrates that type alone is generally an insufficient determinant of
semantics.

Grunt-92 28

4.7. Block

In pure object-oriented systems, executable code are objects. Grunt blocks are
objects consisting of sequences of messages.

Each block has its own scope (the inner scope).
The Grunt equivalent of inlining is the interpretation of the block or method

within another block. Note that by default, blocks and methods are available for
inlining. Making a block volatile prevents it from being used by the interpreter.

Blocks are not class-instances and hence cannot be typed by referring to class
names.

metablocks Note that a block corresponds to a ‘procedure’ or ‘function’, in the sense that it is
a multiply-usable sequence of operations. It does not in itself, however, provide
for an ‘interface’ on itself. An interface on a block is defined by its metablock.

It is the metaobject's job to create result objects.
The fact that a block always returns a result of a certain type can be

expressed by referring to it in the block's metaobject.

Grunt-92 29

5
Mechanisms
In the comfort of this room
the challenge died
—Horror Head, Curve [Doppelgänger]

Using the simple object model introduced in the previous chapter, this chapter
shows how the traditional object-oriented mechanisms can be implemented in
Grunt-92. Although by no means exhaustive, it attempts to demonstrate the
power and applicability of the model by describing a range of mechanisms in
terms of this model: types, object creation, code reuse mechanisms, and
encapsulation.

language shells In language design there appears to be a certain trend of the identification and
separation of extraneous concepts from the proper programming languages.
Beginning with Pascal, for example, input/output operations are an integral part
of the language itself and fixed in its keywords. In the C languages, however, I/O
operations are not part of the language proper but are defined in terms of it, in
the form of libraries.

In doing so, the advantages of commonality and portability are not altogether
lost because the standard libraries are still part of the language definition. Since
they do take the form of libraries they are orthogonal and hence optional. This
has obvious advantages: the baggage of extra functionality need be learned and
used only when necessary; also, it can be straightforwardly modified, adapted or
extended by programmers after the language has been designed and is used ‘in
the field’. This flexibility is important, because it is not reasonable to expect
language designers to anticipate every possible need and application.

Continuing the trend, a language like Smalltalk even removes such things as
control constructs and conditional operations from the language, which are now
also defined in terms of the language itself. Although certain fundamental
(primitive) constructs are predefined by the system, they can be modified or new
ones can be defined as required.

Grunt-92 goes a little further in that it also removes most higher-level object
mechanisms from the language. This ‘stripping away of shells’ is depicted in
Figure 4.1. Such object mechanisms can be described in terms of more
fundamental concepts. Again, the Grunt system predefines certain constructs
likely to be of use to a majority of programmers, in the form of system classes, it
retains the flexibility to modify existing and add new mechanisms. In this way, a
programmer is not forced to use mechanisms and features that he does not want.

Grunt operates on the language metalevel itself, such as the object language
taxonomy given by [Wegner86]. Note in this respect that the Grunt system class
hierarchy mirrors Wegner's application of object techniques to language design—
that is, the language metalevel is suffused in the Grunt language. Such
taxonomies fail to describe properly Grunt-92, because such a description would
fall in the language meta-metalevel.

Grunt-92 30

Figure 4.1
language shells

data,
code

code reuse
mechanisms

control and loop
structures

I/O floating-point
math

Pascal

C/C++

Smalltalk-80

Grunt-92

encapsulation

5.1. Scope
The method of scoping through a dictionary stack is very similar to that of
PostScript. Grunt's system corresponds to PostScript's systemdict. The next
dictionary pushed onto the stack by the parser is userdict.

3.6. Storage Classes

«revise» Objects have storage. The storage class determines ‘where’ the
storage for an object and its metaobject exists. The selection by the programmer
of an appropriate storage class for an object is an important consideration which
has significant impact on the time and space efficiency of a program.

Storage classes are almost completely parser-specific and are not fixed by the
object system. The canonical grammar supports a number of different storage
classes, listed here in increasing order of ‘expense’:

Temporary storage class limits the lifetime of an object to the message in
which it is used. Temporary objects are created by the parser, mainly for the
storage of results in the evaluation of nested messages and in parenthesized
expressions, and are automatically disposed of by the parser after the
cascadedMessage that uses them has completed. Temporary objects would
typically be allocated on a stack.

The system warns about remaining references to temporary objects when they
are deleted.

Automatic storage class limits the lifetime of an object to the block in which
it is defined. Again, the parser warns about any references that are remaining at

Grunt-92 31

the point of deletion. Such objects are usually allocated within the local stack
frame of a block.

Register storage class is exactly like automatic and also limits the lifetime of
the storage to the block in which it is defined, but with an additional indication to
the code generator that the storage will be heavily used and should be stored in
one of the processor's registers if possible.

Static storage class extends the lifetime of the storage to that of the
executing program.

External storage class, like static, also indicates storage with lifetime of the
executing program but represents storage existing outside of and not provided by
the Grunt-92 system itself .

Dynamic storage class is given to objects which have no limitation on the
lifetime of an object within the bounds of the executing program. Allocation and
deallocation are explicitly specified by the program. Dynamic objects usually
exist on a common memory heap.

There is no exception handling mechanism to deal with things like run-time
memory allocation errors.

Indeterminate storage class gives an object life from the point of
construction until at least its last use. It coincides with the Smalltalk-80 model
of object storage. Because indeterminate storage requires the use of reference-
counting and garbage-collection at run-time it is also an expensive form of
storage.

Persistent storage class gives an object lifetime beyond the bounds of the
currently running program. This probably involves storing the object in some
kind of external file on secondary storage. Because secondary storage is usually
slow, speed advantages can be obtained by keeping frequently accessed parts of a
persistent object, or the object in its entirety, resident in an in-memory storage
class object. Note that it pays to have a persistent object in memory when the
scope is in use, because in that case pointers to a persistent object can always be
resolved to memory addresses.

allocation and
construction

It is useful at this point to distinguish between storage allocation and the
construction of objects within this storage. The lifetime of the storage logically
places limits on the lifetime of the object that uses it, although it is possible to
create constructions where storage outlives the object, or the object appears to
outlive the storage.

This happens frequently with, for example, automatic objects because in
many host systems it is more efficient to create automatic storage for many
objects at the same time (when a method is entered) even if the objects
themselves are not constructed until later.

Note also that the term “storage class” is borrowed from C and bears no relation
to an object ‘class’ concept. Grunt-92 attempts to improve on it by treating
dynamic and other kinds of allocation simply as a storage class, whereas many
languages generally use a different syntax and ‘model’ for dynamic objects—C
uses malloc() and free() [B5], C++ the new [§5.3.3] and delete [§5.3.4]
operators, while in Object Pascal all objects are dynamically allocated through
NEW and in Smalltalk-80 all objects are indeterminate.

The different storage classes are implemented by adding name-reference
associations to appropriate Scope objects. For example, automatic storage class
is simply the method scope. One way of implementing persistence in a
PersistentScope class could be by reimplementing its constructor and destructor
methods to read in previous name/object pairs from a disk file when it is
instantiated, and writing out all name/reference associations when it is disposed
(Chapter 5 describes such a mechanism).

storage qualifiers In the canonical grammar, the parser decides on a default storage classes for an
object, but one may be explicitly specified. Literals and result objects are by
default created by the parser with temporary storage class, unless they are
named (see below), in which case they are created with automatic storage class.

3.6.1. + 3 | i

Grunt-92 32

The literal 2 is created by the parser with temporary storage. The literal 3, since
it is named, is created with automatic storage.

Keywords (storage qualifiers) explicitly specifying a storage class may be
placed before the message whose result it affects:
storageClass:

TEMPORARY
REGISTER
AUTOMATIC
STATIC
EXTERNAL
DYNAMIC
INDETERMINATE
PERSISTENT

ε

For example,

Integer DYNAMIC new: (2 + 3) | sum.

creates an Integer instance named sum with dynamic storage class and initializes
it with the value of the object with temporary storage class 2 + 3. Both literals
are also in temporary storage.

5.2. Typing

type coercion Metaobjects allow for an elegant expression of the difference between type
conversion and coercion. A ‘type coercion’, that is, interpreting the same object
differently, is achieved by using a different metaobject to access the same object.

Figure 4.2 shows an example of two references with two metaobjects being
used to access the same Point. Note that both metaobjects are linked because
they have the same referent. Although it is not shown explicitly in the figure,
both metaobjects could have different classReferences, meaning that the same
object could be interpreted as an instance of a different class. The metaobject
could just as easily be any of the other metaobject types— for example, a
MetaArray might be used to access the individual bytes of the object.

type conversion A ‘type conversion’, also creates a new reference with a metaobject, on the
other hand, creates a new referent as well.

Figure 4.3 shows an example of a Point that is type-converted. The result
after the type conversion of the original object is another referent and
MetaInstance to access it. This presumably refers to a different referent class, or
otherwise the new object is simply a clone. Again, there are no fundamental
restrictions on the types of metaobjects that can be returned. A type conversion
does not increase the number of references to the original object and hence does
not affect interpreter-related optimization issues on that object.

Grunt-92 33

Figure 4.2
type coercion

Reference
objectLink
metaLink

Point

Reference
objectLink
metaLink

MetaInstance

nextMetaLink
classReference

orSubClass

metaLink

MetaInstance

nextMetaLink
classReference

orSubClass

metaLink

Figure 4.3
type conversion

MetaInstance

nextMetaLink
classReference

orSubClass

metaLink

Reference
objectLink
metaLink

Point

MetaInstance

Reference
objectLink
metaLink

Point

meta conversions A special kind of type conversion that changes not only the meta object, but also
the class of the meta object, is called a meta conversion. Meta conversions
occur frequently when objcets are being constructed and destructed: they are
allocated from storage as Meta objects and converted into exemplars or instances
by conversion of their metaobjects into MetaObject or MetaInstance. Sometimes,
objects are converted from instances, requiring a conversion of a MetaInstance
into a MetaObject.

