
GRUNT-91

Ben Hekster and
Peter Middelhoek

The
Programming Language

Design and Implementation of the Grunt Programming Language i

Preface

Before you is the report on the Grunt-91 programming language which was
written as the assignment for the course Special Topics in Compiler Design
(Bijzondere Onderwerpen Vertalerbouw). As its name suggests, Grunt-91 is an
updated version of the Grunt language (henceforth referred to as Classic
Grunt) which resulted from the original course in Compiler Design
(Vertalerbouw).

Aside from its complete reimplementation under a different compiler-
building environment, Grunt-91 embodies several (we feel) significant and
some minor changes with respect to the original language. A second pass
through the language and compiler design process has greatly improved our
understanding of compilers and object-oriented languages.
▼ This document is a very thorough reworking of The GRUNT Programming

Language [1], which described the original Grunt language and an
implementation. Features new to Grunt-91 or significantly different from
Classic Grunt are set off like this paragraph. Those already familiar with
the original document or language may wish to concentrate on these points
only.

The language Grunt was inspired by and derives its name from the visionary Smalltalk-80
language developed at the Xerox Palo Alto Research Center [1]. Many of its
basic concepts were incorporated in the language. The name ‘Grunt’, referring
to the rudimentary nature of primeval personal communication represents the
state of the language relative to Smalltalk.

Upon reiterating the design process for Grunt-91, and with the benefit of
hindsight, some incorrect assumptions we made due to our incomplete
understanding of object-oriented languages have become apparent. Our earlier
assertion that object-oriented languages are mostly interpreters was,
considering the rising popularity of languages like C++ somewhat imprecise.

Since the language has now been completely reimplemented using the
widely available LEX and YACC compiler-generation tools, we foresee being
much more readily able to extend the language or port the compiler after
completing the course. We regret not having had this opportunity in the first
place.

We are happy to say that in spite of many changes the language is still
type-safe, meaning that Grunt programs do not have type conflicts after they
are compiled. We believe that determining the validity of a program should as
much as possible be done at compile-time and not be deferred at the expense of
the program's users every single time it is run.

In a sense, Grunt carries on a trend which has been set by languages such
as C, of removing extraneous concepts from the language itself. For example,
the C input/output facilities are not part of the language proper, but can be
included in the form of a standard library. In Grunt even control constructs
such as loops or conditional execution are not part of the language but can be
implemented as system or library classes. A language must be flexible enough
to allow such functionality to be implemented.

Design and Implementation of the Grunt Programming Language ii

The report Contrary to the original document, the formal specification of the grammar has
been moved from its separate appendix and merged into the informal
description. This permits a more precise and comprehensive treatment of the
language's features and peculiarities. Unfortunately this also often means that
the reader must understand certain concepts before they are defined. The
report thus takes on more the form of a reference manual, in the style of [9].

It no longer presumes to serve as any kind of introduction into object-
oriented languages. The reader is assumed to be familiar with their concepts
and terminology. A small introductory section on the object-oriented
programming model is included mainly to clearly define and justify our own
use of the terminology, which we have seen to vary somewhat even among
well-established object-oriented languages.

In one way this report shows a maturation of our approach to language
design—whereas before we took a myopic view of the language and its
implementation being one and the same, we now view them as distinct entities.
Meaning, that we have tried not to let deficiencies in one particular
implementation compromise the definition of the language. Naturally
differences are noted when they occur. A chapter still describes the
implementation of the language but on a more platform-independent and
instructive manner so that it might serve as a guide to future implementations.

Typographical conventions in this report are:
▼ Departures from Classic Grunt

▲ Suggestions for future extensions to Grunt-91
Grunt language code is written in Helvetica type. Other source code, for
instance, that used in the implementation of Grunt itself is written in Courier
type.

Observations In developing the Grunt languages we have very much relied on knowledge
developed by others. References are made to literature throughout this report.
In particular we are indebted to [1] and [9], which are both excellent and have
set the tone of this report. Although interesting, the ‘dragon book’ [10]
unfortunately does not seem to have lent itself particularly to the issues of
object-oriented languages and their compilers.

To us the ultimate test of a language and compiler is an implementation of
the compiler in its own language. Although there is still some way to go,
Grunt-91 takes a step towards this goal.

July 1991

Ben Hekster Peter F.A. Middelhoek
Tankelanden 5 Glanestraat 19
7542 DR Enschede 7555 KW Hengelo
053-764091 074-911674

Copyright © 1991 by Ben Hekster and Peter F.A. Middelhoek

Created on the Apple Macintosh with Microsoft Word and Claris MacDraw II
Printed on Monday, October 2, 2000

Contents

Preface i
The language, The report, Observations

Contents iii

Introduction 1
Object Paradigm.. 1
Lexical Conventions .. 2
Pragmas ... 3

Classes 4
Superclasses, Metaclass

Program ... 6
Declaration .. 6
System classes... 8

Methods 10
Blocks... 10

Methods, self-result methods, Generic methods
Expressions ... 13

Message chaining, Pseudo-objects
Arguments ... 14
Overriding ... 15

Implementation 16
Compiler Implementation .. 16

Observations
Syntax Tree ... 17

Classes, Objects
Code Generation.. 19
Run-time Environment ... 19

System classes, Message sending, Temporary objects

Examples 21
Factorial, Complex class

References 23

Index 24

1
Introduction

This chapter gives a brief demonstration of the terms used to describe Grunt-
91's object-oriented concepts. Lexical conventions of Grunt-91 programs are
defined, and there is a short section of compiler-specific information.

