
Solutions to A First Course in Graph Theory using 
Mathematica

Colophon

Benefits of using Mathematica: typesetting, helping with mechanics of solution, empirical testing of hypothetical solutions.  

Visualization and interaction help in understanding.



Taxonomy

Graph



"Walk", "Trail", "Circuit", "Path", "Cycle",

"Eulerian trail", "Eulerian circuit",

"Hamiltonian path", "Hamiltonian cycle",



"Trail" "Walk",

"Circuit" "Trail",

"Path" "Walk",

"Cycle" "Circuit",

"Cycle" "Path",

"Eulerian trail" "Trail",

"Eulerian circuit" "Circuit",

"Eulerian circuit" "Eulerian trail",

"Hamiltonian path" "Path",

"Hamiltonian cycle" "Cycle",

"Hamiltonian cycle" "Hamiltonian path",

VertexLabels → "Name",

VertexCoordinates →

{{0, 0}, {-1, -1}, {-1, -2}, {+1, -1}, {0, -3}, {-2, -2}, {-2, -3}, {+2, -2}, {+2, -4}}

Walk

Trail

Circuit

Path

Cycle

Eulerian trail

Eulerian circuit

Hamiltonian path

Hamiltonian cycle
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1 Introduction

1.1 Graphs and Graph Models

□ 1.3

f[S_] :=

UndirectedEdge @@@

DeleteDuplicates (* deleting pairs of the same elements *)

Sort /@

Select

Select (* list of pairs of elements from S whose elements are not the same *)

Flatten

Tablei, j, i, S, j, S,

1,

Apply[Unequal],

(* those whose sum is in S or absolute difference is in S *)

MemberQ[S, Total[#]] ||

MemberQ[S, Abs[#[[1]] - #[[2]]]] & 

Graphf[{2, 3, 4, 7, 11, 13}], VertexLabels → "Name"

2

4

11

13

3

7

□ 1.4

Graphf[{-6, -3, 0, 3, 6}], VertexLabels → "Name", ImageSize → Small

-6

-3 0

3

6
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□ 1.5

GraphfTablei*i, i, 50, VertexLabels → "Name"
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□ 1.7a

shift :=

(* horizontal moves of black coin *)

AdjacencyMatrix[Graph[Range[12], {1 3, 2 4, 7 8, 9 10}]] +

(* horizontal moves of white coin *)

AdjacencyMatrix[Graph[Range[12], {1 2, 3 4, 7 9, 8 10}]] +

(* vertical moves of black coin *)

AdjacencyMatrix[Graph[Range[12], {1 12, 4 6, 5 7, 10 11}]] +

(* vertical moves of white coin *)

AdjacencyMatrix[Graph[Range[12], {1 11, 4 5, 6 7, 10 12}]]

swap :=

(* swap of coins *)

AdjacencyMatrix[Graph[Range[12], {1 7, 2 8, 3 9, 4 10, 5 11, 6 12}]]

AdjacencyGraphshift.swap, VertexLabels → Tablei → ci, i, 12, ImageSize → Small

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

c12
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Graph

Catenate

(* first moves in orange edges *)

Property[#, EdgeStyle → Orange] & /@ EdgeListAdjacencyGraphshift,

(* second moves in green edges *)

Property[#, EdgeStyle → Green] & /@ EdgeListAdjacencyGraph[swap],

(* compoound move with thick edges *)

Property#, EdgeStyle → Thick & /@ EdgeListAdjacencyGraphshift.swap,

VertexLabels → Tablei → ci, i, 12, GraphLayout -> "CircularEmbedding"

c1

c2

c3

c11

c12

c4

c5

c6

c7

c8

c9

c10

□ 1.7a

(* obtain the text of "As You Like It" *)

text = URLFetch["http://www.gutenberg.org/cache/epub/1121/pg1121.txt"];

(* tokenize to a list of words *)

stream = StringToStream[text];

words = ReadList

stream,

Word,

WordSeparators → FromCharacterCode

List[#] & /@

Join (* non-alphabetic ASCII characters *)

Range[32, 64], Range[91, 96];
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Close[stream];

(* extract three-letter words, convert to upper case, and remove duplicates *)

words3 = DeleteDuplicatesToUpperCase /@ Selectwords, StringLength[#] ⩵ 3 &

Graphwords3,

Flatten (* remove nesting introduced by Table *)

Join (* join character substitution relations with permutation relations *)

Table (* substitutions over each of the characters in a word *)

Property

ApplyUndirectedEdge, words3[[#]], (* convert each number pair into an edge *)

EdgeStyle → {Red, Green, Blue}[[letter]] (* apply edge color according to letter *)

 & /@

Select

(* list of diagonal pairs of word indexes *)

FlattenTablei, j, i, Length[words3], j, i + 1 , Length[words3], 1,

(* select word pairs that are equal with one letter removed *)

ApplyEqual, StringDrop[#, {letter}] & /@ words3[[#]] &,

{letter, 1, 3},

Table (* permutations between each pair of characters in a word *)

Property

ApplyUndirectedEdge, words3[[#]],

EdgeStyle → {Magenta, Cyan, Yellow}[[letter]]

 & /@

Select

(* list of diagonal pairs of word indexes *)

FlattenTablei, j, i, Length[words3], j, i + 1 , Length[words3], 1,

(* select words that are equal when one permutes a pair of characters *)

Equal

StringJoin

Permute

(* characters of the first word *)

Characterswords3First[#],

(* pick one of three permutations *)

{Cycles[{{1, 2}}], Cycles[{{2, 3}}], Cycles[{{3, 1}}]}[[letter]],

(* second word *)

words3[[#[[2]]]]

 &,

{letter, 1, 3},

1,

(* graph options *)

VertexLabels → "Name", ImageSize -> Full, GraphLayout → "RadialDrawing"
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□ 1.10

(* define traffic flows *)

traffic = 

(* 1 *) Line[{{-10, 0}, {12, 0}}],

(* 2 *) Line[{{-10, -1}, {12, -1}}],

(* 3 *) Circle{-9, -9}, 10, 0,
π

2
,

(* 4 *) Line[{{2, -11}, {2, +10}}], Circle{+12, -11}, 10, Pi2, Pi,

(* 5 *) Line[{{+12, 1}, {-10, 1}}], Circle{12, 11}, 10, Pi, 3 Pi2,

(* 6 *) Circle{11, 10}, 10, Pi, 3 Pi2,

(* 7 *) Circle{-10, +11}, 10, 3 Pi2, 2 Pi;

Graphics

MapIndexed

PrependPrepend

#1,

TextFirst[#2], -8, 2 + First[#2],

{Red, Green, Blue, Cyan, Magenta, Yellow, Purple}First[#2]

 &,

traffic

1

2

3

4

5

6

7
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Graph

Select

(* pairs of lanes *)

FlattenTablei, j, i, Lengthtraffic, j, i + 1 , Lengthtraffic, 1,

(* if any combination of Graphic primitives intersects *)

Apply

Or,

FlattenOuter (* Cartesian product of Graphic primitives *)

(* intersection has solution? *)

Length[

Solve[{x, y} ∈ #1 && {x, y} ∈ #2, {x, y}]

] > 0 &,

traffic[[#[[1]]]], traffic[[#[[2]]]]

, 1 &

,

VertexLabels → "Name"

1

2

3

4

5

6

7
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1.2 Connected Graphs

□ 1.11

G = Graph[

{r s, s t, u v, v w, x y, y z, r u, u x, s v, v y, t w, w z, r v, v t}];

Graph[G, VertexLabels → "Name"],

GraphVertexList[G], EdgeList[G, Except[r u v w]], VertexLabels → "Name",

GraphVertexList[G, Except[u w]], EdgeList[G, Except[u _ w _]], VertexLabels → "Name"



r

s

t

u

v

w

x

y

z

,

r

st

u

v

w

x

y

z

,

r

s

t

v

x

y

z


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□ 1.12

HighlightGraph[G, #, VertexLabels → "Name"] & /@ 

(* a. *)

PathGraphFirstFindPath[G, x, y, {6}],

(* b. *)

RandomChoice

(* adding the final edge to the ending vertex *)

Append[#, v w] & /@

Select

(* find all cycles containing the starting vertex *)

FindCycle{G, v}, Infinity, All,

(* that don't contain the ending vertex *)

Apply

And, (* all of the edges *)

(* don't match *)

MatchQ[#, Except[_ w]] & /@ # &,

(* c. *)

PathGraphFirstFindPath[G, r, z, {2}],

(* d. *)

PathGraphFirstFindPath[G, x, z, {3}],

(* e. *)

PathGraphFindShortestPath[G, x, t],

(* g. *)

PathGraphFirstFindCycle[G, {8}],

(* h. *)

PathGraph

ApplyFindShortestPath, Prepend

VertexList[G]

(* find a position in the matrix that has maximum distance of the graph *)

BlockGDM = GraphDistanceMatrix[G],

RandomChoicePosition[GDM, Max[GDM]],

G



First::nofirst : {} has zero length and no first element. 

First::nofirst : {} has zero length and no first element. 
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
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,

u

v

w z



1.3 Common Classes of Graphs

(* Rename a sequential number-indexed graph

with the given letter subscripted by the vertex number *)

RenameSubscriptGraph[g_, K_] :=

VertexReplaceg,

Tablei → SubscriptK, i, i, VertexCount[g]
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(* Construct the join of two graphs *)

GraphJoing_, h_, options__: {} := Graph

Catenate

AppendAppend

OuterUndirectedEdge, VertexList[g], VertexList[h],

EdgeList[g], EdgeList[h]

,

options

□ 1.24

Module

{G1 = Graph[

{r1 x1, q1 x1, x1 u1, u1 v1, v1 w1, w1 z1, z1 y1,

y1 x1, u1 z1, x1 w1, w1 s1, s1 t1, t1 z1}, VertexLabels → "Name"]},

HighlightGraphG1, FindIndependentVertexSet[G1]

r1

x1

q1

u1

v1

w1

z1

y1

s1

t1

Module
r1

x1
q1

u1

v1

w1

z1
y1

s1

t1

,
r1

x1
q1

u1

v1

w1

z1
y1

s1

t1


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Block

{G2 = Graph[{u2 v2, v2 w2, w2 z2, z2 y2, y2 x2, x2 u2,

x2 r2, r2 w2, w2 s2, s2 t2, t2 z2}, VertexLabels → "Name"]},



BipartiteGraphQ[G2],

HighlightGraphG2, FindIndependentVertexSet[G2]

False,

u2

v2

w2

z2

y2

x2

r2

s2

t2

□ 1.27

(* Contruct the Cartesian product of two graphs *)

GraphProductg_, h_, options__ := Graph

(* explicitly represent the product vertices, since the edge list may be empty *)

FlattenOuterList, VertexList[g], VertexList[h], 1,

(* edges in product graph *)

FlattenCatenate

(* all edges in G over vertices of H *)

Functionv, {#, v} & /@ # & /@ EdgeList[g] /@ VertexList[h],

(* all edges in H over vertices of G *)

Functionv, {v, #} & /@ # & /@ EdgeList[h] /@ VertexList[g],

options

(* display union, join, and product graphs *)

GraphShowCombinations[g_, h_] :=

Apply[#, {g, h, VertexLabels → "Name"}] & /@ GraphUnion, GraphJoin, GraphProduct
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□ 1.27a

GraphShowCombinations

RenameSubscriptGraph[CompleteGraph[5], K],

RenameSubscriptGraph[CompleteGraph[2], H]



H1H2

K1K2

K3K4

K5

,

K1

H1

H2 K2

K3

K4

K5

,

{K1, H1}{K1, H2}

{K2, H1}{K2, H2}

{K3, H1}{K3, H2}

{K4, H1}{K4, H2}

{K5, H1}{K5, H2}



□ 1.27b

GraphShowCombinations

GraphTableSubscriptK, i, i, 5, {}, (* empty graph with 5 vertices *)