5.3. Code Reuse

Grunt-92 34

Some proponents of delegation regard [Lieberman86] or even define [Wegner87]
delegation as a generalization of inheritance— others still hold that inheritance
is more general than delegation [Stein87]. Although we begin the treatment of
delegation as a code sharing mechanism before inheritance because it is
conceptually simpler, Grunt relies on neither being more fundamental but
instead expresses the exact difference between these two code sharing
mechanisms in their lookup methods.

There are nonetheless fundamental differences between delegation and
inheritance, which is not directly related to lookup. Inheritance has a strict is-
exactly-a relationship accorded to inherited superclasses, whereas delegation has
just an is-a relation. That is, with inheritance, it is not possible to use any other
than the exact specified classes as superclasses. This is both a strength and a
weakness, for it allows more efficient storage allocation (because the sizes of the
superclasses are known, or at least, are the same for all instances) at the expense
of decreased flexibility in making specific instances.

Another aspect of inheritance is that the inherited member objects are identified
by means of their class, and not by a user-specified identifier. This implies that
multiple inheritance schemes may have trouble distinguishing between different
instances of the inherited class. For example, C++ does not allow the same
nonvirtual class to be used as a base more than once in any derivation.

delegation Note that since this delegation implementation does not require any special
cooperation from the ‘delegatee’, any object can act as a prototype; this includes
other objects, instances, classes, and even metaobjects. It is true, however, that
in order to make full use of the delegation mechanism, prototypes require the use
of the client association in the message, so some amount of foreknowledge is
actually necessary. Also note that it is actually just as easy to reuse other kinds
of objects than methods— in other words, it is possible to delegate or ‘override’
data objects.

Delegation has been said to be a design technique suitable for quick prototyping
of systems [Lieberman86]. Unfortunately such proponents do not always explain
how this transition is to be achieved. Here, the transition between a single object
(called the prototype) to a class of instances is made simply by using the Object's
objectCreator as a constructor in the Class. The idea is that the same code used to
construct the single object can also be used to construct several objects. One
other thing is that at this point the programmer does also need to decide if there
is any data common to all instances that can be separated and moved to the class
object.

inheritance The object/message paradigm is usually described as objects receiving messages
and responding by executing one of their methods. Although this is conceptually
correct, certain groups of objects with identical behavior do not of course really
have their methods duplicated for every object. Common behavior of objects is
stored in a single class object that is shared among the instances of the class.
The second main purpose of a class is the creation of new instances of itself,
called instantiation. Note that the term “instantiation” properly applies only to
objects created by classes.

New classes may be defined by creating new instances of the class Class:

Class
newFrom: superclass
as: class-creator

The class-creator is a block that constructs the class-object. This includes the
instance methods, and class variables and constants.

Although a class is not itself a metaobject, it can be considered to be part of
the ‘extended metaidentity’ of an instance, since it is actually referred to by
instance's metaobjects (instances of MetaInstance).

In Wegner's classification, a class-based language is one in which every object
has a class. Grunt also supports classes, but because not every object need have

Grunt-92 35

Figure 4.5

classes

instances

a class it is not class-based. In fact, by a strict application of Wegner's definitions
it is not in fact object-oriented because it is not class-based.

Grunt-92 gives the implementer complete freedom about order of initialization of
instances. This is not true in, for instance, C++ where the programmer has to go
through severe contortions if he wants to provide a different initialization order
in different constructors

Two things can keep Class from figuring out the size of its instances; first, if
the number of instance variables added by instance-creator cannot be determined, or
if the size of one of the subobjects cannot be determined.

Since a class defines structure on its instances, why isn't it a metaobject? In a
sense, it is: MetaInstances contain a reference to the class-object. It cannot be an
actual subobject of the MetaInstance because there are usually many instances
(and hence at least as many MetaInstances) of a class but only one class-object.

overriding
methods

A method of a superclass is overridden by that of a subclass if it has the same
name.

inheritance An instance is an object which has been created by a class-object and hence has
certain common characteristics defined by the class. One aspect of instance-
objects is that the metaobject defining its structural characteristics is this class-
object.

Instances do not really contain the code to respond to messages. In many
object languages, then, the message send/receive is skewed, but the asymmetry
has been swept under the carpet. Note that there are object languages that allow
code to be defined as an instance's subobject but do not allow this code to be
invoked as a response to a message.

The class of an instance can be determined by sending its metaobject the
message class.

The thing that differentiates an instance from a plain object is the name
lookup method in MetaInstance. An instance also has access to names accessible
by its class:

result := class` instanceObjects`(name) @; // see if the class defines it
ifNull: [class ifNotNull: // is there a superclass?

result := class` super lookup: name]. // check there

The first line locates the name in the instanceObjects dictionary. Multiple
inheritance uses a similar lookup but looks inside each of several superclasses for
the name.

Grunt-92 36

5.4. Encapsulation

The basic object has no built-in access control, although different access control
models can be implemented by modifying the message lookup. Smalltalk limits
access to data objects to the class itself, and places no limits on code objects. C++
has a three-tier model.

Grunt-92 37

6
External Representation

An intermediate representation (IR) is not strictly required to make a compiler
work. [Aho86] gives two reasons for their use: first, a target-independent
intermediate representation makes it easier to retarget a compiler to different
host systems; and second, that a target-independent code optimizer can be used.
This list can be extended with a third purpose, namely, that a good intermediate
representation can be used to ‘resource’ a compiler to different source languages.
In fact, this is what has happened with the IR for the C compiler [Feldman79]
where the benefits of a general-purpose IR have become clear. An open IR makes
the effort of improving and optimizing it more justifiable than would have been
the case if it was bound to a single specific source-to-target language translation.

Note that the Grunt system objects serve exactly these three purposes: that is,
parsers can be written to generate Grunt objects for different source languages;
the interpreter is a target-independent code optimizer because it operates on the
objects within the system; and, the compiler can be retargeted to different target
languages with new code generators. In other words, we find that the Grunt
objects themselves are a natural intermediate representation.

The Grunt IR is similar to a graph representation: objects can be identified as
vertices and references (a dependency on the value of an object) as directed edges.
In the same sense, the act of message interpretation can also be framed in more
graph-theoretic terms as the elimination of vertices that are disconnected from
the main component of the graph. Furthermore, when we identify the ‘domain’ in
which an object exists (the ‘source, ‘compiler’, or ‘target’ domains) with a vertex
color, both parsing and code generation can be viewed as a vertex coloring
operation (moving objects from one ‘domain’ to another) such that remaining
message evaluations are monochromatic (occurring within a single domain).

The Grunt system provides support for the storage of objects in a file, called
an external representation (E R) of the object. By the same token, objects
living inside the system are an internal representation (although the
abbreviation “IR” is still used to mean “intermediate representation”). Using the
terminology described in the next section, conversion from an internal to an
external representation is called dumping and, vice versa, loading.

The first two sections of this chapter describe two uses of the external
representation, demonstrating how the consistent application of object
mechanisms obviates the need for gross hacks to implement new features later
on. The last section desribes an implementation of an external representation.

Grunt-92 38

6.1. Load/Dump

There is actually a fourth application of an external object representation. Some
compilers provide a ‘load/dump’ mechanism that can speed up reuse of the results
of previous compilations: the user typically specifies a set of files to be compiled,
and the compiler ‘dumps’ a representation of its internal state to a file. In
subsequent compilations, this internal state can then be quickly reconstructed
simply by reading the dump file back into the compiler (this is not the same as
including a source file in a compilation, which also results in the reuse of code
but requires the source to be parsed anew). The increase in speed results from
not having to reparse information in ‘interface specifications’ each time they are
needed.

Unfortunately, because dump file loading is typically tightly bound to a single
compiler state, usually no provisions have been made for the loading of more
than one dump file in a single compilation. Because the compiler's internal state
is not accessible to the user, nor is the dump file format usually documented, it is
not possible to exploit the information contained in a dump file (which can be
quite substantial in size) in any other way. This seriously limits the usefulness
of this technique.

Grunt-92 simply uses the external representation of a parsed program, in the
form of an external file representation of the Grunt objects, as its ‘dump file’. A
modified diagram of compilation using dump files is shown in Figure 5.1.

Because the reloading of a dumped IR is not a compiler ‘hack’ but cleanly
codified in terms of messages to compiler system objects, all the normal object
benefits (such as reusability and extendibility) are retained. Moreover, as many
dump files can be included as desired, and because reloading a dumped IR is
faster than reparsing the source program itself, the IR dump/load mechanism
becomes very useful replacement for a straight file “include”. The astute reader
will already have noticed that the canonical grammar does not provide a strict
separation of ‘interface’ and ‘implementation’ anyway, so the separation of C-like
‘header’ files would have been difficult.

Grunt-92 39

Figure 5.1
external

representation

6.2. Persistency

An implementation of persistency also requires exactly such an external
representation of objects in the system. It was mentioned in Chapter 2 that a
persistent storage class can be implemented by saving the objects in a
PersistentScope dictionary just prior to it going out of scope. With the ER as
described here this can be achieved with the simple act of dumping the dictionary
before destructing it. (As will be described below, loading/dumping a dictionary
automatically implies the objects associated in it as well.) The objects and names
in the dictionary can then be brought back in by loading the dictionary. A
PersistentScope constructor takes an external name of the image file (determined
by the file system) and reconstructs the dumped objects.