Object
Paradigm

In an object-oriented system, an object is often defined as being a collection of
private data together with some set of operations which can be performed on it.
In mature object-oriented languages, examples of objects are integer numbers,
display windows and files.

A message may be sent to an object requesting that one of these operations
be carried out on it. The object to which the message is directed is called the
receiver of the message. The object's implementation of the operation is
called its method. For example, in Grunt an integer object 3 can be sent a
message requesting that the value of another integer object a be added to it:

3 + a

In this example, 3 is the receiver of the message + a. The integer object a is the
parameter of the message. Methods can return the result of an operation by
changing the receiver, or by returning a new result object. For the + message
the result object is another integer object.

Another example is the message write, which requests that the integer ob-
ject display its value on the screen:

3 write " the screen will display '3' "

write takes no arguments. The text between the double quotes is a comment
which is ignored by the Grunt compiler.

If a message is sent to an object which it does not implement in one of its
methods, it is said that the object does not understand the message. For
example, sending a message to an integer object asking it to compute its
Boolean negation constitutes an an error:

3 not

An object whose value is explicitly stated is called a literal—for example, 3
is an integer literal. The $ symbol denotes a character literal, as in $a. There
are also two Boolean literals true and false. Square brackets [] are used to
introduce a so-called block literal (explained later on). The object class of a
literal is hereby unambiguous even though it is not spelled out in the program.

Their counterparts are the variable objects, which are not specified by a
value but by an identifier which is called its name. A variable must be
declared before it can be used, which involves specifying its object class and an
optional initial value.

Objects usually understand an assignment message := which can be used to
assign a new value to an object, as in

Design and Implementation of the Grunt Programming Language 2

a := 2

The terms “literal” and “variable” are actually somewhat of misnomers since,
while they exist, literal and variable objects behave identically. For example, a
literal object can also be sent a message to change its value:

3 := 2

Literals are declarations of objects which belong to a type called temporary
objects. These describe short-lived unnamed objects whose creation and
disposal is not under the user's control but is managed implicitly by the
compiler. The other types of temporary object arise in the concatenation of
expressions, and when expressions are enclosed in parentheses. A temporary
object exists only within the expression in which it occurs.

The implicit-declarative nature of literals has two consequences. Because
its object class is not explicitly specified the class of literals that can be written
is extremely limited. Second, because a literal is unnamed it can only be
referred to at the point it is written.
▲ A future extension of the language could include a capability for specifying

literals of arbitrary object classes
The fact that literals do not require explicit declaration can occasionally be

useful. For example, to input an object directly into an expression we could
write:

0 (:read) :write

without needing to explicitly declare a variable object. A value is read into the
integer object 0 which is then displayed on the output. The exact
interpretation of an expression such as this is explained later on.

Lexical
Conventions

Except when preceded by a dollar sign, the double quote character " introduces
a comment which terminates with the next double quote. Comments can
therefore not be nested. White space consists of the space, tab and newline
characters. Other than that they are used to separate tokens they are ignored.

Identifiers consist of an alphabetic letter (upper and lower character cases
are distinct) or one of the symbols

! # % & * + - / : ; < = > ? @ \ ^ _ ` { } ~

followed by any number of alphabetic letters, symbols or digits.
The following identifiers are reserved as keywords and cannot be used

otherwise:

CLASS self
ENDCLASS super
METHOD true
PARENT false
GENERIC

In addition, the keyword

PRAGMA

at the beginning of a line introduces an implementation-dependent action on
the remainder of that line, which is otherwise ignored and not part of the
program. Unrecognized pragmas are ignored.

There are four kinds of literals corresponding to four of the system classes.
An integer literal consists of an optional plus or minus symbol followed by a
sequence of digits, representing a signed decimal value. A Boolean literal is
denoted by either of the keywords true or false. The left and right square
brackets [] enclose block literals.

A character literal is specified by a dollar sign $ followed either by a single
character or another dollar sign and a single character. The latter form
specifies one of the following character escape sequences:

$$n newline
$$t tab
$$$ dollar

Design and Implementation of the Grunt Programming Language 3

Use of escape sequences other than those defined above is allowed and is the
same as if the character had not been escaped, but results in a compiler
warning. This provides some backward compatibility of programs written
under future versions of the language which define additional sequences.

Pragmas Borrowing one of the ANSI C preprocessor features, pragmas are used for
passing information to the compiler. Grunt-91 requires the following pragma to
be recognized by all its implementations:

PRAGMA INCLUDE file

causes the named file to be parsed in place of that line in the program.
▼ Pragmas are new to Grunt-91

▲ Including files would be more useful if class declarations could be separated
from their definitions.

2
Classes

Same kinds of objects are grouped into classes (see figure). Individual objects
belonging to a class in this way are called instances of the class, which is
known as the instance's object class. Instances have their own copies of the
private object data, called the instance variables (or object variables).

A class serves a twofold purpose—first, it defines the format of and
initializes instances of itself. Second, it contains the class variables, which
include the implementation of their methods.

Figure 2.1

classes

instances

Superclasses New classes can be defined in terms of existing classes by specifying additional
object variables and class methods. The new class is called a subclass of the
existing one, which is called the superclass. This type of inheritance may be
depicted as follows:

Figure 2.2

A class can have many immediate subclasses but has only one immediate su-
perclass. There is exactly one class, Object, which has no superclasses at all.
All other classes are either direct or indirect subclasses of this class.