GraphTableSubscriptH, i, i, 2, {}(* empty graph with 2 vertices *)



H1

H2

K1

K2

K3 K4

K5

,
K1

H1

H2

K2 K3

K4

K5

,

{K1, H1}

{K1, H2}

{K2, H1}

{K2, H2}

{K3, H1} {K3, H2}

{K4, H1}

{K4, H2}

{K5, H1}

{K5, H2}


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□ 1.27c

GraphShowCombinations

RenameSubscriptGraph[CycleGraph[5], C],

RenameSubscriptGraph[CompleteGraph[1], K]



C1C2

C3

C4

C5

K1

,

C1

K1

C2

C3

C4

C5

,

{C1, K1}

{C2, K1} {C3, K1}

{C4, K1}

{C5, K1}



□ 1.27 extra

GraphShowCombinations

RenameSubscriptGraph[CompleteGraph[13], K],

RenameSubscriptGraph[CycleGraph[5], C]



C1C2

C3

C4

C5

K1

K2

K3

K4
K5

K6

K7

K8K9

K10

K11

K12

K13

,
K1

C1

C2

C3

C4

C5

K2

K3

K4

K5

K6
K7

K8

K9

K10

K11

K12

K13

,

{K1, C1}

{K1, C2}

{K1, C3}

{K1, C4}{K1, C5}

{K2, C1}

{K2, C2}

{K2, C3}

{K2, C4}{K2, C5}

{K3, C1}

{K3, C2}

{K3, C3}

{K3, C4}{K3, C5}

{K4, C1}

{K4, C2}

{K4, C3}

{K4, C4}{K4, C5}

{K5, C1}

{K5, C2}

{K5, C3}

{K5, C4}{K5, C5}

{K6, C1}

{K6, C2}

{K6, C3}

{K6, C4}{K6, C5}

{K7, C1}

{K7, C2}

{K7, C3}

{K7, C4}{K7, C5}

{K8, C1}

{K8, C2}

{K8, C3}

{K8, C4}{K8, C5}

{K9, C1}

{K9, C2}

{K9, C3}

{K9, C4}{K9, C5}

{K10, C1}

{K10, C2}

{K10, C3}

{K10, C4}{K10, C5}

{K11, C1}

{K11, C2}

{K11, C3}

{K11, C4}{K11, C5}

{K12, C1}

{K12, C2}

{K12, C3}

{K12, C4}{K12, C5}

{K13, C1}

{K13, C2}

{K13, C3}

{K13, C4}{K13, C5}


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GraphShowCombinations

RenameSubscriptGraph[CycleGraph[5], C],

RenameSubscriptGraph[CompleteGraph[13], K]



C1C2

C3

C4

C5

K1

K2

K3

K4
K5

K6

K7

K8K9

K10

K11

K12

K13

,

C1

K1

K2

K3

K4

K5

K6

K7

K8

K9

K10

K11

K12

K13

C2

C3

C4

C5

,

{C1, K1}

{C1, K2}
{C1, K3}
{C1, K4}

{C1, K5}
{C1, K6}

{C1, K7}

{C1, K8}

{C1, K9}{C1, K10}

{C1, K11}{C1, K12}
{C1, K13}

{C2, K1}

{C2, K2}
{C2, K3}
{C2, K4}

{C2, K5}
{C2, K6}

{C2, K7}

{C2, K8}

{C2, K9}{C2, K10}

{C2, K11}
{C2, K12}

{C2, K13}

{C3, K1}

{C3, K2}
{C3, K3}
{C3, K4}

{C3, K5}
{C3, K6}

{C3, K7}

{C3, K8}

{C3, K9}{C3, K10}
{C3, K11}{C3, K12}
{C3, K13}

{C4, K1}

{C4, K2}
{C4, K3}
{C4, K4}

{C4, K5}
{C4, K6}

{C4, K7}

{C4, K8}

{C4, K9}{C4, K10}
{C4, K11}{C4, K12}
{C4, K13}

{C5, K1}

{C5, K2}
{C5, K3}
{C5, K4}

{C5, K5}
{C5, K6}

{C5, K7}

{C5, K8}

{C5, K9}{C5, K10}
{C5, K11}{C5, K12}

{C5, K13} 

GraphShowCombinations

RenameSubscriptGraph[CompleteGraph[13], K],

RenameSubscriptGraph[CompleteGraph[5], H]



H1H2

H3H4

H5

K1

K2

K3

K4

K5

K6

K7

K8K9

K10

K11

K12

K13

,

K1

H1

H2

H3

H4

H5

K2

K3 K4
K5

K6

K7

K8

K9

K10

K11

K12
K13

,

{K1, H1}

{K1, H2}

{K1, H3}{K1, H4}

{K1, H5}

{K2, H1}

{K2, H2}

{K2, H3}{K2, H4}

{K2, H5}

{K3, H1}

{K3, H2}

{K3, H3}
{K3, H4}

{K3, H5}

{K4, H1}

{K4, H2}

{K4, H3}{K4, H4}

{K4, H5}

{K5, H1}

{K5, H2}

{K5, H3}{K5, H4}

{K5, H5}

{K6, H1}

{K6, H2}

{K6, H3}{K6, H4}

{K6, H5}

{K7, H1}

{K7, H2}

{K7, H3}{K7, H4}

{K7, H5}

{K8, H1}

{K8, H2}

{K8, H3}{K8, H4}

{K8, H5}

{K9, H1}

{K9, H2}

{K9, H3}{K9, H4}

{K9, H5}

{K10, H1}

{K10, H2}

{K10, H3}{K10, H4}

{K10, H5}

{K11, H1}

{K11, H2}

{K11, H3}{K11, H4}

{K11, H5}

{K12, H1}

{K12, H2}

{K12, H3}{K12, H4}

{K12, H5}

{K13, H1}

{K13, H2}

{K13, H3}{K13, H4}

{K13, H5}



2 Degrees

2.1 The Degree of a Vertex

□ 2.1a

The putative graph would have an odd number of odd vertices, which is impossible.

□ 2.1b

The putative graph would have a vertex with the same degree as the graph order, which is impossible for a non-pseudograph.
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□ 2.1c

The vertex of degree 1 would have to be connected to a vertex of degree 3.  The remaining subgraph would have three 

vertices with degrees {2, 3, 3} that includes vertices with the same degree as the order.

□ 2.2a

CycleGraph3, ImageSize → Small

□ 2.2b

GraphFromNumericalEdgeList[n_, edges_] :=

Module

nf,

nf := FromCharacterCode[{96 + #}] &;

Graph

nf /@ Range[n],

Mapnf, edges, {2},

VertexLabels → "Name"

Since vertices have degree 3, the order of the graph must be at least 4.  For the graph not to be connected, its order must be 

at least 5.  Since a graph must have an even number of odd vertices, its order must be even.  Therefore the first viable order 

can only be 6.  See K3,3:

g22b = CompleteGraph{3, 3}, ImageSize → Small

ContainsOnly[VertexDegree[g22b], {3}]

True
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CompleteGraphQ[g22b]

False

□ 2.2c

g22c = Graph{a b, b c, a d, a e}, VertexLabels → "VertexDegree", ImageSize → Small

3

2

1

1 1

AllTrue (* for all edges *)

Map (* convert vertices to their respective degree *)

VertexDegree[g22c, #] &,

List @@@ EdgeList[g22c], (* convert list of UndirectedEdge to list of list *)

{2},

(* degrees are not equal *)

Apply[Unequal]

True

VertexCount[g22c] ≥ 5

True

□ 2.2d

Trivially, a complete graph has no nonadjacent vertices.  A nontrivial option:
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g22d = Graph{1 2, 3 4, 4 5, 3 5}, ImageSize → Small

AllTrue (* for all edges *)

Map (* convert vertices to their respective degree *)

VertexDegree[g22d, #] &,

List @@@ (* convert list of UndirectedEdge to list of list *)

(* list of nonadjacent vertices *)

ComplementEdgeList[CompleteGraph[5]], EdgeList[g22d],

{2},

(* degrees are not equal *)

Apply[Unequal]

True

□ 2.3

Solve[n×4 + (12 - n) 6⩵ 2 × 31, n]

{{n → 5}}

□ 2.4

Solve[n×3 + (6 - n) 4⩵ 2×10, n]

{{n → 4}}
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g24 = Grapha f, a e, a d, b e, b d, b c, c f, c d, f e, d e,

GraphLayout → "CircularEmbedding", VertexLabels → "Name", ImageSize → Small

a

f

e

d

b

c

VertexCount[g24]

6

EdgeCount[g24]

10

□ 2.5

Solve[n×3 + 2×4 + (25 - 2 - 11 - n)×5 + 11×6 == 2×62, n]

{{n → 5}}

□ 2.6

Such a graph has the following number of edges, which can only be integral if 3 n2 is even, which is to say n2 is even, which 

implies that n is even.

Simplify
1

2
(n (n + 1) + n n + n (n - 1))

3 n2

2

□ 2.7a

Since the graph is bipartite, each edge is incident in each partite set.
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□ 2.7b

Solve[12×3⩵ (22 - 12 - n)×4 + n×2, n]

{{n → 2}}

□ 2.8

(* all pairwise nonadjacent vertices have degrees that sum to ≥ 4*)

AllTrue

(* sum of degrees of pairwise nonadjacent vertices *)

Total

(* list of degrees of pairwise nonadjacent vertices *)

VertexDegree[CycleGraph[6], #] & /@

# & /@

(* find cliques of 3 pairwise nonadjacent vertices of 6-cycle *)

FindClique

Graph

(* find list of nonadjacent edges of 6-cycle *)

Complement

EdgeList[CompleteGraph[6]],

EdgeList[CycleGraph[6]],

{3},

All,

GreaterThan[4]

True

□ 2.9

Each component can be regarded as a graph, which cannot have an odd number of odd vertices.

□ 2.10a

The sum of the degrees of the first and last vertices is 2.

PathGraph[Range[4], VertexLabels → "VertexDegree"]

1 2 2 1

□ 2.10b

Suppose G has a component K of order k.  Then G ' = G - K is a graph of order n ' = n - k in which 

deg u + deg v ≥ n - 2 = n ' + k - 2, and if k ≥ 1 then deg u + deg v ≥ n ' - 1 so that G ' is connected.  Therefore G can have at 

most two components.
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□ 2.10c

□ 2.11

No: consider the disconnected graph with two components K2; δK2 = 1 ≥ 4-2
2

.

2.2 Regular Graphs

□ 2.19

TableIfi == 1, Graph[{1 4, 2 5, 3 6}], HararyGraphi, 6, i, 1, 5

 , ,

, , 
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TableHararyGraphi, 7, i, {2, 4, 6}

 , , 

□ 2.20

By definition; otherwise it would be regular.