In this light a loaded/dumped compilation state could also be regarded as a
collection of persistent objects.
▲ For larger, data base-type operations, the method of loading and dumping the

entire dictionary all at once is obviously too crude. First of all, it requires that
all the dumped objects fit into memory simultaneously; and second, loading
the first object from an image would take an inordinate amount of time. It
should not present too much of a problem to implement a modified
“SelectivePersistentScope” that is more selective in which objects it loads into
memory. At the expense of a higher per-object access overhead, the
constructor can simply create the dictionary with the names, and only read in
the objects when they are accessed.

This scheme resembles the Macintosh resource fork [Apple85, vol. I], which is a
data base of persistent objects called resources. The resource map is loaded into
memory when the fork is opened, and contains enough information for the
individual resources to be read into memory as needed. The difference is that the
objects must be loaded into memory and changes written back out explicitly.

In principle any object has the capability to be persistent. Some languages
require persistent objects to be instances of a specific “Persistent” class (e.g.,
Sina), but this is unnatural because persistency really is only a method of storage
and is unrelated to an object's behavior. For example, when a persistent instance
is needed it requires the definition of a new class that is a subclass of both the

Grunt-92 40

Figure 5.2
internal and external

representations

a

b

c

a b c

a0 a1 a2a1

a2

a0

a@

b@

a@ b

a
a@ b@ a@a b

original class and the persistency class. In a single-inheritance setting such
implementations are even more restrictive because either a new class must be
defined that is not a subclass of the original class (so its instances have a
different type), or the original class must be redefined (making all the instances
persistent).

6.3. Implementation

Smalltalk also has an external representation called an image, as does APL with
its workspaces, but only for saving and restoring a single complete object system
‘environment’ that are not intended to be merged, although utilities are
sometimes provided for this purpose. These images are more like the traditional
load/dumps in that sense, and therefore suffer from the same problems.

Loading and dumping are mappings from one kind of address space to
another: the memory address space of the internal, and the file's ‘byte offset’
space of the external representation. The only real difference between the two is
that the memory is sparse with objects while the file is dense, which is one
reason why a complete memory dump is so inefficient.

Grunt ensures that only the actual objects in the memory are dumped by
starting with a specified ‘root’ object and then recursively dumping all objects
referred to by the root. When an object refers to another object, the load/dump
mapping converts the pointers between the two address spaces and then the
objects itself (Figure 5.2). When a referred-to object has already been loaded or
dumped before, only the reference needs to be converted. The load/dump
mechanisms keep a list of already dumped pointer-byte offset associations for
this purpose.

This also solves a problem that occurs with image-based systems that dump
entire systems of objects: when one wants to transport a user program from one
system to another the entire image must be copied, including many system
objects that are not used by the user program at all. The ER includes only the
objects actually referenced by the ‘root’ object.

With the access to type information provided by Grunt it is possible to provide
reasonable default loading and dumping behavior for a large class of objects
simultaneously, by including information about the object's structure, that is, the
metaobject, with the dumped object itself. This is similar to an approach taken
by [Abadi89]'s “Dynamic” type, except that it restricts itself to type information
only and hence does not benefit from other metainformation such as object
qualifiers (constantness of data), or new object structure types.

[Wilson90] describes one implementation of an object stream that is based on
Object Pascal in the MacApp class library. Because Object Pascal does not
provide access to type information, each class must explicitly provide its own

Grunt-92 41

support for dumping and loading. As a program grows to include large numbers
of data types, the implementation cost and opportunity for introducing errors
increases. Having object images supported automatically is a great benefit and
saves the user from the work needed to implement and maintain the individual
class load/dump implementations himself, and debug the errors arising from
incorrect specification of the actual object structure in the dumped
representation.

Since Object Pascal also does not represent classes as objects and has no run-
time type information available, it requires an auxiliary user-defined mechanism
to identify classes, such as an additional “class ID”. The problem is that such
class IDs are allocated at compile-time and therefore not constant across
different versions of the same program, or between different programs. Since
Grunt classes are objects, intance-class links are represented by ordinary
references and no other associating mechanism is necessary.

code Object images are instances of Image, which is a subclass of File. An object can
be dumped by sending it in a message dump: to an open image file, e.g.

anImage dump: 3

Conceptually it might seem better to send a message to the object requesting it to
dump itself– however, this will not work for methodless objects that also need to
be dumped. The information needed to suspend and reconstruct an object is
really dependent on its structure and hence the metaobject. This is reflected in
the fact that most objects and classes do not require the rewriting or modification
of any dump methods. The dump: method of Image takes care of calling the
metaobject dump.

In the simplest case, dumping an object is simply writing its constituent data
and metaobject out to a file (metaobjects are simply instances and can be dumped
as such). This is the case with plain data objects, i.e., those with Meta
metaobjects:

image write: (referent@) bytes: (referent` size)

File's implementation of write:bytes: causes the referent's data (pointed to by
referent@ and with a length of referent` size bytes) to be written to the image file.

Things get more complicated when objects have internal structure. First of
all, each of the subobjects needs to be written to the image. For example, for
MetaObject's implementation of dump: we do

subObjects eachDo: [image dump: self]

eachDo: iterates over the metaobject's subObjects dictionary, and dumps out each
of the objects referred to. Something similar happens in the case of MetaInstance,
except that it actually defers to a method of the referent's class:

referentClass dump: referent in: image

which then takes care of dumping the instance's subobjects.
Although subobjects of an object or instance are correctly written out, this is

incomplete if the subobject is itself a reference to another object. In the case of
references, the object referred to needs to be dumped as well. This can be done
by overriding Reference's dump: method:

super dump: referent in: image.
image dump: (referent` objectLink)

This object may itself may contain references to other objects, et cetera. The
recursion ends at the point where either objects are just data without subobjects,
or the object has already been written out before: as was already mentioned, the
Image needs to keep track of which objects have already been dumped so that
they are not written out more than once when there happen to be multiple
references to the same object.

Grunt-92 42

7
Interpreter

As stated in the previous chapter, the interpreter can be viewed as a target-
independent code optimizer. It is a program that resolves a program as far as
possible and outputs whatever cannot be determined with the available
information. The output is what is actually used by the code generator. At one
extreme it is theoretically possible that a program requires no actual code
generation but can be executed entirely by the interpreter.

It is obvious that the reduction of common mechanisms into many
fundamental operations makes the execution of even the most simple statement
into a non-obvious operation. Yet what a Grunt environment needs to do to
execute the statement is in point of fact little different from what the traditional
languages do. The difference is that in traditional languages the division of labor
is fixed, so that the meta-operations of Grunt are usually all handled by a
compiler and the remainder is the compiled program. So while such languages
have the division between compile-time and run-time fixed within them, in
Grunt-92 this border is fuzzy because traditional compiler tasks are defined in
terms of the language itself.

In the absence of restrictions imposed by a source language, some questions
may be fundamentally undecidable. This may result in the interpreter having to
make ‘worst-case’ assumptions on the usage of a particular object. This is
obviously very undesirable. If the programmer knows that a certain object will
only be used in a certain way, but the interpreter does not or cannot infer it from
the information available to it, there are two options open: either the interpreter
can be modified to specifically detect the special usage, or if this is not possible,
the system itself can be modified (and syntactical structures added) whereby the
programmer can explicitly request the special usage. It is even possible for the
compiler to warn against inefficient usages, and require the programmer to
explicitly specify the need for the more general usage. All of this is possible
exactly because Grunt is reflective and extendible.

Porting, or ‘rehosting’, the Grunt-92 compiler requires porting the primitive
methods and some bootstrapping code. Once the compiler is running, it can be
used to recompile itself with the bootstrapping code replaced with Grunt source.

principles The parser's part in compiling a program is the conversion of a human-readable
form into an equivalent set of objects within the system. The interpreter
concerns itself mainly with the message objects in blocks: it tries to send block
messages.

Sending a message consists of two separate steps: first, finding the method
that responds to that message; and second, executing that method. If the
interpreter is able first of all to locate the method it can attempt to interpret it.
Since method lookup itself consists of sending a message, to the metaobject, both
apparently different steps are in fact very similar.

Grunt-92 43

7.1. Message Lookup

Note that there is a recursion, in that sending a message requires a lookup,
which is in turn a message, requiring a lookup, etc.— which must obviously end
somewhere: at some point, the interpreter must be able to complete a message
lookup by a primitive method, i.e., one that is built-in to the host language
implementation of the interpreter.

The fact which allows the interpreter to effect a message lookup internally
rather than having to send another message is that metametaobjects are always
instances of MetaInstance: that is, the object describing the structure of an object
is always an instance of some subclass of Meta. This knowledge allows the
interpreter first of all to construct the metametaobject and then to substitute a
primitive implementation for MetaInstance 's lookup . Note that not the
metaobject's but the metametaobject's implementation of the subobject lookup is
primitive— this permits the future introduction of new kinds of metaobjects as
extensions to the system. What the system does not allow is the nonprimitive
extension of types of metametaobjects, but as noted earlier, this is not a serious
limitation.

There are good reasons for wanting to minimize the extent to which the
interpreter (or any other part of the system) must be implemented primitively.
First of all, any primitive code may be non-portable, although some of this is
unavoidable. Second, any non-Grunt code cannot be converted by the code
generator, which must therefore also provide its own implementations for all the
primitive parts of the system. Other examples of primitive code are the
implementations for arithmetic operations and dictionary lookups.

On the other hand, it may be more straightforward to create an initial
implementation with a relatively large proportion of primitive implementation.

example Figure 6.1 shows an example of which objects are involved in a message lookup
on a plain object, and an instance object 2. Both objects are sent the message +.
The interpreter first attempts to find the responding method for +, by sending
their respective metaobjects (instance of MetaObject and MetaInstance,
respectively) the message lookup "+. Note here that the instance of MetaObject
would locate the object associated with + by checking its private subObjects
dictionary, while the MetaInstance instance checks through its class. So both
messages really do require different lookups.