The subclass inherits all of the object variables and methods of its super-
class—it builds on and implements functionality absent in the superclass. In
this way, messages can be sent to instances of a subclass which an instance of
the superclass would not understand. Messages sent to an instance of a
subclass which the subclass does not understand are passed on to the

Design and Implementation of the Grunt Programming Language 5

superclass. If a subclass reimplements a method of one of its superclasses, the
method is said to override the one in the superclass. The overriding method
may relay the message to the superclass while performing some additional
actions, or it may reimplement the message response completely.
▲ Multiple inheritance should be implemented in another version of the

language. In this scheme, objects can belong to more than one class at the
same time. For instance, a new class with Boolean and Integer superclasses
would inherit data and behavior from both these classes (see figure).

Figure 2.3

Metaclass A class is itself an object. Its object variables are the class variables of its
instances and include the class methods.

Classes are instances of a single metaclass Class. This includes the Class
and Object classes. Since Class is itself a class and therefore an object it is a
subclass of Object. (see figure 1.4) Note that there is one instance of Class for
each of the classes in the figure.
▼ Metaclasses and the ‘class object’ concept are new to Grunt-91. They are

not yet well-developed.

Figure 2.4

Integer
Character

Boolean

Object

Class

▲ There should be some way to dynamically create objects. At present all
storage allocation for objects is performed by the compiler. As observed in
[1], because there is one metaclass which is shared by all of the classes the
instantiation message would have to be the same for all classes. This is
unfortunate only if initialization is done at the same time. Frankly, we do
not see that storage allocation and object initialization are inseparable and

Design and Implementation of the Grunt Programming Language 6

do not find this particularly objectionable—at least not more so than having
a separate metaclass for every class.

A ficticious example of how such a dynamic storage allocator might be
implemented:

METHOD new [Class Object ||
(objectMemoryHeap allocateBytes: instanceDataSize) objectClass: self
].

New objects would be instantiated by sending new to an object class:

(Complex new) (:x:y: 2, 3) (dispose)

▲ Of course, with the possibility of incurring run-time memory allocation
errors an exception handling mechanism would be useful

Program A Grunt program consists of a list of class declarations:

program:
classDeclList;

Declaration
The grammar governing class declaration is as follows:
classDeclList:

classDeclList classDecl;
;

classDecl:
CLASS identifier superClass PARENT class
| compoundVariableDeclList |
compoundVariableDeclList
ENDCLASS;

class:
identifier;
METHOD;

A class is uniquely identified by the identifier called the class name. Once a
class is declared it is accessible from anywhere on in the program. The
specified superclass must have been previously declared. Although the
keyword METHOD is intended to suggest the existence of a distinct class of
method objects, it does not actually define a class unless followed by an
initializer in variable declarations.
▼ The implied-superclass declaration from Classic Grunt is no longer

allowed—its utility was questionable, at least. Nor is the surrounding
class-within-a-class declaration permitted anymore.

▲ The latter syntactical construction might possibly be used in future to
introduce subclasses which have more knowledge of their superclass

▲ Not separating declarations from definitions was a mistake which makes
parsing more difficult. Worse, it makes it impossible to write a class library
without exposing the enitre implementation.
Grunt-91 has name equivalence [10, p. 356] of classes. An exception is

block classes which cannot be named and must therefore rely on structural
equivalence.
▲ The lack of block class names produces other problems as well
A class is declared when its instance variables have been declared, which are
enclosed by the two vertical bars. The following set of declarations are those of
the class variables:

Design and Implementation of the Grunt Programming Language 7

compoundVariableDeclList:
compoundVariableDeclList compoundVariableDecl;
;

compoundVariableDecl:
class variableDeclList . ;

variableDeclList:
variableDeclList , initializedVariableDecl;
initializedVariableDecl;

initializedVariableDecl:
variableDecl;
variableDecl literal;

variableDecl:
identifier;

variable:
identifier;

A variable is declared by specifying its object class and name. When the
METHOD keyword is used the class is defined by the initializer, which must be
present. The class of an instance variable must have been previously declared.

A compound declaration declares multiple variables of the same object
class with a single naming of the class by separating the names with a comma.
An initialized declaration may be used to give an initial value to an object of
some of the system classes. The initialization is, in effect, performed at
compile-time and does not involve the sending of messages.
▼ Compound and initialized declarations are new to Grunt-91

For example:

| Integer i1, i2 0. Boolean predicate false. Character x, y $$n, z. Integer m |

The fact that a class is not yet declared at the time of the declaration of its
instance variables implies that the defining class may not be used as the class
of one of its instance variables (this is a degenerate case which we call instance
recursion).

Consider, for example, the declaration of a subclass of Integer called
Complex whose instances consist of one inherited integer (its real part) and an
instanced integer (its imaginary part).

CLASS Complex PARENT Integer
| Integer im 0. |

METHOD re [Complex Integer || super].
METHOD im [Complex Integer || im].

ENDCLASS

(A full definition of the Complex class is given in Appendix A.) Class names
must hence be unique within a program. By convention they begin with an
uppercase, and variable names begin with a lowercase character.