□ 2.21a

Table

(* EdgeDelete of empty list hangs the kernel *)

If[Length[el]⩵ 0, PetersenGraph[VertexLabels → "Name"], EdgeDelete[PetersenGraph[], el]],

el, 

EdgeList[PetersenGraph[]],

{1 4, 4 2, 2 5, 5 3, 3 1, 6 7, 7 8, 8 9, 9 10, 10 6},

{1 6, 2 7, 3 8, 4 9, 5 10},

{}

 , ,

,
1

23

4

5

6

78

9

10


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□ 2.21b

Table

If[Length[vl]⩵ 0, PetersenGraph[VertexLabels → "Name"], VertexDelete[PetersenGraph[], vl]],

{vl, {

{1, 4, 5, 7, 8, 10},

{2, 3, 6, 9},

{6, 7, 8, 9, 10},

{}

}}

 , ,

,
1

23

4

5

6

78

9

10



□ 2.21c

A more challenging problem would be to ask for a maximal induced subgraph; i.e., one with a minimal number of vertices 

removed.
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□ 2.22a

g222 = Graph[{1 2, 2 3, 3 1, 2 4, 4 5}, VertexLabels → "Name"]

1

2

3

4 5

ConstructByTheorem27[g_] :=

Module

{mvd = Max[VertexDegree[g]]},

If

(* is regular graph? *)

AllTrue[VertexDegree[g], EqualTo[mvd]],

(* then done *)

g,

(* otherwise, recurse on *)

ConstructByTheorem27

(* a new graph containing *)

EdgeAdd

GraphUnion

(* two copies of the original graph *)

VertexReplaceg, # → 1# & /@ VertexList[g],

VertexReplaceg, # → 2# & /@ VertexList[g],

VertexLabels → "Name"

,

(* and edges added between vertices of the copies *)

1#  2# & /@

Select

VertexList[g],

(* that are not of maximal degree *)

VertexDegree[g, #] < mvd &

g222a = ConstructByTheorem27[g222]

111 112

113
114 115

121

122123
124 125

211212

213214215

221

222 223
224225

VertexCount[g222a]

20
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□ 2.22b

g222b = EdgeAdd[g22, {4 6, 5 6, 1 5, 3 6}]

1

2

3

4

5

6

AllTrue[VertexDegree[g222b], EqualTo[3]]

True

VertexCount[g222b]

6

2.3 Degree Sequences

□ 2.31

The degree sequence describes the complement graph, and therefore is graphical iff the ‘uncomplement’ sequence is 

graphical.
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□ 2.32

IsSequenceGraphicalseq_List :=

Module{s0 = Select[seq, # > 0 &]},

Length[s0] == 0 || 

Length[Rest[s0]] ≥ First[s0] &&

Module

s = Sort

MapIndexed

IfFirst[#2] ≤ First[s0], #1 - 1, #1 &,

Rest[s0],

Greater,

If

OddQ[Length[Select[s, OddQ]]],

False,

IsSequenceGraphical[s]

IsSequenceGraphical[{5, 3, 3, 3, 3, 2, 2, 1}]

True

IsSequenceGraphical[{6, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1}]

True

IsSequenceGraphical[{6, 5, 5, 4, 3, 2, 1}]

False

IsSequenceGraphical[{7, 5, 4, 4, 4, 3, 2, 1}]

True

IsSequenceGraphical[{7, 6, 5, 4, 4, 3, 2, 1}]

True

□ 2.33

NoneTrue[Table[IsSequenceGraphical[{x, 1, 2, 3, 5, 5}], {x, 0, 5}], TrueQ]

True
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□ 2.34

Select[Range[0, 7], IsSequenceGraphical[{#, 7, 6, 5, 4, 3, 2, 1}] &]

{4}

□ 2.35

Select[Range[0, 7], IsSequenceGraphical[{#, 7, 7, 5, 5, 4, 3, 2}] &]

{3, 5}

□ 2.36

Ugly: don't know how to return the first value for which a predicate holds, or how to return the value of the iterator from a loop.

For

k = 1,

NotIsSequenceGraphical[Flatten[ConstantArray[{2, 6, 7}, k]]] ,

k++,

Print[k]

1

2

3
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2.4 Graphs and Matrices

□ 2.37

g237 = Graph

Range[5] (* let the vertices appear in deterministic order *),

{1 4, 1 5, 2 4, 2 5, 3 4, 3 5, 4 5},

VertexLabels → "Name"

1

2

3

4

5

{{2, 2, 2, 1, 1}, {2, 2, 2, 1, 1}, {2, 2, 2, 1, 1}, {1, 1, 1, 4, 3}, {1, 1, 1, 3, 4}} ==

MatrixPowerAdjacencyMatrix[g237] , 2

True

{{2, 2, 2, 3 + 4, 3 + 4}, {2, 2, 2, 3 + 4, 3 + 4}, {2, 2, 2, 3 + 4, 3 + 4}, {3 + 4, 3 + 4, 3 + 4, 3 + 3, 3 + 4},

{3 + 4, 3 + 4, 3 + 4, 3 + 4, 3 + 3}} == MatrixPowerAdjacencyMatrix[g237], 3

True
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□ 2.38

g238 = Graph[Range[5], {1 2, 2 3, 3 1, 3 4, 4 5}, VertexLabels → "Name"]

1

2

3 4 5

{{2, 1, 1, 1, 0}, {1, 2, 1, 1, 0}, {1, 1, 3, 0, 1}, {1, 1,

0, 2, 0}, {0, 0, 1, 0, 1}} == MatrixPower[AdjacencyMatrix[g238], 2]

True

{{2, 2 + 1, 3 + 1, 1, 1}, {2 + 1, 2, 3 + 1, 1, 1}, {3 + 1, 3 + 1, 2, 2 + 2, 0},

{1, 1, 3 + 1, 0, 1 + 1}, {1, 1, 0, 2, 0}} == MatrixPowerAdjacencyMatrix[g238], 3

True

□ 2.39

g239 = Graph[Range[4], {1 2, 2 3, 3 4}, VertexLabels → "Name"]

1 2 3 4

{{2, 0, 2 + 1, 0}, {0, 2 + 2 + 1, 0, 1 + 2}, {1 + 1 + 1, 0, 2 +

2 + 1, 0}, {0, 2 + 1, 0, 2}} == MatrixPower[AdjacencyMatrix[g239], 4]

True

□ 2.40

BipartiteAdjacencyMatrix2[r_] :=

Flatten[{

ConstantArray[Flatten[{ConstantArray[r, r], ConstantArray[0, r]}], r],

ConstantArray[Flatten[{ConstantArray[0, r], ConstantArray[r, r]}], r]},

1]

BAM2Correct[r_] := BipartiteAdjacencyMatrix2[

r] == MatrixPower[AdjacencyMatrix[CompleteGraph[{r, r}]], 2]

AllTrue[Range[10], BAM2Correct]

True
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BipartiteAdjacencyMatrix3[r_] :=

Flatten[{

ConstantArray[Flatten[{ConstantArray[0, r], ConstantArray[r^2, r]}], r],

ConstantArray[Flatten[{ConstantArray[r^2, r], ConstantArray[0, r]}], r]},

1]

BAM3Correct[r_] := BipartiteAdjacencyMatrix3[r] ==

MatrixPowerAdjacencyMatrix[CompleteGraph[{r, r}]], 3

AllTrue[Range[10], BAM3Correct]

True

BipartiteAdjacencyMatrix4[r_] :=

Flatten[{

ConstantArray[Flatten[{ConstantArray[r^3, r], ConstantArray[0, r]}], r],

ConstantArray[Flatten[{ConstantArray[0, r], ConstantArray[r^3, r]}], r]},

1]

BAM4Correct[r_] := BipartiteAdjacencyMatrix4[r] ==

MatrixPowerAdjacencyMatrix[CompleteGraph[{r, r}]], 4

AllTrue[Range[10], BAM4Correct]

True

□ 2.41

g240 = Graph[Range[5], {1 2, 1 3, 1 4, 2 4, 3 4, 4 5}, VertexLabels → "Name"]

1

2

3

4 5
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IncidenceMatrix[g240] .TransposeIncidenceMatrix[g240] // MatrixForm

3 1 1 1 0
1 2 0 1 0
1 0 2 1 0
1 1 1 4 1
0 0 0 1 1

The matrix represents the number of incident edges in common between vertices i and j.

2.5 Irregular Graphs

RegularGraphQ[G_] := Module

{vd = VertexDegree[G]},

AllTrue

Rest[vd],

EqualToFirst[vd]

(* Calculate the K-degrees of the vertices of G *)

KDegrees[G_, K_] :=

Lookup#[[1]] → #[[2]] & /@ (* convert tally list to rules *)

Tally (* tally number of occurrences of each vertex *)

Flatten

VertexList /@

Select (* selecting only those graphs with the same size and order of K *)

Flatten

Module

{sg = Subgraph[G, #]}, (* construct a subgraph out of the vertex subset *)

(* construct new graphs having the same vertex set over edge lists *)

GraphVertexList[sg], # & /@

(* construct edge lists from the subgraph,

but having the same number of edges as K *)

SubsetsEdgeList[sg], {EdgeCount[K]}

 & /@

(* all the subsets of vertices with the same number of vertices as K *)

SubsetsVertexList[G], {VertexCount[K]},

(* that are actually isomorphic to K *)

IsomorphicGraphQ[#, K] &,

VertexList[G], (* for each of the graph's vertices *)

0 (* degree is 0 by default if the vertex never appeared *)
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KSubgraphHighlight[G_, K_] := Table

HighlightGraph[G, kg],

kg,

Select

FlattenModule

{sg = Subgraph[G, #]},

GraphVertexList[sg], # & /@

SubsetsEdgeList[sg], {EdgeCount[K]}

 & /@ SubsetsVertexList[G], {VertexCount[K]},

IsomorphicGraphQ[#, K] &

□ 2.42

The following graph is K4-regular of degree 1, but P2-irregular (all vertices have degree 3, but a1 and b1 have degree 4).

g242H1 = GraphUnion

RenameSubscriptGraph[CompleteGraph[4], a],

RenameSubscriptGraph[CompleteGraph[4], b],

Graph[{a1  b1}],

VertexLabels → "Name"

a1

a2

a3

a4b1

b2

b3

b4

RegularGraphQ[g242H1]

False

KDegrees[g242H1, CompleteGraph[4]]

{1, 1, 1, 1, 1, 1, 1, 1}

KSubgraphHighlight[g242H1, CompleteGraph[4]]

 a1

a2

a3

a4b1

b2

b3

b4 , a1

a2

a3

a4b1

b2

b3

b4 

The following graph is K4-irregular (the vertices in the Harary graph have degree 0), but P2-regular of degree 3.
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g242H2 = GraphUnion

RenameSubscriptGraph[CompleteGraph[4], a],

RenameSubscriptGraph[HararyGraph[3, 6], b],

VertexLabels → "Name"

a1a2

a3a4

b1

b2

b3

b4

b5 b6

RegularGraphQ[g242H2]

True

KDegrees[g242H2, CompleteGraph[4]]

{1, 1, 1, 1, 0, 0, 0, 0, 0, 0}
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□ 2.43

g243 = Graph[{1 2, 2 3, 3 4, 4 5, 5 6,

6 1, 2 5, 1 7, 6 7, 3 8, 4 8, 8 7}, VertexLabels → "Name"]

1

2

3

4

5

6

78

Vertices 2 and 5 have C4-degree 2; vertices 7 and 8 have C4-degree 0.