Sending the lookup message to the metaobject requires a reference to the
metaobject, so the interpreter creates a metametaobject. Finding a metaobject's
implementation for lookup would then formally be done by sending the
metametaobject the message lookup "lookup, but it can be found without a
message because this is a primitive operation.

Note that since MetaInstance's lookup is primitive, there might not have been
a need to create the metametaobject in the second case (where the receiver was
an instance). However, in some cases it may be useful to have a nonprimitive
implementation, as explained in the next section.

Grunt-92 44

Figure 6.1
message lookup for
object and instance

+

MetaObject

subObjects
class

lookup

MetaInstance

referentClass
class

lookup

2

+

MetaInstance

referentClass
class

lookup

MetaInstance

referentClass
class

lookup

Dictionary
+
–
*
÷

Class

“Integer”
subObjects

Dictionary
+
–
*
÷

inlining The interpreter has another tool available to it in the transformation of blocks,
namely inlining. Inlining a block means replacing the execution of a block
object with a copy of the block itself. Obviously this is only possible if the block is
known and only permissible if it is nonvolatile.

There are two main benefits to inlining: first of all, if a block cannot be
entirely resolved by the interpreter, inlining that block may still permit a partial
in-line resolution to take place, thereby achieving a reduction in executed target
code. Second, since inlining reduces the number of references to an object it
makes it less likely that it needs to be generated into target code. Although in
principle any block of code may be inlined, the benefits need to be weighed
against the cost, being greater code size.

In accordance to the two-step process of message sending described above,
there are two main types of situation where an interpreter may decide to inline a
block of code: the message lookup, and the method itself. Inlining the lookup is

Grunt-92 45

particularly useful, because although in many cases the responding method
cannot be determined completely, a significant part of the lookup can still be
done at compile-time.

Note that this generalizes the explicit ‘optimization’ done by C++ compilers in the
virtual member function (C++ does not have virtual data) lookup. In the typical
case, a virtual member function access requires an indirection through the virtual
member table (vtable), but when the class of the receiver is known exactly (i.e., it
cannot be a subclass) the lookup is done at compile-time and the generated code
contains only a static function call. The generalization lies in the fact that in
Grunt this also works for other mechanisms, such as delegation.

For a more detailed discussion of issues related to inlining, see [Hwu89].

example For example, consider the message a + 2, where a is known to be an instance of
Integer or one of its subclasses. To interpret this message, the interpreter begins
by attempting to find the implementing method. Following the procedure
outlined in the previous section, the interpreter starts with the lookup for + in a's
metaobject, creating the metametaobject first (in this example I will show the
actual messages in Grunt rather than with the entire pointer structure, which
would be quite elaborate):

[
Meta newFromMeta: a` | aMetaMeta.
Reference newTo: a` through: aMetaMeta | aMetaRef.
aMetaRef lookup: "+
]

Meta's newFromMeta: takes a metaobject and returns an approprate
metametaobject for it. Reference's newTo: creates a new reference to an object
thtough a specified metaobject. Both of these methods are primitives— in fact,
the canonical parser automatically creates the metametaobject and the reference
whenever the meta operator is used. The third line does the actual lookup of the
name + in a's metaobject.

Again, sending a message to the metaobject requires the metametaobject,
which we have created. The lookup in the metaobject for lookup: is done by
primitive, using the metametaobject to determine that a's metaobject is an
instance of MetaInstance. So the message lookup for + that is invoked is the one
defined by MetaInstance:

[
result := (referentClass metaFor: message of: referent).
]

In the first line, MetaInstance's lookup: asks the referent's class (Integer) to create
a reference for the subobject message (+) of the referent a, and copies the
returned reference in the result reference's metaLink. This involves looking at
the class's instanceObjects, where the name isn't found, followed by the class's
own subObjects, where it is found.

Although we skip the precise definition of instance-class lookup here, the
result is that the metaobject for + in Integer is created, but the part that
calculates the address for the method itself cannot, because the referent's class is
not in fact exactly known. This part is inlined:

[
result := (referent class @ + (

referentClass offsetFor: message))
]

The offset calculation message does not need to know the exact class, and can be
interpreted:

[
result := (referent class @ + 18)
]

Grunt-92 46

for example. Because the referent's class is unknown, this block represents the
completely interpreted message lookup for a's +. This lookup is itself inlined
instead of the message [a + 2] to become:

[
Message new | message.
message` receiver := a @.
message` argument := 2.
message` method := (a class @ + 18).
message deliver
]

The first three messages in this can be interpreted. Leaving just

[
message` method := (a class @ + 18).
message deliver
]

for the code generator.
Remember that all of this is actually represented internally in terms of

pointers— there is really no string substitution going on here, as the written
messages might suggest. This example should further make it clear that
primitive methods play an extremely imporant role in message delivery—
without them the simplest message would turn into a morass of inlined
submessages.

Although the message delivery probably seems enormously complex and intricate,
consider that an ordinary compiler needs to do something quite similar when
parsing function calls. The difference is that the behavior of Grunt's internal
message delivery is dynamic, depending on specific metaobject's implementations.

remarks Note that nothing in the message interpretation is geared particularly towards
high-speed optimized message lookups. There are no bytecodes, for instance,
only full messages. This is in contrast to Smalltalk, where every possible effort is
made to make message interpretation as fast as possible, through special caching
and hashing schemes, careful selection of primitives that are allotted a bytecode,
etc. [Johnson88] [Samples86]. The reason why Grunt-92's interpreter can afford
to be more general and slow is that it is not the main engine for program
execution— the code generator is expected to generate efficient code.

7.2. Methods

If the approprate method can be found, the interpreter can attempt its
interpretation or inlining. Inlined messages are themselves subject to further
interpretation. The result is that the original message is removed in its entirety
or replaced with a new set of messages. Therefore, the result of the
interpretation of a block is in general another block which may in fact be longer
or shorter than the original.

example Figure 6.2 shows what remains after the interpreter has done its work on the
example of §2.9 (Figure 2.1). The interpreter (through the metaobject of the
receiver) is able to find Integer's + method. This is actually a primitive, so the
interpreter can immediately evaluate and return the result 5 in the receiver
object. Therefore the interpreter can eliminate its references to the receiver,
argument dictionary, and argument objects, and assuming that these were the
only references, the objects themselves. The Dictionary and Integer class objects
therefore have one less reference.

Note that the complete evaluation of the message does not result in the
elimination of the actual receiver and argument object data, only the references.
The 3 and 5 are literals, which are created and destroyed by the parser.

Grunt-92 47

Figure 6.2
message after
interpretation

Class

“Dictionary”
subObjects

Class

“Integer”
subObjects

5

3

7.3. Metaobjects

If the interpreter finds that an object's metaobject was known and nonvolatile at
all of its uses, and that no unresolved references to the metaobject exist, the code
generator can eliminate the metaobject from the association. This reduction in
size may in turn permit the object to be placed in a hardware register at run-
time.

In the case of classes, if no MetaInstances of a certain class need to be
instantiated at all, and the class is not referred to by anything else (such as a
subclass), the class object itself need not be instantiated. This corresponds to the
usual case where objects are used without ever referring to their structure.
However, when a nonresolvable reference is made to, for example, a metaobject
or class, the metaobject or class in question is generated into the output code and
so does the corresponding structure information. This would occur when a user
explicitly references type information, or if it is needed for run-time type
checking.

Again, because structure and type are reified into real objects, they benefit
from the exact same interpretation and code generation as ‘ordinary’ objects.

Grunt-92 48

8
Code Generator
Help me find a way from this maze
I can't help myself
But only angels look before they tread
—Living in Another World, Talk Talk [Natural History]

A code generator is like a front end, in that it performs a mapping between Grunt
and another language— except that obviously the mapping is applied in the
opposite direction. Although the mapping may be very simple, a good code
generator will take advantage of the particular capabilities provided by the
target language. A code generator does not, like the interpreter, have the option
of skipping messages and leaving them for another part of the system to resolve.

As stated at the beginning of this report, the first Grunt code generator emits
C++ code rather than, for example, an assembly language or machine code.
However, much of the discussion in this chapter is meant to be independent of
any particular target language and would therefore be of interest to
implementers of new code generators. Obvious advantages to generating C++
are that the code generator output is much more readily portable to other
platforms as well as easier to read and debug. A disadvantage is that it is much
harder to generate ‘good’ C++ code than, for example, some Assembly language,
or even plain C.

This chapter looks at the issues confronting the design of a code generator:
the first section shows how the pointer-based object storage scheme of the
internal representation can be converted into one that is more efficient and
suitable for run-time code. The next section looks into the external linkage of
generated code— this is of particular interest for writers of primitive and
bootstrapping code, since their routines will have to conform to the linkage
requirements of the particular host system.

The C++ code generator is present in the system as the single object named
codeGen. codeGen responds to the message generate: by generating the C++
equivalent of the specified grunt object. A simple case is the C++ code for an
integer literal, which is the same as the Grunt representation— i.e.,

codeGen generate: 1.

generates simply “1”. The other extreme is the C++ code for the Grunt system
itself:

codeGen generate: grunt.

usually emits C++ code for every object in the system.
All knowledge of C++ and its mapping from Grunt, is contained within this

single object— no other parts of the system need to be aware of the range of
target languages that they may be translated into. However, implementations
that wish to explicitly generate their own C++ code may attach their own code
generator to codeGen by calling codeGenerator.