As it is, Complex does not yet implement many methods so most messages
sent to its instances will be deferred to its superclass Integer. For example, if z
is an instance of Complex, the result of

z + 2

is an Integer object with the value of the real component of z plus two.
▲ This example is at the same time a good argument for having a mechanism

like copy constructors C++

Design and Implementation of the Grunt Programming Language 8

System classes Because new classes must always succeed from superclasses it follows that
there must already be classes from which they can be defined. These classes
must also have some predefined methods because likewise new methods are
described in terms of other methods. The Grunt system provides five such
system classes, Object, Integer, Boolean, Character and Class. The Object
class serves as a superclass to all other classes. Instances of Class are
generated by the run-time environment when the program is started. It is
probably not useful for a program to instantiate Class directly. The system
class hierarchy is illustrated in the following figure:

Figure 1.5

Integer
:=
:+
:–
=
<>
read
write

Character
:=
=
<>
read
write

Boolean
:=
=
<>
not
and
or
read
write

Object

Class

The messages that are understood by their instances are listed in the class
boxes. Many of the messages are understood by more than one of the system
classes, such as := (assignment), = (equality), <> (inequality), read (input) and
write (output).

The methods predefined with the system classes, the system methods, are
shown below in pseudo-Grunt format. (Method declaration is explained in the
following section.) The system methods are the only ones which cannot be
expressed in Grunt itself but must be implemented directly in the compiler's
target language. The declarations are useful because they define proper usage.

"
System class pseudo-definitions

Imaginary definitions serve to illustrate primitive methods, and
make use of implicit machine classes

"

CLASS Object
| Class @objectClass. |
ENDCLASS

Note that in Grunt-91 each object contains a reference to its object class, which
is implied by the ficticious @ pointer operator.

CLASS Integer
| MachineInteger i |
METHOD := [Integer self Integer value ||].
METHOD :+ [Integer self Integer addend ||].
METHOD :– [Integer self Integer subend ||].
METHOD = [Integer Boolean Integer comp ||].
METHOD <> [Integer Boolean Integer comp ||].
METHOD read [Integer self ||].
METHOD write [Integer self ||].
ENDCLASS

Design and Implementation of the Grunt Programming Language 9

CLASS Character
| MachineCharacter c |
METHOD := [Character self Character value ||].
METHOD = [Character Boolean Character comp ||].
METHOD <> [Character Boolean Character comp ||].
METHOD read [Character self ||].
METHOD write [Character self ||].
ENDCLASS

CLASS Boolean
| MachineBoolean b |
METHOD := [Boolean self Boolean value ||].
METHOD = [Boolean Boolean Boolean comp ||].
METHOD <> [Boolean Boolean comp ||].
METHOD not [Boolean Boolean ||].
METHOD and [Boolean Boolean Boolean op ||].
METHOD or [Boolean Boolean Boolean op ||].
METHOD read [Boolean self ||].
METHOD write [Boolean self ||].
ENDCLASS

3
Methods

Methods are a class's way of responding to messages received by one of its
instances. A method can effect a response to a message by modifying the
receiver of the message in some way and by returning a new result object.
Methods are the only way through which instances of other classes can gain
access to the object.

Practically, a method consists of some program code in the form of a block;
object which is designed to affect the receiver and result objects in some
predetermined way. Methods are merely named blocks which have been
associated with a certain class by declaring them as class variables. In fact,
the block objects themselves exist quite well independently of a class, and
blocks that are not methods may be useful.
▼ In Grunt-91 there is almost no separate method concept. The necessity of

blocks, i.e. bits of code that could take arguments and return a result, was
already noted in the Classic Grunt language report. Their similarity to
methods led to the generalization of methods in terms of blocks. Since
methods are block objects of a class, the introduction of class variables was
logical. Making classes into objects parallelized class and instance variable
objects into a single concept.

Blocks New methods are introduced to classes by defining them as variables of the
defining class. A method declaration acts to associate a piece of code, called a
block, with a method name in the defining class. Because methods are no
more than named blocks, a block can equally well be sent as a message to a
receiver.
▼ Blocks are new to Grunt-91

Although blocks are regarded as if they were regular objects, the classes of
which they are instances are unnamed. This means that there is no way to
declare a variable block object other than as a method, i.e., using the keyword
METHOD as if it were a class name and giving a literal block as an initializer.

The syntax for specifying block literals is:
block:

[class resultClass optArgumentDeclList
| compoundVariableDeclList |
expression
] ;

resultClass:
class;
self;
GENERIC;

The first class specifies the kind of receiver objects that the block can operate
on. Naming an explicit result class defines the class of a result object which is
returned by the block when it is invoked. The keywords self and GENERIC
introduce certain varieties of blocks called self-result and generic blocks,
explained in more detail further on.

A block may be made to take a number of arguments:

Design and Implementation of the Grunt Programming Language 11

optArgumentDeclList:
argumentDeclList;
;

argumentDeclList:
argumentDeclList , argumentDecl;
argumentDecl;

argumentDecl:
argumentClass identifier;

argumentClass:
class;
GENERIC;

A block is considered to be declared once its arguments have been read.
▲ The confusing sequence of class names required in block declarations is not

attractive.
Blocks belong to different classes depending on their receiver and argument

classes, which must have been previously declared. This means that it is not
possible to substitute or assign blocks to each other unless they are compatible
in these classes.

Blocks may declare local variables, which are created whenever it is
invoked and destroyed upon its termination. (The syntax of variable
declaration was already given in the previous chapter.)

Variable names must be unique within a block. This means that the
declaration of an local variable cannot hide that of an argument variable or
another local. Since the instance and class variables of the receiver are
accessible to the block, nor may these be hidden by a variable declaration in a
block.