KDegrees[g243, CycleGraph[4]]

{1, 2, 1, 1, 2, 1, 0, 0}

KSubgraphHighlight[g243, CycleGraph[4]]



1

2

3

4

5

6

78

,

1

2

3

4

5

6

78


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□ 2.44

g244 = Graph[{1 2, 2 3, 3 4, 4 5, 2 6, 6 3, 3 7}, VertexLabels → "Name"]

1 2

3

4

5

6

7

KDegrees[g244, PathGraph[Range[3]]]

{2, 7, 10, 4, 1, 6, 3}

KSubgraphHighlight[g244, PathGraph[Range[3]]]



1 2
3

4
5

6

7

,
1 2

3
4

5
6

7

,

1 2
3

4
5

6

7

,
1 2

3
4

5
6

7

,
1 2

3
4

5
6

7

,

1 2
3

4
5

6

7

,
1 2

3
4

5
6

7

,
1 2

3
4

5
6

7

,

1 2
3

4
5

6

7

,
1 2

3
4

5
6

7

,
1 2

3
4

5
6

7


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□ 2.45

KSubgraphHighlightCycleGraph4, ImageSize → Tiny, Graph[Range[3], {2 3}]

 , , , ,

, , , 

□ 2.46

Graph[{1 2, 1 2, 2 3}, VertexLabels → "VertexDegree"]

2 3 1

Graph[{1 2, 2 3, 3 4, 1 2, 1 2}, VertexLabels → "VertexDegree"]

3 4 2 1

Graph[{1 2, 2 3, 3 4, 4 1, 1 2, 1 2, 1 3}, VertexLabels → "VertexDegree"]

5

4

3

2
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Graph[{1 2, 2 3, 3 4, 4 5, 5 1, 1 2, 1 3, 1 4, 1 3, 2 3},

VertexLabels → "VertexDegree"]

6
4

53

2

Graph[{1 2, 1 3, 1 4, 2 3, 2 4, 3 4, 1 2, 1 2, 1 3}, VertexLabels → "VertexDegree"]

65

43
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□ 2.49

Graph[{

Property[1, VertexLabels → "(1,1)"],

Property[2, VertexLabels → "(2,0)"],

Property[3, VertexLabels → "(1,2)"],

Property[4, VertexLabels → "(0,1)"]}, {

Property[1 2, EdgeStyle → Red],

Property[1 3, EdgeStyle -> Blue],

Property[2 3, EdgeStyle → Red],

Property[3 4, EdgeStyle -> Blue]}]

(1,1)

(2,0)

(1,2) (0,1)

3 Isomorphic Graphs

3.1 The Definition of Isomorphism

ComplementGraph[G_] :=

Graph

Complement

Sort /@ EdgeList[CompleteGraph[VertexCount[G]]],

Sort /@ EdgeList[G]

□ 3.1

g31a = CycleGraph5, ImageSize → Tiny
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VertexCount[g31a]

EdgeCount[g31a]

5

5

g31b = Graph[{1 2, 2 3, 3 4, 4 5, 1 3}]

VertexCount[g31b]

EdgeCount[g31b]

5

5

g31c = Graph[{1 2, 2 3, 3 4, 4 5, 1 4}]

VertexCount[g31c]

EdgeCount[g31c]

5

5

IsomorphicGraphQ[g31a, g31b]

IsomorphicGraphQ[g31b, g31c]

IsomorphicGraphQ[g31c, g31a]

False

False

False

Graph Theory.nb     41



□ 3.2

g32 = TableGraph1 2, 2 3, 3 4, 4 5, 5 6, 6 1, 1 7, 7 i,

VertexLabels → "Name", i, {2, 3, 4}



1

2

3

4

5

6

7 ,

1

2

3
4

5

6

7 ,

1

2

3

4

5

6

7 

Composition[Sort, VertexDegree] /@ g32

{{2, 2, 2, 2, 2, 3, 3}, {2, 2, 2, 2, 2, 3, 3}, {2, 2, 2, 2, 2, 3, 3}}

IsomorphicGraphQ[g32[[1]], g32[[2]]]

IsomorphicGraphQ[g32[[2]], g32[[3]]]

IsomorphicGraphQ[g32[[3]], g32[[1]]]

False

False

False

□ 3.3

The graphs in (a) are not isomorphic: G1 has 5-cycles, whereas G2 does not; and G2 has 4-cycles, whereas G1 does not:

g33 = Table

GraphUnion

CycleGraph[8], edges,

GraphLayout -> "CircularEmbedding", ImageSize → Tiny,

{edges, {{1 5, 4 8}, {1 4, 5 8}}}



 , 

IsomorphicGraphQ[g33[[1]], g33[[2]]]

False
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The graphs in (b) are isomorphic: they are both a 5-path whose ends are joined through two different vertices.

□ 3.4

Note first that all four graphs are of order 6 and size 9 and are regular of degree 3; so we seek to distinguish them by 

structural properties. G1 and G2 are isomorphic as they are both bipartite:

g34G1 = CompleteGraph{3, 3}, ImageSize → Tiny

g34G2 = GraphUnionCycleGraph6, ImageSize → Tiny, {1 4, 2 5, 3 6}

IsomorphicGraphQ[g34G1, g34G2]

True

Next, G3 and G4 are also isomorphic as one can be ‘morphed’ into the other by graphically moving the center vertices along 

the vertical axis.

g34G34[v_] := GraphUnion

CycleGraph[6],

{2 6, 3 5, 1 4},

VertexLabels → "Name",

VertexCoordinates → {{0, v}, {2, 2}, {2, -2}, {0, -v}, {-2, -2}, {-2, +2}},

ImageSize → Tiny



g34G34[1], Manipulate[g34G34[v], {v, 1, 3}], g34G34[3]



1

2

3

4

5

6

,

v

g34G34[1.]

,

1

2

3

4

5

6



G1/G2 and G3/G4 are not mutually isomorphic: the latter contain 3-cycles, whereas the former (being bipartite) do not.
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□ 3.5

That conclusion is not valid; the similarity in vertex naming doesn’t imply structural similarity.  For example:

GraphUnion

CycleGraph[6],

{2 6, 1 4},

VertexLabels → "Name",

GraphLayout -> "CircularEmbedding", ImageSize → Tiny



1

2

3

4

5

6

Vertex 1 is of degree 3 and is not adjacent to a vertex of degree 2; while vertex 4 is also of degree 3 but is adjacent to a vertex 

of degree 2.

□ 3.6

Again, no: consider trivially a disconnected graph with two components G1 and G2 as described in the problem.  That graph 

satisfies the requirements of both G1 and G2, and is obviously isomorphic with itself:

HighlightGraph

GraphUnion[

Graph[{1a  2, 1b  2, 2 3, 3 4, 4 5a, 4 5b, 4 5c}],

Graph[{6a  7, 6b  7, 7 8, 8 9, 9 10a, 9 10b}]

],

{3, 8},

ImageSize → Small



□ 3.7

The proposed solution appeals to ‘graphical’ properties related to how the graph is drawn; but it is not certain that those are 

structurally invariant.  In fact, it is clear that the two graphs are in fact isomorphic: they both consist of two ‘terminal’ vertices 
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connected to each other by two separate 2-paths and a single 3-path.

□ 3.8

The graphs are each pairs of 4-cycles; in G1 and G2, the vertices in the pairs can be matched so that the cycles can be 

traversed in parallel: 1-6, 8-3, 2-5, 7-4.  However, in G3, the vertices in the pair of cycles cannot be matched up in this way-- 

the cycles are oriented differently.

g38[p_] := HighlightGraph

Graph

Range[8],

{1 6, 1 7, 1 8, 2 5, 2 7, 2 8, 3 5, 3 6, 3 8, 4 5, 4 6, 4 7},

VertexCoordinates →

Interpolation{

{-1, {{-3, +1}, {-1, +1}, {+1, +1}, {+3, +1}, {-3, -1}, {-1, -1}, {+1, -1}, {+3, -1}}},

{0, {{-1, +1}, {+1, -1}, {-2, -2}, {+2, +2}, {+2, -2}, {-2, +2}, {+1, +1}, {-1, -1}}},

{+1, {{-3, -1}, {+3, -1}, {+1, -3}, {+1, +3}, {-1, +3}, {-1, -3}, {+3, +1}, {-3, +1}}}},

InterpolationOrder → 1[p],

VertexLabels → "Name"

, {

Style[{5 4, 4 6, 6 3, 3 5}, Green],

Style[{1 7, 7 2, 2 8, 8 1}, Purple]

}



{g38[-1], g38[0], g38[+1]}



1 2 3 4

5 6 7 8

,

1

2

3

4

5

6

7

8

,

1 2

3

45

6

78



Manipulate[g38[p], {p, -1, +1}]

p

g38[-1.]
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□ 3.9

They are not isomorphic: for example, the four vertices of degree 4 form a path in G1 and a cycle in G2.

□ 3.10

No: the complement of a disconnected graph is always connected and is thus not isomorphic.  Two vertices in different 

components are connected in the complement; two vertices in the same component are both connected to every other vertex 

in another component in the complement and are therefore also connected in the complement.

□ 3.11

(From the solutions) Let a = U = V .  Since there are a vertices v with degG v ≥ 1
2

n, in the complement there are also a 

vertices with degG v ≤ (n - 1) - 1
2

n = 1
2

n - 1.  Since G is isomorphic with G, in the complement there are also a vertices with 

degG v ≤ 1
2

n.  Therefore there are no vertices v in the complement, or in G, with deg v = 1
2

n.

□ 3.12

Since G and H themselves are isomorphic with their respective complements, it suffices to show that the whole of G ⋃ H is 

isomorphic with G ⋃ H; that is, ∀ g ∈ G, h ∈ H there is an edge between ϕ g, ϕ h iff there is one between g ∈ G, h ∈ H.

Any vertex h ∈ H with deg h < 1
2

n has since n is even deg h ≤ 1
2

n - 1 and deg h ≥ (n - 1) -  1
2

n - 1 = 1
2

n not less than 1
2

n in 

H and was therefore not connected to any vertex in G, and thus connected to every vertex in G.  Since it is isomorphic to H, the 

degree of ϕH ∈ H is also less than 1
2

n and is thus connected to every vertex in G.  Similarly for vertices h ∈ H of degree not 

less than 1
2

n.

□ 3.13

First, note that for any two vertices the distance between them is 1 iff there is an edge between them.  Then for every 

u, v ∈ V(G), iff there is an edge between u and v, then dG(u, v) = 1 ⇒ dH(ϕu, ϕv) = 1 so there is an edge between ϕu and ϕv.  

This shows that ϕ is an isomorphism.

□ 3.14

No: for example, the following two graphs:

g314a = PathGraph[Range[5], VertexLabels → "Name"]

g314b = GraphUnion[PathGraph[Range[5]], Graph[{2 4}], VertexLabels → "Name"]

1 2 3 4 5

1

2

3

4

5
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TableGraphDistance#, i, i + 1, i, VertexCount[#] - 1 & /@ {g314a, g314b}

{{1, 1, 1, 1}, {1, 1, 1, 1}}

Under the identity isomorphism the distance between consecutively-numbered vertices is the same (i.e., always one) although 

the graphs are clearly not isomorphic.

□ 3.15

No: while ϕ itself may not be an isomorphism, there can exist ψ that are. For example, for the following graphs G and H:

PathGraph[Range[5], VertexLabels → "Name"]

PathGraph[{1, 5, 4, 3, 2}, VertexLabels → "Name"]

1 2 3 4 5

1 5 4 3 2

under the identity ϕ = i, dG(1, 2) = 1 and dH(ϕ1, ϕ2) = dH(1, 2) = 4 while under a more carefully chosen map ψ the graphs can 

be shown to be isomorphic.

3.2 Isomorphism as a Relation

□ 3.16

Not sure how to find all of them, but here are two:

g316a = HararyGraph6, 9, ImageSize → Tiny

g316b = CompleteGraph{3, 3, 3}, ImageSize → Tiny

VertexDegree /@ {g316a, g316b}

{{6, 6, 6, 6, 6, 6, 6, 6, 6}, {6, 6, 6, 6, 6, 6, 6, 6, 6}}
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IsomorphicGraphQ[g316a, g316b]

False

□ 3.17

HighlightGraphCompleteGraph[{3, 3}, VertexLabels → "Name"],

{1 4, 4 2, 2 5, 5 3}, ImageSize → Small

1

2

3

4

5

6

No for (b), since a bipartite graph contains no odd cycles.

HighlightGraphCompleteGraph[{3, 3}, VertexLabels → "Name"],

{1 4, 1 5, 1 6, 5 2, 6 3}, ImageSize → Small

1

2

3

4

5

6

□ 3.18

No: by transitivity, if one component is isomorphic to the other two, then the other two are also.

□ 3.19

More clearly, the question is: show that the number of graphs that are isomorphic to an odd number of graphs is itself even 

(and not: show that there exists an isomorphism class with an even number of graphs that are isomorphic to an odd number 

of graphs).

Intuitively, this is trivial: there must be an even number of ‘end instances’ in a set of binary relationships, so if each graph 

participates an odd number of times as an ‘end instance’ then there must be an even number of graphs.  More precisely, 

using the approach in the solution, express the graph isomorphisms as a graph itself.  Since there is an even number of odd 

vertices, there is an even number of graphs isomorphic to an odd number of graphs.
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3.3 Graphs and Groups

□ 3.20

The permutation that swaps v3 and v4 and leaves all other vertices fixed preserves degrees but is not an automorphism.