Grunt-92 49

8.1. Object Storage

The metaobject concept is an abstraction of referent structure which places no
inherent restrictions on the physical layout of objects. In particular, there is no
requirement that the object itself be constant, of constant size, or have constant
structuring. To support the full generality of changeable object structure, the
interpreter's internal object representation is completely dynamic (i.e., pointer-
based). No effort is made to place constant or constant-meta objects in special
memory that would be ‘cheaper’ to allocate or access. This would hardly be
useful, because it needlessly complicates the design of the interpreter, whereas a
speed-up of the interpreter would generally only be of benefit to the program
developer and not to its users— they care only about the efficiency of the
generated code. Therefore, where a target system provides different kinds of
storage which each have their own specific allocation and access characteristics,
additional complexity in a oode generator to exploit these different types of
storage is appropriate. Of course, a first-order implementation might settle for a
simple, purely dynamic storage scheme which mirrors that of the interpreter.

Looking at the specific case of a C++ code generator, a number of storage
allocation policies can be identified; some are applicable to other languages as
well. When a code generator needs to allocate storage for an object with a
constant metaobject, it can put it in special memory that does not support
dynamic changes in size. One specific example is the allocation of Method storage
(corresponding to automatic storage class): the code generator can allocate
storage for all the objects in the dictionary at once at the beginning of a method—
when the target language is C this simply means generating declarations of all
the automatic objects at the beginning of the function representing the method.
Meta-constant objects in static storage can be made C static.

When the object itself is also constant, the object can be placed in read-only
memory. In C this corresponds to the const qualifier.

However, when the object is not meta-constant, the object must be placed in
dynamic (i.e., resizable) memory because it needs to be able to handle messages
requesting changes in size. Moreover, since it is generally not possible to extend
the size of existing storage without relocating it in memory, all references to such
objects must change. Since it is impractical, if not impossible, to explicitly locate
every existing reference to or inside any given object, this is best done by
relocating the references implicitly, that is, by an additional level of indirection.

object layout A plain data object (i.e. with Meta metaobject) has no internal structure and can
therefore hardly be represented other than as a contiguous area of memory. An
obvious internal layout of an array of instances (MetaArray metaobject class) is
also a contiguous area of memory. There are at least two options for
implementing the layout of objects and instances, differing in the way that they
handle changes in size of a non meta-constant object.

The first option also uses a contiguous layout of subobjects. However, when
the subobject b changes in size, the addresses of further subobjects change too,
so address calculations performed with this layout are ‘volatile’ (they have to be
performed every time). The second uses another level of pointer indirection for
the variable-length subobjects, achieving a nonvolatile (resolvable) address
calculation for all its subobjects at the expense of the overhead additional
memory management in object construction and destruction. It should be
emphasized that this is purely a trade-off decision regarding the implementation
of the metaobject abstraction. Both options are equivalent if all the subobjects
have constant size.

Grunt-92 50

compound object
storage layout

a

b

c

a

b

c

a

c

b @

a

c

b @b b

metaobjects Normally an object reference consists of a pointer to the object itself and its
metaobject. If the metaobject is known and constant at each of its uses, it and
does not need to be generated at all.

If the metaobject is still needed, it could be stored just before the object itself.
Metaobjects provide a clean solution to the problem of ‘where’ to put the vtables
in C++, especially where multiple structured objects are concerned. Most
importantly, it provides a solution of when to generate metainformation.

One example is in generating code for an expression such as 2 + a, in which
the literal 2 is never referred to anywhere else. 2's metaobject is needed only
once in the lookup for +, but this can be resolved by the interpreter, thus the
metaobject 2` need not actually be generated. The metaobject for a in this
message is only needed for argument type checking, so if this can be done by the
interpreter, a` also does not need to be used in this message. This in turn means
that the objects and the entire message may be done in hardware registers.

On the other hand, if an object's metaobject cannot be determined exactly, for
instance, because it is an argument and the interface did not strictly specify the
metaobject, the metaobject is necessary in order to perform or complete the type
check or lookup at run-time. So, for example, if the object 2 + a was passed as an
argument to a method which allowed Integer or one of its subclasses for that
argument, the generated method would most likely require the metaobject for
that argument as well.

This means that having primitive objects that are ‘real’ objects, that is, with
all the standard object mechanisms like inheritance, should only actually incur a
run-time time or space overhead when strictly necessary. It might be argued
that in the example above, generating the metainformation for an Integer
argument is wasteful, but this is the price that has to paid for allowing
subclasses which may potentially override primitive implementations of, say, +.
If what one really means is “Integer, and only Integer” this overhead disappears.

8.3. Specific Mappings

The current implementation of the code generator was designed to generate
working code for the general case, which is not always necessarily the ‘best’ C++
code. Although it already does take advantage of some C++-specific language
mechanisms, this still needs to be improved. One specific instance of target
language mapping is the case of identifier mapping, which is discussed in the
next section.

Grunt Classes are generated into C++ classes (although this is actually not
always possible, cf. §8.6). Messages are translated into C++ expression-

† At least, this is the case with code generated by AT&T's cfront. There is no
language requirement that it be so

Grunt-92 51

Table
identifier character

mappings

statements. In C++ function calls, the receiver ("self" in the message arguments,
and “this” in the function) and the message selector are implicit and are
therefore not passed as arguments.

The code generator always generates name expressions for objects according
to C++ scope rules, which will therefore always correctly reference an object
whatever scope rules may have been used within Grunt to access the object.

8.4. Identifiers

Most programming languages have a set of reserved words which are not
available for use by programs as identifiers. Also, most languages allow only a
subset of ASCII characters to be used in identifiers, some are case-insensitive,
and often there is a limit, imposed by implementation if not by definition, on the
length of identifiers. Code generators need to map identifiers from Grunt to the
target language so as to avoid these limitations.

operators Certain combinations of nonalphabetical characters are valid in C++ as
operators. Thus, the method name [] is mapped to operator[]. Non-method
identifiers (such as Integers) are not thusly mapped.

characters Characters that are not valid in C++ identifiers are replaced with a three-
character equivalent that represents that character:

! _ex) _rp ; _sc
" _dq * _as < _lt
_nm + _pl = _eq
$ _dl , _co > _gt
% _pc - _mi ? _qm
& _am . _pe @ _at
' _sq / _sl _ _us
(_lp : _cl

For example, the identifier new: is translated into new_cl. Strictly speaking,
there is a conflict with identifiers in the same scope that themselves include
these equivalents, since they are not changed under this mapping— for example,
the Grunt identifier new_cl also maps to new_cl— but this probability is
presumed to be negligible. Also, no mapping is currently implemented for
nonprintable or ‘high bit set’ 8-bit ASCII characters.

length The standard [ARM §2.3] specifies that C++ identifiers may be arbitrarily long,
but accepts that implementations or other parts of system software may impose
limits of their own. The code generator implicitly assumes that generated
identifiers do not exceed these limits.

reserved words A list of C++ reserved words is given in [ARM §2.4]. A Grunt identifier which is a
C++ reserved word is prefixed with “k_” (for ‘keyword’). For example, do is
mapped to k_do. The reserved word mapping is done after the character
translation.

Grunt-92 52

singleton objects
and classes

Since C++ does not directly support the use of classless objects, a single C++ class
is created for such objects, which is instantiated only once. There would then be
a conflict between the C++ class name and the name of the class-object instance.
Also, since Grunt classes are themselves classless objects, there is a further
conflict withthe C++ class that defines the class instances.

The name of the singleton object is used as the name of the C++ instance of
the class-object class. This is so that any references to this object can be mapped
without translation, like references to any other object. For example, the class-
object Integer is called Integer. The name of the C++ class defining the
singleton object is prefixed with “o_”, so the object Integer is an instance (the
only instance) of class o_Integer. For class-objects, the C++ class defining
the instances of that class is prefixed with “i_”. So, all Grunt instances of Integer
are C++ instances of class i_Integer.

Again, there is a conflict when a Grunt identifier in the same scope also uses
the prefix (e.g., k_do maps to k_do).

8.5. Restrictions of the Target Language

Besides the obvious differences in identifier spaces, there are more fundamental
differences between Grunt and the target language. The target language may
support structures that are at a higher level than Grunt primitives— a good code
generator will detect cases when Grunt objects can be mapped to these
structures. An example is classes— Grunt Classes can (to a certain extent) be
mapped to C++ classes.

Another source of disparities arises when Grunt allows the expression of a
concept that is not supported by the target language. There are fundamentally
two different ways to cope with such situations:
• simulate the feature by going ‘outside’ of the language
• fail, while informing the user which particular usage provided the difficulty,

and perhaps some advice on how to avoid it
This section highlights some such problems with generating C++ code, while the
following section discusses C++-specific features that the code generator knoes
about, or could be extended to take advantage of.

constructed
objects

Often, the code generator will be required to emit code for an object which has
already been constructed by the interpreter, and which may have been changed
since its construction. C++ does not support the notion of directly bringing into
existance an object with an already specified state— it requires a constructor to
be called, and does not know that the has already been constructed by the Grunt
system.

In very limited cases, a constructor is not needed. C++ allows objects to be
initialized by an aggregate (§8.4.1) provided that the object has no constructors,
no private or protected members, no base classes, and no virtual functions (and
excepting that at least certain implementations of cfront 2.1 do not implement
aggregates for automatic variables).

The code generator gets around this by fooling the C++ compiler to think that
a C++ constructor has already been called for the object. It explicitly allocates
the storage for the object, initializes it from its current state, and creates a C++
reference to the ‘constructed’ object with the appropriate type. For example, an
instance of Method might be emitted as:

char s_method[sizeof(i_Method)];
i_Method &method = *(i_Method*) s_method;
method.m_preConditions = NULL;
method.m_implementation = NULL;
method.m_postConditions = NULL;

The prefix “s_” is used consistently to declare an object's storage separately from
its true ‘type identity’.