The value of the result object is determined at run-time by evaluating the
block expression. It must be of the same class as the explicit result class, or in
case of a self-result method, of the receiver (self) class. Expressions are
explained later on.

Methods As stated previously, a method is a declaration of a block literal as a class
variable. For example, within the definition of Complex, the following

METHOD im [Complex Integer || im].

declares a new method of Complex named im, which creates and returns an
Integer result object. Note that the receiver class must be specified in the
block, even though it is already known from the fact that it is the defining
class. Declaring methods with receiver classes other than the defining class
serves no purpose and is not allowed.

Since a method is declared once its initializer is read, and the block is
declared after its arguments are read, the method may be used inside the
block, allowing the writing of recursive methods.
▼ It was not previously possible to write recursive methods

Messages are identified by their message name, and are not distinguished
from their block classes. Since variable names must be unique within the class
this implies that Grunt does not permit polymorphic messages. In case a
method with the same name was declared in one of the superclasses, the
method is said to be overriding. The block of an overriding methods must be of
the same class as that in its superclass counterparts.

There are some conventions governing the names given to methods. The
first alphabetic character in a message name should be a lower-case character
(e.g., im). Self-result methods should have message names that begin with a
colon (such as :=). Messages that take arguments should end with a colon (im:),
except if the last character is already a symbol (+). Messages taking multiple
arguments should have one short label and colon for each expected argument
(im:re:).

Design and Implementation of the Grunt Programming Language 12

self-result
methods

For some methods the creation of a new, distinct result object is not useful and
imposes an unnecessary overhead. For example, consider the following
assignment method for Complex:

METHOD = [Complex Complex Complex new ||
super := (new re).
im := (new im).
self " inefficient "
].

This assignment works by individually copying each of the argument's instance
variables to their corresponding receiver variables, and then copying the
receiver into a new result object. This result object conveys no additional
information as it is a copy of the receiver.

In cases such as this when the receiver object is returned as the result, a
self-result block is more efficient. The result of such a method is not returned
in a new object but in the receiver itself.

A self-result method is specified by using the keyword self instead of
naming a result class in the method declaration. The above assignment
expressed as a self-result method:

METHOD := [Complex self Complex new || new].

As the declaration suggests the receiver object itself is the result of the
message. This means that new is stored directly into the receiver.

Consider the self-result version of re:im::

METHOD :re:im: [Complex self Integer newx, Integer newy ||
super := newx.
y := newy.
self
].

Even though the block expression looks the same, this method is more efficient
because it does not cause an unnecessary result object to be created. In
general, methods that do not create information outside of the receiver are
candidates for self-result methods.

It should be remarked that the meaning of sending self-result messages is
still equivalent to that of an ordinary message. That is, a self-result message
may be used anywhere another message would. However, the next section
shows that self-result messages can be used in instances where others may not.

Generic methods A generic method is one which takes arguments and returns a result of a
single undetermined object class.† A generic block is declared by using the
GENERIC keyword in place of the result class:

METHOD if:then:else: [Boolean GENERIC GENERIC then GENERIC else ||]

The result of an invocation of a generic method must be one of the generic
arguments. Since the actual object class of a generic argument cannot be
deduced from within the block, they cannot be sent messages.

Expressions An expression denotes a combination of objects in various ways in order to
achieve a desired effect. In blocks, an expression evaluates into the result
object which is returned by the block.
expression:

expression . object;
object;

† The Grunt generic concept, though similar, differs from that in Ada in that
the method remains generic at run-time. Ada creates a different version of a
generic procedure for each type that it is used with

Design and Implementation of the Grunt Programming Language 13

Expressions can be concatenated by separating them by a period. The
expression is evaluated left to right, and the evaluation of the entire expression
is the object evaluated by the rightmost expression.

For example, from the above definition of the Complex class method :re:im::

super := nre. im := nim. self

represents the Complex receiver object after the two Integer assignments have
been performed.

Objects can be formed from other objects by sending them messages:
object:

simpleObject messageChain message;
simpleObject;

message:
messageName optParameterList;

Message
chaining

A message starts with the method name, followed by any parameters it takes
separated by commas. If the message is implemented as a self-result method,
it may be enclosed in parentheses and followed by another message, which is
then directed at the same receiver object. This construction is called a
message chain:
messageChain:

messageChain (message) ;
;

For example, the expression

z (:write) (:re:im: 2, 3) :write

sends the messages :write, :re:im: 2, 3 and again :write to the same object z. The
messages enclosed in parentheses must all be self-result messages. The last
message in the chain should not be parenthesized. This is different from

((z :write) :re:im: 2, 3) :write

which sends a message :write to z, creates a new object, sends it :re:im: 2, 3,
creates a new object and sends it the message :write. Note how the parentheses
suggest a different object.

One might wonder why message chains with other than self-result
messages are not allowed. If such an expression were permitted the result
object returned by the non-self-result message would be lost, such as in the
expression

z (+ 6) :write " illegal "

In such a construct the result object answered by the message + 6 would be
inaccessible. This agrees with an observation made previously, that messages
that do not create new information should probably be implemented as self-
result methods.
▼ In Classic Grunt there was no way to send the same object more than one

message other than by respecifying it. Naturally this did not work for
literal objects.

simpleObject:
(expression);
variable;
literal;
self;
super;

literal:
integer;
character;
boolean;
block;

Design and Implementation of the Grunt Programming Language 14

When an expression which does not already evaluate as a temporary object is
enclosed within parentheses, it is made into a new temporary object with the
same value. For example, z and (z) and (z) are each different objects. This is
especially useful because it makes it unnecessary to write two versions of a
method, one that is self-result, and another that returns a new object. For
example, of

METHOD :+ [Complex self Complex addend ||
" adds the argument into the receiver"
].