□ 3.21

Any permutation on the three vertices is an automorphism, so Aut K3 = S3.

SameQ

GroupMultiplicationTableGraphAutomorphismGroup[CompleteGraph[3]],

GroupMultiplicationTableSymmetricGroup[3]

True

□ 3.22

Any permutation of the three leaf vertices is an automorphism, and these are the only ones; so again, Aut K1,3 = S3.

SameQ

GroupMultiplicationTableGraphAutomorphismGroup[CompleteGraph[{3, 1}]],

GroupMultiplicationTableSymmetricGroup[3]

True

□ 3.23

The only permutation is a reflection around the middle of the path; so Aut Kn≥2 = S2.

SameQ

GroupMultiplicationTableGraphAutomorphismGroup[PathGraph[Range[9]]],

GroupMultiplicationTableSymmetricGroup[2]

True

□ 3.24

These are the permutations of an n-sided regular polygon; so Aut C4 = D4.

SameQ

GroupMultiplicationTableGraphAutomorphismGroup[CycleGraph[4]],

GroupMultiplicationTableDihedralGroup[4]

True

□ 3.25

The orbits of H1 are {1}, {2}, {3}, {4, 5}, {6}, {7}, {8, 9}, and Aut H1 = S2×S2.  The orbits of H2 are 

{1}, {2}, {3, 4}, {5}, {6, 9}, {7, 8}, {10}, and Aut H2 = S2×S2.
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□ 3.26

g326 = Graph[{u u', u v', u' v, u v, u' v', v w, v' w', w w',

w x, w' x', x y', x' y, x y, x' y', y y'}, VertexLabels → "Index"]

1

2

3

4 5

6

7

8

9

10

The automorphism group has four generating permutations: the one that swaps u and u ', the one that swaps y and y ', the 

reflection of all primed and unprimed vertices, and the reflection along the w - w ' axis.  This gives the following orbits:

VertexList[g326][[#]] & /@ GroupOrbitsGraphAutomorphismGroup[g326]

{{u, u′, y′, y}, {v′, v, x, x′}, {w, w′}}

The group can be characterized by analysis.  Note first that the permutation of just w and w ' can be constructed from a 

product of the reflection of primed and unprimed vertices with the permutations of u with u ' and of y with y '.  Therefore we 

can construct a different generating set of the permutations of u with u ', of y with y ', of w with w ', and of the reflection along 

the w - w ' axis.  The permutation of w with w ' is unaffected by any of the other three, so the automorphism group as a whole 

is isomorphic to the direct product of C2 with the subgroup generated by the three remaining permutations:

g326s = PermutationGroup[{Cycles[{{9, 10}}], Cycles[{{1, 2}}], Cycles[{{1, 10}, {2, 9}}]}]

SameQ

PermutationProduct[GroupGenerators[g326s][[2]]⊙GroupGenerators[g326s][[1]]],

PermutationProduct[GroupGenerators[g326s][[1]]⊙GroupGenerators[g326s][[2]]]

True

GroupElements[g326s]

{Cycles[{}], Cycles[{{9, 10}}], Cycles[{{1, 2}}],

Cycles[{{1, 2}, {9, 10}}], Cycles[{{1, 9}, {2, 10}}],

Cycles[{{1, 9, 2, 10}}], Cycles[{{1, 10, 2, 9}}], Cycles[{{1, 10}, {2, 9}}]}

GroupGenerators[g326s]

{Cycles[{{9, 10}}], Cycles[{{1, 2}}], Cycles[{{1, 10}, {2, 9}}]}
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CayleyGraph[g326s, VertexLabels → "Index"]

1

2

3

45

6

7

8

FiniteGroupData"DirectProduct", "DihedralGroup", 4, "SymmetricGroup", 2,

"PermutationGroupRepresentation"

PermutationGroup[{Cycles[{{5, 6}}], Cycles[{{1, 2, 3, 4}}], Cycles[{{1, 4}, {2, 3}}]}]

□ 3.27

ϕ ∈ Aut G iff ϕ : VG → VG : u v ∈ EG ⧦ ϕu ϕv ∈ EG, which implies that u v ∉ EG ⧦ ϕuϕv ∉ EG or u v ∈ EG ⧦ ϕuϕv ∈ EG and 

ϕ ∈ Aut G.
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□ 3.28

AutomorphismGraph[g_] := Graph

Flatten

Block

(* left and right edge ordinal *)

{lv = #[[1]], rv = #[[2]]},

Block

(* ordinal of generator that the edge represents *)

gp = FirstFirstPosition

GroupGenerators[g],

(* permutation that the edge represents *)

PermutationProduct

InversePermutation[GroupElements[g][[lv]]],

GroupElements[g][[rv]],

(* edge complex replacing the simple Cayley graph edge *)

Flatten

lv Llv,rv,0,

Llv,rv,0  Rlv,rv,0,

Rlv,rv,0  rv,

TableLlv,rv,i-1  Llv,rv,i, i, 2*gp - 1,

TableRlv,rv,i-1  Rlv,rv,i, i, 2*gp

 & /@

(* over all the edges of the group's Cayley graph *)

EdgeList[CayleyGraph[g]]

CayleyAutomorphismRow[g_] :=

GraphicsRow

#[g] & /@

CayleyGraph, AutomorphismGraph

CayleyAutomorphismRowPermutationGroup[{Cycles[{{1, 2, 3}}]}]

A hand-crafted graph of order 12 with the same automorphism group:
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g328 = Graph

Flatten

Block

(* left and right edge ordinal *)

{lv = #, rv = Mod[# + 1, 3], nv = Mod[# + 2, 3]},

(* edge complex replacing the simple Cayley graph edge *)

Flatten[{

IIlv  NNlv, NNlv  IIrv,

IIlv  TTlv, NNlv  TTlv,

TTlv  OOlv, OOlv  NNlv

}] & /@

Range[0, 2], VertexLabels -> "Name"

II0

NN0

II1

TT0

OO0

NN1

II2

TT1

OO1

NN2

TT2

OO2

GraphAutomorphismGroup[g328]

VertexCount[g328]

PermutationGroup[{Cycles[{{1, 3, 7}, {2, 6, 10}, {4, 8, 11}, {5, 9, 12}}]}]

12
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□ 3.29

CayleyAutomorphismRow

PermutationGroup[{

Cycles[{{1, 2}}],

Cycles[{{3, 4}}]}]

□ 3.30

CayleyAutomorphismRow

PermutationGroup[{

Cycles[{{1, 2, 3, 4, 5}}]}]
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□ 3.31

CayleyAutomorphismRow

PermutationGroup[{

Cycles[{{1, 2, 3}}],

Cycles[{{1, 2}}]}]

□ 3.32

CayleyAutomorphismRow

PermutationGroup[{

Cycles[{{1, 2, 3, 4}}]}]
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CayleyAutomorphismRow

PermutationGroup[{

Cycles[{{1, 2, 3, 4}}],

Cycles[{{1, 3}, {2, 4}}]}]

3.4 Reconstruction and Solvability

□ 3.33

HighlightGraph[

#,

Subgraph[#, {1, 2}]] & /@

{CompleteGraph[3], PathGraph[Range[3]]}

 , 

□ 3.34

a. 7: there are 7 subgraphs, each having order 6.

b. m = +i mi

n-2
= 40

5
= 8.

c. (i m - mi ) = ( 2, 2, 3, 3, 2, 2, 2).

d. Yes; at least two of the subgraphs are connected.

e. By 5/6, G should contain C6 as a subgraph.  So add a vertex to G1 connecting the top to the bottom.  This graph has the 

requisite order, size, and degree sequence:
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g344G1 = Graph[{1 2, 1 3, 2 4, 3 4, 4 5, 5 6}]

g344G = Graph

JoinEdgeList[g344G1], {6 7, 7 1},

VertexCoordinates → Append

PropertyValue{g344G1, #}, VertexCoordinates & /@ Range[VertexCount[g344G1]],

{0, 1.5}

TableGraphVertexDeleteg344G, i, i, VertexCount[g344G]

 , ,

, ,

, , 

□ 3.35

a. 7; 7 subgraphs, each of order 6.

b. m = +i mi

n-2
= 30

5
= 6.
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c. Connected; at least two of the subgraphs are connected.

d. (i m - mi ) = ( 1, 3, 1, 1, 2, 2, 2 ) .

e. Relative to G1 there are one vertex and one edge missing.  Its degree sequence is ( 1, 2, 2, 2, 1), so the edge must be 

added to the middle.  Without loss of generality, there are two candidate locations.  By G3, the vertex with degree 3 must be 

connected to P3, P1, P1.  By G4, it must be connected to P2, P2, P1.  By G5, it must be connected to P1, P1, P2.  Therefore, in 

G, that vertex must be connected to P1, P2, P3:

Graph{1 2, 1 3, 3 4, 1 5, 5 6, 6 7}, ImageSize → Small

□ 3.36

By #2, the order of G is 5.  There are six possibilities (up to isomorphism) for it:
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EdgeAdd

Graph

Range[5],

{1 2, 3 4},

VertexCoordinates → {{-1, +1}, {+1, +1}, {-1, -1}, {+1, -1}, {+2, 0}},

# & /@

{{}, {2 5}, {2 5, 1 5}, {2 5, 4 5}, {2 5, 4 5, 1 5}, {2 5, 4 5, 1 5, 3 5}}

 , , ,

, , 

Only for the first three options does every Gi have connected components.  For each of the last three options, there exist Gi 

with unconnected components.

□ 3.37

The criteria can be restated as follows:G is connected, ∀ i : ΔGi ≤ 2, ∄ i : ΔGi = 1, ∃ i : ΔGi = 2.  This implies that δG > 0 and 

ΔG < 3, which in turn implies that G is either a path Pn or a cycle Cn.  Also, n ≥ 4 or the minimum degree of a subgraph would 

be one.

□ 3.38

Since EGi
≠ EGj

 for i ≠ j, the degree of each vertex of G must be different.  Also, since VGi
= 5 for some i, it is true 

for all i, and VG = 6.  Thus ΔG = 5 and the degree sequence of G must be (0, 1, 2, 3, 4, 5).  However, this means that G 

would have an odd number of vertices of odd degree, which is impossible.  Thus there are no solutions.

□ 3.39

By the first condition, there is a subgraph isomorphic to Kn-1 with a single edge removed.  WLOG call this subgraph G0.  By 

the second condition there is a subgraph containing only odd vertices; there must be an even number of them.  Therefore 

n = VG  is odd and VG0
 is even.  WLOG call the vertices of the removed edge of G0, v1 and v2.  v0 must be adjacent to 

both, otherwise G1 or G2 would also contain exactly two nonadjacent vertices v0, v2 and v0, v1, respectively.  It is now clear 

that there is a single case for n = 3:
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GraphUnion

GraphRange[2], DeleteCasesEdgeList[CompleteGraph[2]], 1 2,

Graph[Range[0, 2], {1 0, 2 0}],

VertexLabels → "Name"

01 2

This graph is also a solution.  Consider now the cases for n ≥ 5.  The only question is whether v0 is adjacent to vi≥3.  v0 cannot 

be adjacent to all vi≥3 or G3 would also still have one pair of nonadjacent vertices v1, v2.  Similarly, v0 cannot be adjacent to all 

but one vi≥3 (WLOG, say v3) because again G3 would have the same single pair of nonadjacent vertices.  So WLOG v0 is not 

adjacent to two vertices v3 and v4.  So again for n = 5 there is a single case:

GraphUnion

GraphRange[4], DeleteCasesEdgeList[CompleteGraph[4]], 1 2,

Graph[Range[0, 4], {1 0, 2 0}],

VertexLabels → "Name"

0

1

2

3

4

Now it can be verified that none of the subgraphs contain only odd vertices; so this case is not a solution.  For n ≥ 7, the 

degrees of v1,2,3,4 remain odd so none of Gi≥1 have all odd vertices; so only G0 could have only odd vertices, and the second 

condition is not satisfied.