Grunt-92 53

Unfortunately, to be able to initialize an object thusly by each of its members
requires that they be public. See also the next section on one method to get
around this problem.

Meta referents are not instances of C++ classes and hence do not suffer from
this problem. They are generated as variables of type char[] and initialized by
their constituent bytes.

class declarations Although classes are objects in Grunt, they are not in C++ and hence cannot be
declared as such. A class that is an automatic a method† cannot be declared
inside the corresponding C++ function. The code generator moves all class
declarations before and outside the function in which they are defined.

Note that this creates a name conflict when there are two classes with the
same name declared in nested scopes. The code generator should encode the
name of the function in which the class was declared inside the class name, but
doesn't.

external linkage Once code is generated into the outside of the system, objects can no longer be
identified by definite memory addresses. Hence another addressing method is
needed to provide external linkage, which is mainly determined by the target
system's object code linker. This usually limits the range of available addressing
options to alphanumeric strings.

One linkage scheme would be to simply use the message name as the external
name. This type of linkage is type-unsafe, meaning that the same message can
be invoked with different types and numbers of arguments. When a method's
interface block is unknown or volatile, the method can in fact be invoked with
unknown arguments so this type of linkage is sufficient. It is also a good starting
point for an initial implementation.

In most cases the method pre- and postconditions are known and constant, so
that a method has a definite interface. In this case a more type-safe form of
linkage is desirable. First of all, if the message has arguments we can form the
external name by concatenating the individual argument names in ASCII
alphabetical order. Second, for instance arguments we can use a type encoding
scheme such as is given in C++ [§7.2c], with the addition that arguments need
encoded whether the metaargument is expected together with the argument or
not.

Actually, Stroustrup himself makes some convincing arguments that linkers
would benefit from exactly the kind of information from separate compilations
that Grunt provides. Obviously if a linker can look at the interfaces directly there
is no need for clumsy name encoding schemes. Of course, for a linker to actually
use this information would require someone to implement one.

8.6. Current Shortcomings

As stated, the current implementation does not always map Grunt expressions to
their appropriate C++ constructs. This section highlights some of these.

function
declarations

The current implementation does not yet generate appropriate C++ argument
lists. In the general case it isalways possible to pass a message object as the
single argument, but this is unsatisfactory C++ code if the message arguments
and their number are known at compile-time.

Another point is that if an argument's meta-information is known at compile-
time, it does not have to be passed through the C++ function interface. Grunt
itself passes object references by means of their metaobjects. For example, a
function taking an Integer argument may be declared as

void f(i_Integer*);

† And note that all the system classes themselves are in static storage, that is,
locals of the Grunt system object

Grunt-92 54

rather than
void f(i_MetaInstance*);

temporaries The code generator currently generates an explicit (automatic or static)
declaration for all nontrivial (that is, non built-in types) temporaries, even if they
are referenced only once. C++ allows anonymous objects of arbitrary type to be
used inside an expression, if the object can be created with a constructor. For
example, the block [1 write.] is generated as

{
i_MetaInstance m_tmp0;
i_Integer tmp0 = 1;

tmp0.write();
}

whereas it could be generated as
{
i_MetaInstance m_tmp0;

i_Integer(1).write();
}

access control The current implementation necessarily makes all members public to support its
mechanism of creating preconstructed objects. Another method to accomplish
this which would obviate the need for system-wide public members would be to
address the members by a pointer computed from the member's offset in the
object, e.g.

char s_method[sizeof(i_Method)];
i_Method &method = *(i_Method*) s_method;
(i_MetaInstance*&) (s_method + 0) = NULL;
(i_MetaInstance*&) (s_method + 4) = NULL;
(i_MetaInstance*&) (s_method + 8) = NULL;

This effectively and explicitly circumvents C++'s access control mechanisms.

scope resolution The code generator currently emits incorrect code for primary-expressions which
reference an object in program or class scope if there is also a synonymous object
in an inner scope. These cases should be detected and proper references using
the scope resolution operator generated.

8.7. Messages

Because each action of a program is expressed in terms of messages, code
generation comes down to translating the appropriate messages into the correct
output strings. The actions of the code generator, as those of the interpreter, are
ultimately determined by its implementation of its primitive operations: because
the generated messages are outside the system, a code generator can take
advantage of the specific characteristics of the target environment. In fact, just
because the objects are not in the system a code generator actually benefits from
having many primitive operations, in contrast to the interpreter, which works
most effectively using as few primitive methods as possible.

An initial implementation can suffice with a small number of primitives, but a
full-fledged, effective code generator would need to exploit as many strengths of
the target environment as possible to streamline the generated code and get rid
of unnecessary inefficiencies. This not only includes responses to simple
arithmetic messages, as in the interpreter, but any higher-level structures that
can be executed efficiently by the target environment. For example, if the target
language is C, this would include static structure and function declarations,
and const declarations. Because the code generator is an object in a reified

Grunt-92 55

system, it is possible to apply incremental refinement techniques to its
implementation.

As stated before, “executing a method” by a code generator means generating
output code. The primitive method implementations thus deal mainly with
translating messages into text strings and sending them to the output; unlike the
interpreter, which dealt only with in-system objects.

inlining Just like an interpreter, a code generator can decide to inline blocks, although
not for exactly the same reasons: the main benefits to a code generator of inlining
are the reduction in run-time time overhead of message send (i.e., function call)
and, as described above, the elimination of metaobject references. As opposed to
the interpreter, a code generator does need to worry about message lookup
overhead in its generated code.

Again, the decision whether or not to inline a block is a matter of weighing the
advantages against the added cost of increased code size. In some cases, however
(like the primitive arithmetic messages, as in the following example), the relative
benefits of inlining are so obvious that a code generator need not even waste time
thinking about it. In this context, see, for example [Hwu89].

examples As an example of how a C code generator would interpret a message, we take the
sample message in Figure 2.1 but modify the argument to be an argument
variable (so that the message would actually pass interpretation); 2 + a.

Because the class of the receiver and the message are known, the code
generator finds its primitive implementation of the method Integer +. Although it
could generate an actual function call to this primitive, it can inline it instead.
Suppose that a is an instance of Integer or a subclass. In that case it has its
metaobject in this method as well, but since the primitive only needs to access
the object's data and not its structure to perform the addition, we have to convert
the reference to a simple pointer to a itself. If the storage layout scheme
described above is used, this consists of a simple offset into the combined
metaobject/object structure.

The primitive implementation consists of generating the text arg1 + arg2,
which in this case would become something like 2 + a.object.

Continuing the second example from §7.1, we had:

[
message` method := (a class @ + 18).
message deliver
]

Most of the message object, including the single argument, had already been
constructed by the interpreter. Depending on which storage layout scheme is
used, a pointer to the class of a can be found at a fixed offset from the receiver
itself, so a class becomes a.meta.class. The definition of the appropriate
structs is what determines a particular implementation's storage layout
scheme. After taking the pointer we have *a.meta.class and with the addition
*a.meta.class + 18. Note that these really were four messages in succession
even though they were written in a single line. The string expression is stored in
message` method.

The message delivery simply makes a call to the function referred to by the
message` method, storing the result in message` result, using the message
arguments in the order described in §7.2. This results in the code

(*a.meta.class + 18)(3)

being generated.

constructors Grunt constructors are methods which convert data into objects. Grunt
guarantees that a constructed object really is an object of the appropriate type by
executing the constructor method's postconditions. C++ guarantees construction
of bases and members with constructors by requiring them to be explicitly named
in a constructor initializer [ARM §12.6.2], which executes before and outside the
scope of the constructor function body.

Grunt-92 56

Unfortunately, the order of base and member construction is determined by
declaration order and cannot be changed, neither on the basis of parameter or
specific constructor. Furthermore, the construction of a base or member can only
consist of an invocation of its constructor. No statements can be used in the
construction of bases and members, and hence no declarations.

Object Pascal does not have this limitation because members are allocated
and constructed explicitly in the constructor. The downside is that the language
does not guarantee that all or any of the object fields actually have been
constructed.

destructors Grunt destructors are methods which convert objects into data. Since they are
simply a particular kind of method, they do not suffer from the same limitations
as their C++ counterparts.

8.8. Exceptions

As no cfront releases currently implement exception handling, this is done
manually through the use of Fault objects and a set of preprocessor macros which
create and test for the presence of these objects.

Specifically, the existence of a Fault indicates that there exists an error
condition. Fault objects can be instantiated explicitly to signal a failure, or by
using one of the sfault macros. After calling any ‘result-critical’ function
(ideally, every function), use one of the check macros to check for an error and
abort the function.

Grunt-92 57

9
Implementation
Look, Ripley— this is a multimillion dollar installation.
He can't make that kind of decision, he's just a grunt
—Aliens

In this chapter we look at the implementation aspects of the system as a whole.

9.1. Bootstrapping

When a system of any kind is to be constructed out of nothing, there is always a
problem of the orchestration of this process. This process is called
bootstrapping, by analogy of pulling oneself up by one's bootstraps. The
reflectiveness of Grunt makes this more difficult, since almost every object in the
system depends on or refers to other objects. The bootstrapping process is
divided into three distinct phases:
• primary boot is the phase where storage for all the system objects is allocated

and Metas for this storage constructed. This guarantees that references to the
system objects, if not the objects themselves, are valid

• secondary boot invokes the constructors for the system objects. At this point,
the extant references actually become useful in that they refer to ’meaningful‘
objects

• tertiary boot creates auxiliary ‘user’ objects that may use, but are not used by,
the system objects. This includes code generators and front ends

In the C++ implementation, primary and secondary boot phases are performed in
the Grunt system object constructor. Since this object is a global static variable,
C++ construction rules guarantee that the system is operable when main() or
anything it calls is invoked1. Tertiary boot is performed by main() by executing
the Grunt code in a file named “boot.grunt”. This means that extensions to the
system can be made by appropriately modifying the code in this file without
having to recompile the system.