METHOD + [Complex Complex Complex addend ||
" adds the argument and the receiver into a new object "
].

the second is redundant since the behavior of z + w is equivalent to (z) :+ w.

Pseudo-objects The keywords self and super signify so-called pseudo-objects. Within a block,
the psuedo-object self refers to the receiver object of the block.
▼ In Grunt-91 self really does refer to the receiver object. In Classic Grunt

objects did not retain any information about their object classes at run-time,
so that a method always perceived the receiver object as if it were of its own
defining class. (‘Method’ dispatches were like nonvirtual member function
calls in C++. See, for instance, the edifying remark in [9, pp. 208-209].)
The pseudo-object super refers to the receiver in the superclass of the

defining class. It is the only way through which a block can gain (indirect) ac-
cess to the instance variables of the defining class's superclass. So we would
write a method to return the real part of a Complex by writing

METHOD x [Complex Integer || super].

Arguments
optParameterList:

parameterList;
;

parameterList:
parameterList , simpleObject;
simpleObject;

Often a method uses other objects which are passed to it together with the
message. Such objects are called arguments to the method. For example, a
method which assigns a value to a Complex based on its real and imaginary
components may be defined as

METHOD :re:im: [Complex self Integer nre, Integer nim ||
super := nre.
im := nim.
self
].

This defines a message :re:im: taking two Integer parameters. Such a method is
invoked as its declaration suggests, for example, by sending the message

z :re:im: 2, 3

Overriding We want to redefine addition for complex numbers so that :+ will take a
Complex argument:

METHOD :+ [Complex self Complex addend ||
super :+ (addend x).
y :+ (addend y).

Design and Implementation of the Grunt Programming Language 15

self
].

Now, instead of being passed on to Point's superclass Integer the message :+ is
understood and executed by Point itself. The superclass's method is said to
have been overridden by a more effective method in the subclass.

4
Implementation

This chapter describes a generally platform-independent implementation of a
Grunt-91 compiler and run-time environment, as well as a specific
implementation under the UNIX operating system running on a Sun-4
SPARCstation and under the Apple Macintosh's Macintosh Programmer's
Workshop.

Since the compiler was written in portable C with the aid of a LEX-
compatible lexical analyzer-generator and the YACC LALR(1) parser-generator,
we expect to be able to quickly port it to other environments—particularly, the
Macintosh Programmer's Workshop. In addition, because we have tried to
design a very general intermediate representation, retargeting the compiler
(possibly for the Qbe*rt hypercube processor [7]) should be straightforward.

It is somewhat interesting to note that while experimenting with several
different forms of expression syntax, most of them (including the one from
Classic Grunt) usually gave rise to a number of shift/reduce and an occasional
reduce/reduce conflict. We had not anticipated conflicts arising from error
nonterminals. Although certainly at least the shift/reduce conflicts could be
quite favorably resolved, the resulting expressions easily became completely
unreadable. The form we at last decided on, and in fact the entire Grunt-91
syntax, is completely LR(1) and does not contain any grammar conflicts at all.
We do not feel the language to have been constrained by this decision. In fact,
the LR(1) syntax was at the same time the most human-intuitive.

Compiler
Implemen-
tation

The implementation of the Grunt-91 compiler actually consists of three
separate programs, each using a different code generator. One of these is
intended for compiler development and generates a human-readable English
‘object code’ for use in debugging. The second generates code for the Motorola
MC68000 family of processors with an optimization option for the 68020/030.
The code has been fine-tuned to assemble under the Macintosh Programmer's
Workshop assembler and environment. Although it would have been only
slightly harder to generate the machine code directly, this would have made
the output more platform-dependent than we desired. As an experiment in
compiler retargeting, the third compiler generates (tentative) assembler code
for the Motorola MC88100 RISC processor. The code from this compiler could
not be completely verified because there was no machine available to us to run
it on.

The compilers can be built easily using the make command. The target
language of the compiler is specified by setting the makefile variable TARGET to
one of debug, 68000, or 88100, or by specifying it directly from the command line:
make TARGET=target

A new target architecture can be readily incorporated by writing a code
generator module in a file named ctarget.c, where target is the name of the
target architecture, and rebuilding the compiler.

A compiler is invoked from the UNIX or MPW command line with:
grunt [-v] [-c020] [-o file] [file]

Design and Implementation of the Grunt Programming Language 17

where the Grunt source is read from standard input if no input file is specified,
and the object code is written to standard output if no explicit output file is
specified. The options recognized are:

–o file generate object code into named file
–v verbose. Generates readable comments into the object code
–c020 (68000 compiler only) Generate 68020 code

Generic blocks are not implemented by the compiler.

Observations As stated, the current implementation was written in C with LEX- and YACC-
compatible parser building tools. This is a much happier situation than using
the ad hoc tools which were provided in the original Vertalerbouw course for
the implementation of Classic Grunt and which now forced us to restart the
compiler-building process from scratch.

We switched to using the FLEX lexical analyzer-generator when we found
that LEX apparently could not handle our perhaps somewhat unusual
requirement of using many symbols in identifiers. Unfortunately, FLEX
(adhering more closesly to the LEX specification than LEX) does not support the
undocumented yylineno variable which we had used to good advantage in
reporting the location of Grunt program errors. We have found it impractical
to attempt to patch our own yylineno into the generated lexical analyzer. Nor
were we successful at adding a pattern-matching rule to provide this
information.