□ 3.40

Every graph of order 3 or less (K0, K1, K2, K2, K3, K3, K2 ⋃ K1) is a solution.  For orders greater than 3, Kn and Kn are certainly 

solutions.  Consider any other graph G of order greater than 3.  If it is itself regular, then since it is not complete, there is a 

vertex v that is not adjacent to every other vertex, and G - v is irregular; so these are not solutions.  Consider then irregular G: 

this will have vertices with minimum degree δ and maximum degree Δ.  Since ∀ v ∈ G : G - v is regular, it must be that 

Δ = δ + 1 and G can be considered as partitioned into vertices vδ and vΔ.  If there is just one vδ , then G - vΔ must be regular 

of degree Δ - 1; but then the vΔ must form a complete subgraph that is disconnected from vδ, implying that δ = 0 and Δ = 1; 

but the order of G is greater than 3, so this is impossible.  So there must be more than one vδ, in which case G - vδ must have 

the effect of reducing the degree of all the vΔ by one.  Then each vδ is adjacent to each vΔ and vδ = Δ and vΔ = δ; this 

then comprises all the edges in the graph (G is bipartite) and δ > 1.  But then G - vΔ reduces the degree of the vδ to Δ - 2 

while leaving at least one vΔ, which is then not regular.

So the solutions are the graphs of order 3 or less, and Kn and Kn.
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□ 3.41

A solution should have one additional vertex v; by Theorem 14 the solution is connected.  Consider the two vertices of degree 

1; v cannot be connected to either, because then one of the subgraphs would have contained P2.  Then, consider C3 at the 

center.  v also cannot be connected to either vertex of degree 2, because one of the subgraphs would then have at least two 

vertices of degree 3 or not contain C3.  v must therefore be connected to the vertex of degree 3:

Graph{1 2, 2 3, 3 1, 3 4, 3 5, 3 6}, ImageSize → Small, VertexLabels → {6 → "v"}

v

□ 3.42

For a), the trivial answer is to supply all the subgraphs:

GraphicsRow

Table

Framed

VertexDelete

GraphRange[7], {1 2, 3 4, 5 6}, ImagePadding → 10, i,

i, 7,

ImageSize → Full

For b), consider just one copy of the nonisomorphic subgraphs:
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GraphicsRow

Table

Framed

VertexDelete

GraphRange[7], {1 2, 3 4, 5 6}, ImagePadding → 10, i,

i, {1, 7}

Consider the second subgraph.  Since a solution must contain a single additional vertex v, suppose that it was connected to at 

least one of the K2; then the other solution would be either 3 K2 or contain at least P3.  Therefore v is not connected, and the 

only solution is 3 K2 + K1 .

For c), consider the two constraints that 1) G must contain 3 K2 and 2) G must not contain a path longer than P3.  Then the 

additional vertex may be either connected to exactly one or none of the K2, leaving the only two solutions as 3 K2 + K1 or 

P3 + 2 K2:

□ 3.43

GraphicsRow

Table

Framed[

Graph[{1 2}]], i, 2

The solution must be connected by Theorem 14.  Therefore the only two solutions are K3 and P3.
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□ 3.44

GraphicsRow

Table

Framed[

Graph[Range[3], {1 2}]],

i, 3

Since the solution must have order 4, its size would be +imi

n-2
= 3

4-2
= 3

2
 which is impossible.  However, for any two subgraphs 

there is a solution 2 K2.

4 Trees

4.1 Bridges

□ 4.1

Because of 4), the graph must contain K3.  Then, a solution is:

Graph{1 2, 2 3, 3 1, 1 11, 2 22, 3 33}, ImageSize → Small

□ 4.2

By counterexample:  suppose G with all even degrees had a bridge u v.  Then G - u v has two components, each with exactly 

one vertex of odd degree and any other vertices of even degree.  But a component with an odd number of odd vertices is 

impossible.

□ 4.3

If there were another u — v path other than u v, then both paths joined would form a cycle.
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□ 4.4

First, assume that e1, e2 are bridges.  Then G - e1 has two components; e2 is still a bridge in the component G ' that contains 

it, so G ' - e2 also has two components.  Therefore G - e1 - e2 has three components.

Next, assume that G - e1 - e2 has three components.  Since G is connected, e1 must join two of these components, and e2 

must join the other two.  Therefore, e1, e2 are bridges.

□ 4.5

a) is proved in Theorem 4.4; b) in Corollary 4.6.

□ 4.6

Each edge of G lies on a cycle.  This must be the only cycle in G, for if there was another then ∃ e ∈ G : G - e has edges on 

that other cycle, which are then not bridges.

4.2 Trees

□ 4.7

Graphs[n_, p_] :=

DeleteDuplicates (* remove isomorphic duplicates *)

Select (* select per predicate *)

Graph[Range[n], #] & /@ (* generate graphs *)

(* from all possible combinations of edges *)

SubsetsEdgeList[CompleteGraph[n]],

p,

IsomorphicGraphQ

Trees[n_] := Graphsn, ConnectedGraphQ[#] && AcyclicGraphQ[#] &

Forests[n_] := Graphsn, AcyclicGraphQ

GraphicsRowTrees[5], ImageSize → Full

64     Graph Theory.nb



GraphicsRowForests[6], ImageSize → Full

Length[Forests[6]]

20

□ 4.8

If a graph of order m has vertices of degree at least 2, then its size is at least 2 m.  Obviously the graph is connected; suppose 

it was acyclic: then the graph would be a tree.  But the order of a tree is m - 1; so such a graph cannot be acyclic.

□ 4.9

#[Graph[Range[4], {1 2, 2 3, 3 1}]] & /@ {GraphPlot, VertexCount, EdgeCount}

 , 4, 3

□ 4.10

a) Any forest with more than one component is not connected and thus not a tree; but every edge will be a bridge.

b) Consider:
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GraphicsRow

Module{edges = {1 2, 1 3, 1 4}},

Graph

Range[4], #,

VertexCoordinates → {1 → {-1, -1}, 2 → {+1, -1}, 3 → {+1, +1}, 4 → {-1, +1}} & /@



edges,

ComplementEdgeList[CompleteGraph[4]], edges

c) The tree with the end-vertices removed will therefore have exactly vertices left.  They must somehow be connected to one 

another; else, they would have been connected to end-vertices only and there would have been multiple components.  The 

only noncyclical way for three vertices to be connected is as P3; which means the graph was indeed a caterpillar.

□ 4.11

g411Internal[n_] := (* generate an 'arm' with some degree;

return its 'joint' as the first element *)

If

n == 1, (* terminate recursion *)

Unique[v], (* just the joint *)

Flatten

Module

{v}, (* create the joint vertex *)

Prepend

MapAt

UndirectedEdge[v, #] &,

(* replace the joint of the sub-arm with an edge from it to our joint *)

g411Internal[#],

1 &

/@ Range[n - 1], (* create sub-arms of all different degrees *)

v
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g411[n_] := Module

g411I,

left = g411Internal[n],

right = g411Internal[n],

(* join the joints of the two sub-arms *)

JoinRestleft, Restright, Firstleft Firstright



GraphicsRow

Graph[g411[#], VertexLabels → "VertexDegree"] &

/@ Range[2, 5], (* would need a special case for degree 1 *)

ImageSize → Full
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1 2
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1 2

1
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1 2

1
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5
1 2
1

3
1 2
1

4
1 2
1

3
1 2
1

5
1 2
1

3
1 2
1

4
1 2
1

3
1 2
1

□ 4.12

a) All the graphs of the preceding exercise.

b) Suppose that e1 such that G - e1 has two isomorphic components; certainly each of these has the same size k.  e2 lies in 

one of these components, say G ', and therefore the size of the component of G - e2 that lies in G ' has size less than k; the 

size of the other component of G - e2 must have size greater than k, which means the components of G - e2 cannot possibly 

be isomorphic.

c) Consider:

Graph Theory.nb     67



Module[

{g = Graph[{L1 L, L2 L, L CC, CC R, R R1, R R2}, VertexLabels -> "Name"]},

{

Graph[g],

EdgeDelete[g, L CC],

EdgeDelete[g, CC R]}]



L1

L

L2

CC

R

R1 R2

,

L1 L L2

CC

R

R1

R2

,

L1

L

L2

CC

R R1R2



□ 4.13

Solve[15*1 + 1*6 + n*5 + (21 - 15 - 1 - n)*3⩵ 2*(21 - 1), n]

{{n → 2}}

□ 4.14

Solve[25*1 + 2*2 + 3*4 + 1*5 + 2*6 + 2*d⩵ 2*(35 - 1), d]

{{d → 5}}

□ 4.15

Solve
1

2
n*(2 + 3 + 4 + 5)⩵ 50, n

n →
50

7

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□ 4.16

GraphsWithSize[n_, m_, p_] :=

DeleteDuplicates (* remove isomorphic duplicates *)

Select (* select per predicate *)

Graph[Range[n], #] & /@ (* generate graphs *)

(* from all possible combinations of edges *)

SubsetsEdgeList[CompleteGraph[n]], {m},

p,

IsomorphicGraphQ

TreesWithDegreeSequencedegrees_List :=

GraphsWithSize

Length[degrees],
1

2
Total[degrees],

AcyclicGraphQ[#] && Sort[VertexDegree[#]]⩵ degrees &

TreesWithDegreeSequence[{1, 1, 1, 1, 3, 3}]

 

Solving for the order of the graph finds that the above graph is the only one satisfying those criteria:

Solve
1

2

2

3
n*1 +

1

3
n*3 ⩵ n - 1, n

{{n → 6}}

□ 4.17

TreesWithDegreeSequence[{1, 1, 1, 1, 1, 1, 4, 4}] // Timing

155.984,  

b) Solve for the order of such a graph:
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Solve
1

2

3

4
n*1 +

1

4
n*4 ⩵ n - 1, n

{{n → 8}}

c) Solve for n4 (representing one quarter of the order) and m (the ‘other’ degree) gives just one other graph with the requested 

properties:

Solve
1

2
(3*n4*1 + n4*m)⩵ 4*n4 - 1 && n4 > 0 && m > 0, {n4, m}, Integers

{{n4 → 1, m → 3}, {n4 → 2, m → 4}}

TreesWithDegreeSequence[{1, 1, 1, 3}]

 

d) Solve for n4 and m:

Solve
1

2
(3*n4*m + n4*1)⩵ 4*n4 - 1 && n4 > 0 && m > 0, {n4, m}, Integers

{{n4 → 2, m → 2}}

TreesWithDegreeSequence[{1, 1, 2, 2, 2, 2, 2, 2}] // Timing

{160.156, { }}

□ 4.18

Solve for the number m of vertices of degree 3 as a function of the order n:

Solve
1

2
(m*3 + (n - m)*1)⩵ n - 1, m

m →
1

2
(-2 + n)

□ 4.19

2 (+i ni - 1) = +i i ni ⇒ +i2 ni - 2 = +ini ⇒ +i(2 ni - i ni) = 2 ⇒ (2 n1 - n1) = 2 +i=2
∞ (i - 2) ni ⇒ n1 = 2 + n3 + 2 n4 + 3 n5 + ...

2 + 5 + 2*2

11

□ 4.20
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a) Any cycle Cn has size m = n; so there exist graphs with three cycles having size m = n ≱ n + 2.

b) By Theorem 3, every nontrivial tree has at least two end-vertices; that is, vertices of degree 1.  Therefore, a regular nontriv-

ial tree must be of degree 1, that is, P2.  The only other regular tree is trivial, that is, P1.

□ 4.21

Cn+2 is regular of degree 2 and therefore Cn+2 is regular of degree ((n + 2) - 1) - 2 = n - 1.  Thus by Theorem 9 T is isomorphic 

to a subgraph of Cn+2.

□ 4.22

mT = n - 1; mT = mKn
- mT =

1
2

n(n - 1) - (n - 1) =  1
2

n - 1 (n - 1) = 1
2
(n - 2) (n - 1) = mKn-1

.