The Grunt system variable bootLevel indicates the currently completed boot
phase— e.g., a boot level of “3” indicates that tertiary boot is done and the system
is up and running.

9.2. Source Code

Normally, each Grunt object or class corresponds to its own pair (a “.h” header
and a “.cp” implementation) of source files. At the most primitive levels of the
Grunt system the distribution had to be modified to support compilation. The
figure shows the dependencies and the distribution over source files of the core
primitive C++ implementation classes.

1 In fact, C++ static initialization rules make an unimplementable promise to
initialize a static variable before its first use

Grunt-92 58

Dictionary.h

Array.h

Object.h

Meta.h

Primitive.h

o_Data

i_Class

i_Array

i_KeyedArray

i_Dictionary

o_Object

o_Class

o_Array

o_KeyedArray

o_Dictionary

i_Meta

i_MetaObject

i_MetaInstance

o_Meta

o_MetaObject

o_MetaInstance

is a

has a

uses a

9.3 Style Guide

A number of coding styles were adhered to in the implementation, to facilitate
reading and understanding of the code. Also, these styles may be used as a
canonical example of further development. A summary of these rules is given
below:

variable names Static variables (i.e., globals and static function variables and class members)
begin with the character “g” or “G” (for “global”). Class members' names start
with the character “f” or “F” (for “field”). Constants variables of any kind begin
with “k” or “K”. Although strictly speaking not variables, preprocessor macros
(such as compilation flags) begin with the character “q ” or “Q”. Function
variables (automatics) and arguments have no special prefix.

Variables of built-in arithmetic or class types always begin with a lowercase
character. Pointers-to-function begin with an uppercase character.

function names For objects which represent functionality, operator() invokes this function.
For example, i_Block::operator() executes the block of messages.

Objects whose explicit purpose it is to contain other objects may have these
subobjects accessed by means of o p e r a t o r [] . For example,
i_Dictionary::operator[] accesses elements in the dictionary, and
i_Meta::operator[] provides access to a referent's subobjects (the referent is
considered to be tightly coupled to its meta).

portability Although the code was written to be portable across machine architectures, the
code in places must make provisions for certain machine-dependencies.
Corresponding to the two architectures on which the code has been compiled, the
compilation flag qMacintosh or qUnix will be defined.

Grunt-92 59

10
Conclusions
The words played on around our heads
Perhaps we went too far
We'll soldier on until the end again
—We Stand Alone, Ultravox [Rage In Eden]

In this report I have attempted to demonstrate that it is possible to build a
reflective object system and language, based on a very small number of
elementary principles, that is still powerful enough to support the construction of
traditional as well as more advanced mechanisms, while still allowing the
generation of efficient code.

The reflectiveness of the system is also the basis for the extendibility of its
mechanisms. Because the mechanisms are easily modifiable, the language does
not have to be ‘preloaded’ with every possible mechanism in advance, and allows
the user to be more selective in choosing the mechanisms most appropriate for a
particular task. History has shown countless times that a system designer who
hopes to anticipate everything in advance is usually no match for a good user-
extendible system.

The most important result of the reification of the compiler, however, is that
everything is expressed in terms of and is affected by exactly the same
mechanisms. That is, parsing, code generation, language mechanisms,
compilation, user programs— all can be expressed in terms of the object,
metaobject, and message. Once the reification has been done, all the features
and mechanisms, all the descriptions in this report apply to everything,
regardless. A noticeable result of this is the fact that any properly reified object,
including parsers, interpreters or entire compilers, can be used by a program and
appear as a part of a generated output program. Also, it is hardly an accident
that the same external intermediate representation can also be used as a
compilation load/dump mechanism and an alternative for #include reparsing,
and a persistent storage mechanism— demonstrating that reification can
actually result in a code reduction, because of the smaller number of duplicate
mechanisms that have to be implemented.

The introduction of both an interpreter and code generators, all acting on the
same objects, makes the disctinction between compile-time and run-time
mechanisms hazy and unnecessary. Since both are capable of running a
program, each can be applied where it is most useful. The reification of the
language and compiler means that this does not benefit only the user's program
itself. Any language mechanism, be it object mechanisms, access control, typing,
type information, can be both static and dynamic, because they can all be used
and processed by interpreter and code generator alike. A consequence of this is
that some of the extreme measures to which compiler implementers have to
resort in order to get a dynamic system running as if it were a static system are
unnecessary, such as hashed message caches, and bytecodes. Nor does a static
system have to pretend to be dynamic with add-on hacks providing quasi-static
typing, or run-time type information.

Another, unexpected, observation is that the reflective redefinition of
languages can be done in a natural way. Indeed, instead of appearing weak and
ineffectual, the simplicity of the reflection allows the user to logically combine
principles, and extend them to form better, more powerful, or simply more

Grunt-92 60

appropriate and expressive ones, rather than trying to coerce new mechanisms
within the straight-jacket of a non-reflective language. Two examples of this are
the more natural solutions of, Smalltalk's ‘metaclass problem’, and persistent
objects.

implementation The implementation is not complete. There currently exists approximately 7,500
lines of C++ code, consisting of a scanner/parser, dictionary/symbol table and list
classes, interpreter and C++ code generator, and command-line interface. Much
of this is C++ ‘bootstrapping code’ which could eventually be rewritten in Grunt
itself and used to recompile the compiler. I estimate that about 10,000 lines of
code are necessary for a basic, first-order version of the system, but much more
will be needed to fully incorporate optimization techniques and the Sina front
end. An exception is the parser, which is not intended to be rewritten in Grunt.

In the report I have more than once referred to “adding objects to the system”.
What this really means in practical terms depends on the host system on which,
and how, it is implemented. Because there is no standard mechanism in C++ or
across operating systems for run-time linking to other code, and the current
implementation tries to make as few assumptions as possible about the host
environment, it is not possible to portably implement run-time linking.
Therefore, adding an object to the system currently implies recompilation and
relinking of the system. It is well to realize that this is actually a deficiency of
the implementation and not of the design.

future directions Although it is naturally difficult to predict how well a system will be able to
adapt itself to future changes, I think the following examples at least suggest
that the current design is robust enough to support some very interesting
directions, even though no explicit provision was made for any of them:

The current interpreter uses the simple rule of evaluating every message that
it can, while leaving all others for which not enough information is available to
the code generator. More sophisticated message splitting techniques could be
implemented, where certain sequences of messages are interpreted more than
once, with more definite information being substituted in some of the cases. The
interpretations with the additional information result in more resolutions and
hence in generated code that is more efficient. The benefit of message splitting
relies on the fact that the more efficient path is taken more often than the
general path. This requires some intelligence from the interpreter in deciding
which messages are worthwhile splitting, generating the multiple message paths
and the additional messages that ensure the right path is taken. Since this kind
of replacement and insertion of messages is already a basic task of the
interpreter, no fundamental changes should be required.

It is hard to say how well the Grunt intermediate representation would stand
up as a basis for ‘resourceing’ or retargeting to radically different, such as
concurrent or distributed, architectures. It is uncertain how well these could be
expressed in strictly graphical structures. Moreover, the successful combination
of concurrency and code sharing mechanisms remains a non-trivial problem
[Matsuoka91]. Note that the volatile qualifier might probably be used to good
effect on shared objects, because it forces the interpreter and code generators to
explicitly reaccess an object that may be changed.

Recent work [Tanenbaum92] suggests that objects with more flexible access
characteristics are very useful in distributed multiprocessor systems. This
system uses an object-based shared memory scheme, where processors have
separate address spaces, but in which shared objects are automatically copied to
other processors that access them. Since this involves object access
characteristics, this task is cut out perfectly for metaobjects. Once the
metaobject was associated to the object, further shared accesses should be
completely transparent to the user.

I stated in the report for the Special Topics in Compiler Design course, that I
believed that the ultimate test of a language and compiler is an implementation
of the compiler in its own language. It seems that the third incarnation of the
Grunt language may finally succeed in reaching this goal.