We found that YACC does not support attributes as well as we would have
liked. In particular, inherited attributes are not effectively implemented,
although we are glad the authors left a back door so that they could be used.
Other than this we have had little trouble using it. Use of the explicit error
nonterminal, we find, is a clean and consistent way of expressing permissible
(recoverable) parsing errors.

Also we would like to express our continued amazement at the apparent
dearth of ANSI C compilers. K&R C has again effectively reminded us of the
benefits of function prototypes. The dbx source-level debugger was invaluable
in tracking down errors.

Interesting are comparisons between the different compilers. The number
of lines of the assembly object code (with the -v option off, roughly equal to the
number of emitted instructions) for the Complex example in Appendix A:

68020 2 3 3 l i n e s
68000 279
88100 387

Although we cannot comment on the code efficiency or degree of optimization
that the respective compilers achieved, we found that the code for the RISC
processor was easier to generate due to the small number of addressing modes
and greater orthogonality of the instruction set. Another way of saying the
same is that the CISC processor allowed more effective code to be generated
using its more extensive facilities.

Syntax Tree The first half of what we consider the intermediate representation of a Grunt
program is the syntax tree which is built during parsing. This tree is
accessible to the code generator module to retrieve any information that it
requires. The syntax tree has shown itself to be a powerful and flexible way of
directing code generation because it does not limit the information that is
available any more than inherent in the language.

The syntax tree consists of the following three types of nodes:

Design and Implementation of the Grunt Programming Language 18

Figure 4.1

Class

next

id

superClass

objectClass

classVariables

instanceVariables

cSize

Variable

next

id

class

cOffset

Object
next

kind

class

cOffset

In all three types, next is a link to another node of the same kind in a linked
list, or NULL at the end of a list. New nodes are added in front of a list. The
type of list in which the node appears is context-dependent. id is a pointer to
the symbol table entry of the node's identifier.

Classes Class nodes define object classes. superClass and objectClass point to the
class nodes of their super- and object classes. classVariables and
instanceVariables are linked lists of variables. cSize is the sum of instance
sizes of the instance variable classes. The instance variable list of a superclass
is shared by any of its subclasses, so the nodes are not duplicated:

Figure 4.2

Variable

next

Variable

next

Class

superClass

instanceVariables

cSize

Class

superClass

instanceVariables

cSize

Variable

next

For a variable node class is its object class. cOffset is the sum of instance
sizes of the classes of all variables further in the list and not including that
node itself (i.e., those added to the list before it).

Objects An object node specifies the type and the run-time location of an object. kind
specifies one of the following six types of object:

Design and Implementation of the Grunt Programming Language 19

• Receiver (either self or super)
• Receiver variable
• Class variable
• Local
• Argument
• Temporary
This and the offset within the containing object, constructed with information
supplied by the code generator, completely specifies the location of an object.

Code Genera-
tion

The second part of code generation is in explicit procedure calls by the parser
to the generator.

▲ In places where we do not translate the parse into construction of a syntax
tree but use sequenced calls to the generator (for instance, expression
evaluation), coordinating parsing with code generation has turned out to
become more difficult.

Run-time
Environment

objectClass
i

i

objectClass

*

Integer

superClass

+

–

objectClass
Class

superClass

objectClass
z

i

im

objectClass
Object

superClass

objectClass

*

Complex

superClass

+

–

*im:re:

+im:re:

–im:re:

ø

Design and Implementation of the Grunt Programming Language 20

System classes System classes are automatically declared by the compiler before any of the
user classes. Instance variables of the system classes typically consist of data
fields representing the actual ‘contents’ of the object, and a pointer to their
object class. Because Grunt-91 does not have a class representing
‘meaningless’ physical memory, nor an object pointer concept, the instance
variables of the system classes do not have object classes. In the
implementation of the compiler it is pleasant not to have to treat such instance
variables too differently, so rather than nothing at all they are given void
classes, which are not real classes at all but placeholders for class-like data.
Void instance variables of system classes are not identified so that they cannot
be referred to in a Grunt program. Note that void classes are a compiler
implementation and not a language concept.

System classes are declared and generated (which involves bootstrapping
the run-time environment) by the DeclareSystem routine in the system.c
module. After this initialization there is no distinction between system and
user classes.

Message sending Because methods are just block class variables, and blocks are represented by
the address of their entry point, method dispatching involves the simple
retrieval of this address from the object's class object. Methods, like other
variables, are located by an offset into the class object and there is no ‘method
ID’. Subclasses inherit their superclass's class variables by containing explicit
copies of those variables. A Grunt program with 100 classes and 100 methods
each therefore requires approximately 40kB of storage to support the
inheritance mechanism. There are means to reduce this at the cost of a more
complicated and slower method dispatch.

By improving the way in which messages are parsed, the need for an
explicit argument size parameter, as was used in the implementation of Classic
Grunt, has been obviated. In particular, the result object is now created and
the argument list parsed before any argument pointers are pushed onto the
stack. In fact, from a code generation standpoint, the entire message send is
atomic.

On entry: During execution: On return:

caller PC

@arguments

result

caller PC

@arguments

result

caller stack frame

locals

result

@receiver @receiver

caller saved registers
block stack frame

A message is directed at and has as parameters specific objects, not values, so
these therefore must be passed by reference.