□ 4.23

Since mT = n - 1, for T to also be a tree it would also have mT = n - 1.  Using the result from the previous exercise, 

mT =
1
2
(n - 2) (n - 1). Thus:

Solven - 1 ==
1

2
(n - 2) (n - 1), {n}

{{n → 1}, {n → 4}}

That is, the trivial graph, and P3 with P3 = P3:

HighlightGraphCompleteGraph[4], {1 3, 1 4, 2 4}, ImageSize → Small

□ 4.24

The only tree of 3 vertices (has to have at least two end-vertices) is P3; so in each selection of 3 vertices of G, two vertex pairs 

must be connected by an edge in G and one vertex pair must not be connected by an edge in G.  There are  n
3
 = p unique 

ways to pick a set of 3 vertices; since in each of those ways the induced subgraph has two edges we will count p ·2 edges in 

total.  On the other hand, in an enumeration of all sets of 3 vertices of G, each vertex pair of G will appear p · (n - 2) times.  G 

has 1
2

n(n - 1) vertex pairs; say k of those are actual edges.  Then in an enumeration of all sets of 3 vertices of G, we would 

count p · (n - 2) k
1
2 n(n-1)

 edges.  A necessary condition for a graph solution G to exist is for 

p ·2 = p · (n - 2) k
1
2 n(n-1)

⇒ 1 = (n - 2) k

n(n-1)
⇒ k = n(n-1)

n-2
 to have an integral solution for n, k:
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Solvek⩵
n (n - 1)

n - 2
&& k ≤

1

2
n (n - 1), {k}, Integers

k → ConditionalExpression[0, n⩵ 0 || n⩵ 1], k → ConditionalExpression[6, n⩵ 4]

We need the additional constraint to eliminate nonsensical solutions where k is greater than the number of edges in a 

complete graph.  So the only possible nontrivial solution is K4; but this does not have the required property that every 

subgraph is a tree.  So there are no solutions.

[Not sure how to generalize this]

4.3 Minimum Spanning Tree Problem

□ 4.25

FindSpanningTrees[g_] :=

Select

Graph /@ Subsets

EdgeList[g],

{VertexCount[g] - 1},

AcyclicGraphQ

HighlightIsomorphicSpanningTrees[g_] :=

Map

HighlightGraph[g, #] &,

Gather

DeleteDuplicates

FindSpanningTrees[g],

IsomorphicGraphQ,

{2}
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HighlightIsomorphicSpanningTrees[

Graph[{u v, v x, x w, w u, u x}, VertexLabels → "Name"]]



u

v

x

w,

u

v

x

w,

u

v

x

w,

u

v

x

w,

u

v

x

w,

u

v

x

w,



u

v

x

w,

u

v

x

w

HighlightIsomorphicSpanningTrees

Graph{u w, w y, y u, y z, y v, v x, x y}, VertexLabels → "Name", ImageSize → Tiny



u

w y

z

v

x

,

u

w y

z

v

x

,

u

w y

z

v

x

,

u

w y

z

v

x

,



u

w y

z

v

x

,

u

w y

z

v

x

,

u

w y

z

v

x

,

u

w y

z

v

x

, 

u

w y

z

v

x



□ 4.26

Assume that an edge e is a bridge; then G - e is disconnected.  Since a spanning tree of G is a subgraph that contains every 

vertex of G, it follows that e must be in any spanning tree.  Conversely, assume that an edge e is in every spanning tree of G; 

let e be incident to vertices u and v.  Suppose that e is not a bridge of G; then e lies on a cycle C.  Then we could construct a 

new spanning tree from C - e, contradicting that e is in every spanning tree of G.  Thus e is a bridge.
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□ 4.27

(* Highlight minimum spanning trees derived from different methods *)

HighlightMinimumSpanningTrees[g_] :=

HighlightGraph

g,

FindSpanningTree[g, Method → #] & /@ "Prim", "Kruskal"

HighlightMinimumSpanningTrees

Graph

{u v, u w, u x, x v, x w, x y, y v, y w, v w},

EdgeWeight → {8, 9, 2, 7, 5, 3, 5, 6, 2},

EdgeLabels → "EdgeWeight", VertexLabels → "Name"



8

9

2

2

7

5

5

6

3

u

v

w

x

y,

8

9

2

2

7

5

5

6

3

u

v

w

x

y

□ 4.28

HighlightMinimumSpanningTrees

Graph

{u v, u z, v z, v w, z y, z w, w y, w x, y x},

EdgeWeight → {1, 3, 2, 4, 7, 5, 6, 8, 9},

EdgeLabels → "EdgeWeight", VertexLabels → "Name"



1

3

2

4

5

7

6

8

9
u

v

z

w

y

x
,

1

3

2

4

5

7

6

8

9
u

v

z

w

y

x


□ 4.29

In this case, Kruskal’s algorithm offers no choice in the edge selection process; since this produces a minimum spanning tree, 

the resulting tree is unique.

□ 4.30

Any edge not in the spanning tree is necessarily incident with one of its vertices.  In the process of building a minimum 

spanning tree with Prim’s algorithm, at any point that some edge was incident with the tree under construction it must have 

had higher weight than all other edges in the path connecting both its ends.

□ 4.31
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Take any graph G with a minimum spanning tree, and add a vertex that is incident to each vertex of G with equal weight that 

is greater than the weight of any edge of G.  In general, this could be constructed in the following manner:

Module

g = PathGraphRange[7], EdgeWeight → ConstantArray[1, 6],

Graph

EdgeAddg,

Table

i VertexCount[g] + 1,

i, VertexCount[g], (* can't add weighted edge to graph *)

VertexCoordinates → Append

PropertyValue{g, #}, VertexCoordinates & /@ VertexList[g],


VertexCount[g] - 1

2
, 1

Unfortunately there seems to be no way to add a weighted edge to a graph in Mathematica.

4.4 The Number of Spanning Trees

□ 4.32

Cn has n spanning trees for n ≥ 3; P2 has 1 spanning tree.  Suppose there is a graph containing exactly 2 spanning trees T, T '.  

Let u, v be two vertices that are incident in T but not in T '.  Then there must be some other u - v path through another vertex 

w such that u - w and w - v are in T '.  But then u v, u - w, w - v form a cycle with at least three ways to span it.

□ 4.33

Suppose F is a subgraph of a spanning tree of G.  Since a tree has no cycles, F has none either.  For the converse, suppose F 

has no cycles.  Then we can use F as a basis to generate a spanning tree of G using Prim’s algorithm; and therefore F is a 

subgraph of that spanning tree.
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□ 4.34

#[Graph[{A B, B C, C A, A AB, AB BA,

BA B, B BC, BC CB, CB C, C CA, CA AC, AC A}]] & /@

Identity, LengthFindSpanningTrees[#] &

 , 144

Separate into cases depending on whether 0, 1, or 2 edges from the center cycle A, B, C are present.  For the first case (0 

edges of ABC) there are 9 separate trees, depending on which of the outer edges is removed.  For the 3 subcases of 1 edge of 

ABC, one of three edges has to be removed from the remaining ‘lobe’ cycle and one of the six edges from the outer edges.  

For the 3 subcases of 2 edges of ABC, one of three edges has to be removed from both of the remaining ‘lobe’ cycles, and 

one from the outer edges; giving:

9 + 3*3*6 + 3*3*3*3

144

Generalizing for the size of the lobes:

CountSpanningTrees434[k_] =

1*(3 (k - 1)) +

3*((k - 1)*2 (k - 1)) +

3*(k - 1)2*(k - 1) // Simplify

3 (-1 + k) k2

CountSpanningTrees434 /@ Range[10]

{0, 12, 54, 144, 300, 540, 882, 1344, 1944, 2700}

□ 4.35

CountSpanningTrees435[k_] =

Binomial[4, 0]*(4 (k - 1)) +

Binomial[4, 1]*((k - 1)*3*(k - 1)) +

Binomial[4, 2]*(k - 1)2*2*(k - 1) +

Binomial[4, 3]*(k - 1)3*(k - 1) // Simplify

4 (-1 + k) k3
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CountSpanningTrees435[5]

2000

#[Graph[{A B, B C, C DD, DD A, A A1, A1 A2, A2 A3, A3 B, B B1, B1 B2, B2 B3,

B3 C, C C1, C1 C2, C2 C3, C3 DD, DD D1, D1 D2, D2 D3, D3 A}]] & /@

Identity, LengthFindSpanningTrees[#] &

 , 2000

□ 4.36

(* count the number of spanning trees of graphs of the general form of Figure 20,

where n is the number of lobes and k the size of each lobe cycle *)

CountSpanningTrees436[n_, k_] = Sum

Binomialn, i (k - 1)i*n - i (k - 1),

i, 0, n - 1

(-1 + k) k-1+n n

CountSpanningTrees436[3, 4]

CountSpanningTrees436[4, 5]

CountSpanningTrees436[5, 4]

144

2000

3840

□ 4.37

55-2

125
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Trees[5]

 , , 

5 + 5*4*3 + 5*4*3

125

□ 4.38

Trees[4]

 , 

CountByMatrixTreeTheorem[g_] :=

(* number of spanning trees according to the Matrix Tree Theorem *)

Det

(* C matrix of Matrix Tree Theorem, with first row and column removed *)

Module

ga = AdjacencyMatrix[g],

Table

Ifi⩵ j,

VertexDegreeg, VertexList[g]i,

-gai, j,

i, 2, 4, j, 2, 4

TotalCountByMatrixTreeTheorem /@ Trees[4]

2
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□ 4.39

#[Graph[{v1  v2, v1  v3, v1  v4, v3  v2, v4  v2}]] & /@

CountByMatrixTreeTheorem, HighlightIsomorphicSpanningTrees

8,  , ,

 , , ,

, , 

□ 4.40

Pick an edge u v from T ' that is not in T.  Then there is a different path u – v in T that forms a cycle with u v.  Since T ' is a tree 

and acyclic, there is an edge in the path u – v that is not in T '.  Construct T1 by this procedure of removing that edge and 

adding u v.  Since this graph is still connected and the number of edges is unchanged, by Theorem 8 T1 is a tree.  Also, all but 

two of the edges of T were changed to produce T1.  Repeat this procedure until T ' has no more edges that are not in Ti.

5 Connectivity

5.1 Cut-Vertices

Bridges[g_] :=

Select

EdgeList[g],

Not[ConnectedGraphQ[EdgeDelete[g, #]]] &

CutVertices[g_] :=

Select

VertexList[g],

Not[ConnectedGraphQ[VertexDelete[g, #]]] &
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Blocks[g_] :=

Module

fc = FindFundamentalCycles[g],

Join

fc,

List /@ Complement

EdgeList[g],

Flattenfc, 1

□ 5.1

#[PathGraph[Range[4]]] & /@ Identity, Length @* Bridges, Length @*CutVertices

 , 3, 2

#[Graph[{L L1, L1 L2, L2 L, L R, R R1, R1 R2, R2 R}]] & /@

Identity, Length @* Bridges, Length @* CutVertices

 , 1, 2

□ 5.2

Manipulate

Graph

Join @@ Table

{Ci  CMod[i+1,IntegerPart[n]], Ci  Oi, Oi  Ai, Ai  Bi, Bi  Oi}, i, 0, n - 1,

{n, 2, 10}

n
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□ 5.3

Graph[{A B, A A1, A1 A2, A2 A, B B1, B1 B2, B2 B}, VertexLabels → "Name"]

A B

A1

A2

B1

B2

Vertices A and B lie on cycles, yet are both cut-vertices.

PathGraph[Range[3], VertexLabels → "Name"]

1 2 3

Vertices 1 and 3 do not lie on any cycles, yet neither are cut-vertices.

#[PathGraph[Range[3]]] & /@ Identity, Length @* CutVertices, Length @* Bridges

 , 1, 2

and has two end-vertices; disproving also both c) and d).