Grunt-92 61

R
References

[Abadi89] Martín Abadi, Luca Cardelli, Benjamin Pierce, and Gordon
Plotkin, Dynamic Typing in a Statically-Typed Language, Proc.
16th Symp. ACM PoPL, 1989, p. 213

[Aho86] Alfred V. Aho, Ravi Sethi and Jeffrey D. Ullman, Compilers—
Principles, Techniques and Tools, Addison-Wesley

[Adobe86] Adobe Systems Incorporated, POSTSCRIPT Language Reference
Manual, Addison-Wesley, 1986

[Aksit90] M. Aksit and A. Tripathi, Data Abstraction, Concurrency and
Synchronization in Sina, Memoranda Informatica 90-15, April
1990
Description and examples of the Sina programming language
and its concurrency support

[Aksit91a] Mehmet Aksit, Jan Willem Dijkstra and Anand Tripathi,
Atomic Delegation: Object-Oriented Transactions, IEEE
Software, March 1991, p. 84

[Aksit91b] Mehmet Aksit, Lodewijk Bergmans, and Sinan Vural, An
Object-Oriented Language-Database Integration Model, working
paper, 1991

[Apple85] Apple Computer, Inside Macintosh, Addison-Wesley, 1985

[Ballard86] Mark B. Ballard, David Maier and Allen Wirfs-Brock,
QUICKTALK: A Smalltalk-80 Dialect for Defining Primitive
Methods, Proc. OOPSLA, SIGPLAN Notices, 1986, p. 140

[Björnerstedt88] Anders Björnerstedt and Stefan Britts, AVANCE: An Object
Management System, Proc. OOPSLA, 1988, p. 206

[Borning82] Alan H. Borning and Daniel H.H. Ingalls, A Type Declaration
and Inference System for Smalltalk, Proc. 9th annual Symp.
ACM PoPL, 1982? p. 133
Describes a separate typing system for Smalltalk, and how
types can be inferred in untyped Smalltalk

[Chambers89a] Craig Chambers and David Ungar, Customization: Optimizing
Compiler Technology for SELF: a Dynamically-Typed Object-
Oriented Programming Language, ACM PoPL?, 1989, p. 146

[Chambers89b] Craig Chambers, David Ungar and Elgin Lee, An Efficient
Implementation of SELF: a Dynamically-Typed Object-Oriented
Language Based on Prototypes, Proc. OOPSLA, SIGPLAN
Notices, 1989, p. 49

[Coplien92] James O. Coplien, Advanced C++ Programming Styles and
Idioms, Addison-Wesley 1992

Grunt-92 62

[Deutsch83] L. Peter Deutsch and Allan M. Schiffman, Efficient
Implementation of the Smalltalk-80 System, Proc. 11th Symp.
ACM PoPL, 1984, p. 297

[Duhl88] Joshua Duhl and Craig Damon, A Performance Comparison of
Object and Relational Databases Using the Sun Benchmark,
Proc. OOPSLA, SIGPLAN Notices, 1988, p. 153
Comparison of relational and object data base models: modeling
differences, theoretical and practical performance using a
benchmark

[Ellis90] Margaret A. Ellis and Bjarne Stroustroup, The Annotated C++
Reference Manual, Addison-Wesley, 1990
Definitive reference to the C++ programming language, and
valuable implementation hints

[Feldman79] Stuart I. Feldman, Implementation of a Portable Fortran 77
Compiler Using Modern Tools, Proc. OOPSLA, SIGPLAN
Notices, 1979 (14), p. 98
Describes a compiler implementation, showing the use of
Portable C and Standard C intermediate representations and
code generators

[Ferber89] Jacques Ferber, Computational Reflection in Class-Based
Object-Oriented Languages, Proc. OOPSLA, 1989, p. 317
Describes different models of reflection as applied to object-
oriented languages, difference between structural and
computational reflection

[Frailey79] Dennis J. Frailey, An Intermediate Language for Source and
Target Independent Code Generation, Proc. OOPSLA, SIGPLAN
Notices, 1979 (14), p. 188
Describes an intermediate language, using formalized operator
properties, retaining information for code optimization

[Goldberg83] Adele Goldberg and David Robson, Smalltalk-80: The Language
and its Implementation, Addison-Wesley, 1983
The classic and definitive reference work on the Smalltalk-80
language, out of print

[Goldberg89] Adele Goldberg and David Robson, Smalltalk-80: The
Language, Addison-Wesley, 1989
The language reference part from [Goldberg83]

[Hekster90] Ben Hekster and Peter Middelhoek, The Grunt Programming
Language, course report, 1990
Report on the original ‘Classic’ Grunt programming language
and its implementation, for the Vertalerbouw course

[Hekster91] Ben Hekster and Peter Middelhoek, The Grunt-91
Programming Language, course report, 1991
Report on the Grunt-91 object-oriented programming language
and its implementation, for the B.O. Vertalerbouw course

[Hekster92] Ben Hekster, The Grunt-92 Implementation Manual, 1992
Detail down to the implementation level of resourcing,
rehosting, and retargeting the Grunt system

[Helm90] Richard Helm, Ian M. Holland, and Dipayan Gangopadhyay,
Contracts: Specifying Behavioral Compositions in Object-
Oriented Systems, Proc. OOPSLA, 1990, p. 169

[Hwu89] Wen-mei W. Hwu and Pohua P. Chang, Inline Function
Expansion for Compiling C Programs, Proc. 16th Symp. ACM
PoPL, 1989, p. 246

[Ingalls88] Dan Ingalls, Scott Wallace, Yu-Ying Chow, Frank Ludolph and
Ken Doyle, Fabrik: A Visual Programming Environment, Proc.
OOPSLA, SIGPLAN Notices, 1988, p. 176

Grunt-92 63

[Johnson88] Ralph E. Johnson, Justin O. Graver and Lawrence W.
Zurawski, TS: An Optimizing Compiler for Smalltalk, Proc.
OOPSLA, SIGPLAN Notices, 1988, p. 18

[Kernighan88] Brian W. Kernighan and Rob Pike, The UNIX Programming
Environment, Prentice-Hall, 1984

[Kernighan88] Brian W. Kernighan and Dennis M. Ritchie, The C
Programming Language, 2nd ed., Prentice-Hall, 1988
Definitive reference and tutorial of the ANSI C programming
language

[Kim88] Won Kim, Nat Ballou, Hong-Tai Chou, Jorge F. Garza, Darrell
Woelk and Jay Banerjee, Integrating an Object-Oriented
Programming System with a Database System, Proc. OOPSLA,
SIGPLAN Notices, 1988, p. 142

[Koopmans91a] P.S. Koopmans, The SINA Language: assignment of the Systeem
Implementatie Technieken lecture, 1991
Fundamentals of the syntax and semantics of the SINA
programming language

[Koopmans91b] Piet Koopmans, 2. Implementation of Object-Oriented
Programming Languages, 1991
Concise sampling of Smalltalk dialects, particularly regarding
their efficiency and applicability to Sina implementations

[Lieberman86] Henry Lieberman, Using Prototypical Objects to Implement
Shared Behavior in Object Oriented Systems, Proc. OOPSLA,
1986, p. 214
Explains the basic differences between sets and prototypes,
claims that inheritance is a proper special case of delegation

[Matsuoka91] Satoshi Matsuoka, Ken Wakita, and Akinori Yonezawa,
Inheritance Anomaly in Object-Oriented Programming
Languages, unpublished draft, April 3, 1991

[Meyer86] Bertrand Meyer, Genericity versus Inheritance, Proc. OOPSLA,
SIGPLAN Notices 1986, p. 391
Shows some of the possibilities of the different types of
genericity, how they can be used in Eiffel and Ada, and how
genericity and inheritance can simulate each other

[Micallef88] Josephine Micallef, Encapsulation, Reusability and
Extensibility in Object-Oriented Programming Languages,
JOOP, April/May 1988, p. 12

[Samples86] A. Dain Samples, David Ungar and Paul Hilfinger, SOAR:
Smalltalk Without Bytecodes, Proc. OOPSLA, SIGPLAN
Notices, 1986, p. 107

[Stein87] Lynn Andrea Stein, Delegation Is Inheritance, Proc. OOPSLA,
SIGPLAN Notices 1987, p. 138
Refutation of [Lieberman86]'s claim

[Tanenbaum92] Andrew S. Tanenbaum, M. Frans Kaashoek, and Henri E. Bal,
Parallel Programming Using Shared Objects and Broadcasting,
IEEE Computer, August 1992, pp. 10

[Tesler85] Larry Tesler, Apple Computer, Object Pascal Report, Structured
Language World (9) 3

[Thatte90] Satish R. Thatte, Quasi-static Typing, Proc. 17th Symp. ACM
PoPL, 1990, p. 367

[Thomas89] Dave Thomas, What's in an Object?, BYTE, March 1989, p. 231
Elementary introduction to the object paradigm and its
terminology, overview

[Wegner87] Peter Wegner, Dimensions of Object-Based Language Design,
Proc. OOPSLA, SIGPLAN Notices, 1987, p. 168

Grunt-92 64

Important analysis and overview of the orthogonal ‘basis’ of the
object language design space

[Wegner89] Peter Wegner, Learning the Language, BYTE, March 1989, p.
245
Reworked and toned-down version of [Wegner87]

[Wilson90] David A. Wilson, Larry S. Rosenstein and Dan Shafer,
Programming With MacApp, Addison-Wesley, 1990

I
Index
Take this kiss upon the brow
And, in parting from me now
this much let me avow:
You are not wrong who deem
that my days have been a dream
—Propaganda, Dream Within a Dream [A Secret Wish]

(Edgar Allen Poe)

+ 34
@ 12
allocation 18
Block 15, 34

argument 63
expression 63

blocks 28
Boolean 52
canonical parser 3
class 33

block 63
metaclass 34
result 63
system 52
void 63

code generator 4
comments 6
constant 25
constructor 19
copy constructor 63
data 20
deallocation 18
destructor 19
dumping 36
external representation 36
false 7
GENERIC 35
identifier 8
implicit 19
inheritance 34
instance 33, 34

recursion 63
integer 7, 52
internal representation 36
interpretation 4
keyword 8
lexical conventions 6
linkage 49
literal

block 8
Boolean 7

literals 7

loading 36
message 27

cascade 11
Messages 9
meta conversion 32
metaobject 21
method

generic 35
self-result 63
system 52

naming conventions 63
Object 34, 52

block 63
result 63

object’ 18
Operators 12
overriding 34, 63
parser 3

directives 8
Program 15
prototype 33
qualifier 25
receiver 27
reference 26
referent 21
Scope 9
Smalltalk ii
storage 13, 47
storage class 13, 19

Automatic 13
Dynamic 13
External 13
Indeterminate 13
Persistent 13
Register 13
Static 13
Temporary 13

Storage Classes 13
storage qualifier 14
string 7
subclass 34
superclass 34
tag 12
true 7
type coercion 31
type conversion 31
variable

class 34
local 63

volatile 26
whitespace 6
` 12
| 12

Grunt-92 66