Design and Implementation of the Grunt Programming Language 21

Temporary
objects

Temporary objects are objects that are created implicitly by the compiler to
support the sending of a single message. They arise when literals are used,
when expressions are enclosed in parentheses, and when expressions are
combined in expression lists.

Although the Grunt-91 language specifies that a temporary object cannot
exist after the expression in which it occurs is evaluated, this is still somewhat
academic. Because there is no implicit object disposal mechanism a program
has no way of knowing whether a temporary object still exists or not.

Still, the implementation creates and removes temporary expression result
objects in line with its evaluation. Literal temporaries are created before the
message send and removed immediately afterwards. Note that this implies
that expressions used as arguments to messages must be evaluated before the
argument pointers are pushed onto the stack.

Design and Implementation of the Grunt Programming Language 22

A
Examples

This chapter gives a concise example of Grunt-91's new features, and gives an
implementation of a class of complex numbers. The listings of code generated
from this class are available from the authors.

Factorial First of all the factorial computation example from the Classic Grunt report,
which illustrated the need for method recursion, conditional evaluation and
blocks:

METHOD ! [Integer self ||
self (

(self = 0) ifTrue:False:
[Integer self || 1],
[Integer self || (self – 1) (!) * self]

)
].

! operates by sending self one of two blocks and answering the recevier as its
result. Which block is sent depends on whether self equals 0. If it does, the
block returns 1 when sent to an Integer. Otherwise, the block sends a new
temporary object (self – 1) the messages ! and * self in a message chain and
returns this as its result.

Compare this with a Pascal version of the same:
FUNCTION Factorial(i: Integer): Integer;
BEGIN
IF i = 0 THEN
Factorial := 1

ELSE
Factorial := Factorial(i – 1) * i;

END;

Complex class
"

Complex.grunt

complex number class

Version 1.0 22/04/91

(c) Copyright 1991 by: Ben Hekster
"

"
Complex class definition

Inherited: real part
Instanced: imaginary part

"

Design and Implementation of the Grunt Programming Language 23

CLASS Complex PARENT Integer
| Integer im. |

" re/re:
Returns/sets the real part

"
METHOD re [Complex Integer || super].
METHOD re: [Complex self Integer new || super := new. self].

" im/im:
Returns/sets the Complex's vertical coordinate

"
METHOD im [Complex Integer || im].
METHOD im: [Complex self Integer new || im := new. self].

" :0
:1
Reset a complex number

"
METHOD :0 [Complex self || super := 0. im := 0. self].
METHOD :1 [Complex self || super := 1. im := 0. self].

" :=
:re:im:
Assigns a complex number to the Complex

"
METHOD := [Complex self Complex new || new].
METHOD :re:im: [

Complex self Integer nre, Integer nim || super := nre.
im := nim. self].

" :+
Adds a complex number to the Complex

"
METHOD :+ [Complex self Complex addend ||

super :+ (addend re). im :+ (addend im). self
].

METHOD :+re:im: [Complex self Integer nre, Integer nim ||
super :+ nre. im :+ nim. self
].

" :read
Read a complex number from input

"
METHOD :read [Complex self ||

super :read. im :read. self
].

" :write
Write a complex number to output

"
METHOD :write [Complex self ||

super :write. $, :write. im :write. self
].

ENDCLASS

B
References

[1] Adele Goldberg and David Robson, Smalltalk-80, The Language and its
Implementation, Addison-Wesley

[2] Smalltalk/V Mac Object-Oriented Programming System (OOPS), Digitalk
Inc., Los Angeles, September 1988

[3] Michael C. Storrie-Lombardi, Smalltalk/V Mac: A New Standard in
Object-Oriented Programming, MacTech Quarterly, volume 1 number 2,
Summer 1989

[5] Brian W. Kernighan, Dennis M. Ritchie, The C Programming Language,
Second Edition, Prentice-Hall

[7] Ben Hekster. Peter F.A. Middelhoek, and Robert Remmers, Qbe*rt: a
Massively Parallel Hypercube Processor, course report, to be published

[8] Bell Laboratories, UNIX™ Time-Sharing System, Volume 2:
Programmer's Manual, seventh edition, Holt, Rinehart and Winston

[9] Margaret A. Ellis and Bjarne Stroustroup, The Annotated C++ Reference
Manual, Addison-Wesley

[10] Alfred V. Aho, Ravi Sethi and Jeffrey D. Ullman, Compilers—Principles,
Techniques and Tools, Addison-Wesley

Index

:+ 15
:= 2
:re:im 15
$ 1
block 10

argument 11, 14
expression 11

Boolean 8
C++ i, 8, 14
character escape sequence 3
class

block 10
metaclass 5
result 10
system 8
void 19

Classic Grunt i
comment 1, 2
copy constructor 7
declaration

compound 7
initialized 7
variable 6

expression 13
() 14

false 1
GENERIC 12
identifier 2
inheritance 4
instance 4

recursion 7
variable 4

Integer 8
keywords 2
literal 1

block 1, 3
Boolean 1, 2
character 1, 3
integer 1, 2

message 1
chain 13

method 1
generic 12
self-result 12
system 8

naming conventions 11
object 1, 4, 8

block 10
class 4
pseudo-object 14

result 10, 13
temporary 2
variable 1, 4

overriding 5, 11, 15
parameter 1
pragma 3
receiver 1
self 14
super 14
Smalltalk i
subclass 4
superclass 4
true 1
understand 1
variable

class 5
local 11
name 1

white space 2
write 1