□ 5.4

By Corollary 4, if v is a cut-vertex of G then ∃ u, w ∈ G such that v lies on every u—w  path of G.  Now suppose that v were also 

a cut-vertex of G; then ∃ x, y ∈ G such that v lies on every x—y path of G.  Then x, y are not incident in G and are incident in G.  

Consider the case that u is incident with either x or y in G; then neither x nor y can be incident with w or we would have a u—w 

path in G not through v.  This means that in G, if u is not incident with both x and y, then x and y are both incident with w; but 

then we have an x—y path not through v.  So in G, u must be incident with both x and y; but then, again, we have a x—y path 

not through v.

Graph

{u, v, w, x, y}, {u v, v w, x y},

VertexCoordinates → {{-1, 0}, {-0.2, 0}, {+1, 0}, {0, -1}, {0, +1}},

VertexLabels → "Name",

ImageSize → Small

u v w

x

y
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□ 5.5

Graph

Join

TableLi  LMod[i+1,6], i, 0, 5,

TableRi  RMod[i+1,6], i, 0, 5,

{L0  v, v R0}

The above connected graph is of order 13; the center vertex is a cut-vertex, but both resulting components are of order 6.

Graph{0 1, 1 2, 2 0, 0 3, 3 4, 4 0}, VertexLabels → "VertexDegree", ImageSize → Small

4

2

22

2

The above connected graph has only even vertices, yet the center is a cut-vertex.  Also, it does not contain a bridge.

Graph{0 1}, ImageSize → Small

Finally, the above connected graph has a bridge but no cut-vertex.

□ 5.6

First, suppose that G has a cut-vertex v; then ∃ u, w ∈ G such that v lies on every u—w path.  v is incident with three vertices, 

say v1, v2, v3.  WLOG, let all u—w paths be u—v1—v—v2—w: disregarding for a moment v3, the paths must all be this way for if 

there were a path u—v2—v—v1—w we would also have u—v1—w not through v.  For the same reason, either u or v might pass 

through v3—v, but not both; again WLOG suppose then that the other u—w paths are u—v1—v—v3—w.  Then v1 - v is a bridge.

Conversely, suppose that G has a bridge.  Then by Theorem 1, since both vertices incident with the bridge are of degree 3 ≥ 2, 

they are both cut-vertices.

□ 5.7

By Theorem 4.3, T has at least two end-vertices; let u be one of them.  Let v be a vertex that is farthest from u; then by 

Theorem 5, v is not a cut-vertex and thus an end-vertex.  Now consider the vertex v ' that is incident with v.  Note first that v ' 

cannot be the same as u, because both v and u are end-vertices which would mean that T is of order 2 < 3; therefore v ' has at 

least one other incident edge that lies on the path to u.  Now suppose that there are other edges incident to v '; the vertices on 

the other side of any such edges must also be end-vertices; for if they were not, then those would lie on paths to end-vertices 

that were more distant to u then v was.  Therefore, every vertex adjacent to v ' is an end-vertex, with the possible exception of 

the adjacent vertex that lies on the path to u.
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□ 5.8

a)  Take some v that is an end-vertex of a spanning tree of G.  If v is also an end-vertex of G itself, then obviously it is not a cut-

vertex of G.  Then assume that v is not an end-vertex of G; then there are at least two vertices u, w adjacent to it.  Then if v 

were a cut-vertex, G - v would be disconnected with u, w in distinct components, and by Theorem 3, v then lies on every u—w 

path.  But then a spanning tree of G, which necessarily includes u, w would have to include both edges u v and v w and v 

would not be an end-vertex of the tree.  Therefore v cannot be a cut-vertex.

b) Every connected graph contains a spanning tree (Theorem 4.10), and every nontrivial tree has at least two end-vertices 

(Theorem 4.3).  By a) then those end-vertices cannot be cut-vertices of the graph.

c) Weigh the edges incident to v minimally, that is with lower weight than every other edge in G.  No such edge can be 

incident with any other such edge other than by v; then, Prim’s algorithm will generate a tree containing all those edges.

d) Suppose G has no other vertices than the two that are not cut-vertices; then G = P2.  So assume G has other vertices, which 

are all cut-vertices; pick any one v of those.  By c) there exists a spanning tree T of G that contains all edges incident to v.  

Now suppose that v is of degree greater than 2; in that case, T has more than two end-vertices, and by a) those are not cut-

vertices of G; contradicting the assumption that G has only two.  So all vertices of G are cut-vertices of degree 2 except for the 

two that are not cut-vertices; thus G is a path.

□ 5.9

GraphicsRow

Module

{g = Graph[{q r, r s, s t, r t, t u, u v, v t, t w, w x, x y, y z, z w}]},

HighlightGraph[g, #[g]] & /@

Bridges, CutVertices, Blocks,

ImageSize → Full

□ 5.10

First, a graph of size 2 is at least of order 3.  By Theorem 7, a graph of at least order 3 is nonseparable iff every two vertices 

lie on a common cycle.  Thus the problem can be restated as follows: prove that for a connected graph of at least order 3, 

every two vertices lie on a common cycle iff every two adjacent edges lie on a common cycle.

The forward equivalence is clear: given any two adjacent edges u - v - w, consider u, w.  Since every two vertices lie on a 

common cycle there is some other u—w path that does not go through v; this path together with u - v - w is a cycle, and 
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u - v, v - w lie on a common cycle.

Now consider the reverse equivalence: let it be given that every two adjacent edges lie on a common cycle.  Consider any two 

vertices u, v; since G is connected, there is a path P = ui:0…n-1, u0 = u, un-1 = v.  By induction: let ui>0 such that u0, ui lie on a 

common cycle; ui exists since at least u0, u1 are adjacent.  Let P ' be the part of the common cycle that is not on P; and let ui ' 

be the vertex adjacent to ui on P ':

Graph

{u0  ui-1, ui-1  ui, ui  ui+1, ui  ui
′, ui

′
 u0},

VertexCoordinates → {{0, 0}, {2, 0}, {3, 0}, {4, 0}, {3, -1}},

EdgeStyle → {u0  ui-1 → Dashed, ui
′
 u0 → Dashed},

VertexLabels → "Name",

ImageSize → Small

u0 ui-1 ui ui+1

ui
′

Continue this process from ui: since ui
′, ui+1 are adjacent they lie on a common cycle.

Graph

{u0  ui-1, ui-1  ui, ui  ui+1, ui  ui
′,

ui
′
 u0, ui+1  uj-1, uj-1  uj, uj  uj+1, uj  uj

′, uj
′
 ui

′
},

VertexCoordinates → {{0, 0}, {2, 0}, {3, 0}, {4, 0}, {3, -1}, {6, 0}, {7, 0}, {8, 0}, {7, -1}},

EdgeStyle → {u0  ui-1 → Dashed, ui
′
 u0 → Dashed, ui+1  uj-1 → Dashed, uj

′
 ui

′
→ Dashed},

VertexLabels → "Name",

ImageSize → Medium

u0 ui-1 ui ui+1

ui
′

uj-1 uj uj+1

uj
′

Until uj+1 = v.  Then we can construct a common cycle from P and v—…—uj
′—ui

′—u.

Graph

{u0  ui-1, ui-1  ui, ui  ui+1, ui  ui
′, ui

′
 u0,

ui+1  uj-1, uj-1  uj, uj  uj+1, uj  uj
′, uj

′
 ui

′, uj+1  un-1, un-1  uj
′
},

VertexCoordinates → {{0, 0}, {2, 0}, {3, 0}, {4, 0}, {3, -1},

{6, 0}, {7, 0}, {8, 0}, {7, -1}, {10, 0}},

EdgeStyle → {u0  ui-1 → Dashed, ui
′
 u0 → Dashed, ui+1  uj-1 → Dashed,

uj
′
 ui

′
→ Dashed, uj+1  un-1 → Dashed, un-1  uj

′
→ Dashed},

VertexLabels → "Name",

ImageSize → Large

u0 ui-1 ui ui+1

ui
′

uj-1 uj uj+1

uj
′

un-1
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□ 5.11

Suppose G were separable; then it would have a cut-vertex v and two components in G - v.  At most, this could have reduced 

the degree of each vertex of G to no lower than 1
2

n - 1; and then the order of either component would have to be at least 1
2

n.  

But then the order of G would have had to have been at least 2  1
2

n + 1 = n + 1, which is a contradiction.

□ 5.12

If there are three blocks, there are  3
2
 = 3 pairs of distinct blocks, and by Corollary 9b these can have at most three vertices 

in common.  Since G is connected, the blocks must have at least two vertices in common.  By Corollary 9c these common 

vertices are cut-vertices; so k ∈ {2, 3}.

□ 5.13

Module

g = Graph{1 2, 2 3, 3 4, 4 1, 2 4, 4 5}, VertexLabels → "Name", ImageSize → Tiny,

g, GraphDiameter[g], GraphDistance[g, 1, 3]



1

2

3

4 5, 2, 2

□ 5.14

a) Suppose that the induced subgraph were not connected.  Since G was connected, v was connected to G1 through another 

vertex of G2.  But then there are vertices of both components that are connected through a path that doesn’t pass through v, 

and then v could not be a cut-vertex.

In the graph below, 3 is a cut-vertex, but the corresponding induced subgraph (highlighted) is not a block:

Module

{g = Graph[{1 2, 2 3, 3 1, 3 4, 4 5, 5 6, 6 4}, VertexLabels → "Name"]},

HighlightGraph[g, VertexDelete[g, {1, 2}]]

1

2

34

5

6

□ 5.15

*** INCOMPLETE ***
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6 Traversability

6.1 Eulerian Graphs

EulerianTrailGraphQ[g_] :=

(* does adding any edge make an Eulerian cycle *)

AnyTrue

(* add an edge between the pair to make a cycle *)

EdgeAddg, UndirectedEdge @@ # & /@

(* all pairs of vertices *)

SubsetsVertexList[g], {2},

EulerianGraphQ

□ 6.1

Module

g = Graph

{R1  R2, R1  R2, R2  R3, R4  R5, R2  R5, R5  R6, R4  R7, R7  R8, R5  R8, R6  R9, R6  R9},

VertexLabels → "Name", ImageSize → Small,

g, EulerianTrailGraphQ[g]



R1

R2

R3 R4

R5

R6

R7

R8

R9

, True

□ 6.2

It cannot be said that G is Eulerian, because it might be disconnected:
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Module



G = RenameSubscriptGraph[

VertexAdd[

CompleteGraph[3, VertexLabels → "Name"], 4],

g],

H = RenameSubscriptGraph[

VertexAdd[

CompleteGraph[3, VertexLabels → "Name"], 4],

h],

GraphicsRow

Show#, PlotLabel → EulerianGraphQ[#] & /@ 

G, H,

EdgeAdd

GraphUnion[G, H, VertexLabels → "Name"],

g4  h4,

Scaled[0.2]

g1

g2

g3

g4

True

h1

h2

h3

h4

True

g1

g2g3

g4

h1

h2h3 h4

False

□ 6.3

Restating: let G, H, K be the pairwise disjoint connected regular graphs, where G and G are Eulerian and H, K are not.  Since 

H is not Eulerian, by Theorem 6.1 it must have at least one vertex of odd degree; and since it is regular, therefore all vertices 

of H have the same odd degree degH.  Since H is regular, by Theorem 2.1 it has even order.  Similarly, all vertices of K have 

the same odd degree degK and K is of even order.  Now G is Eulerian and regular, so by Theorem 6.1 all its vertices are of the 

same even degree degG; Theorem 2.1 does not say anything about its order.  However, G is also Eulerian and regular, so all its 

vertices are also of the same even degree degG.  Therefore each vertex of G, G is connected to degG vertices of G and not 

connected to degG vertices of G, and since degG + degG is even, the order of G is odd; and thus since G is regular, by Theorem 

2.1 degG is even.

Now then, in G + (H + K), note first that the components are mutually disjoint.  Then, each vertex from the G component has 

degree degG + orderH + orderK, which is even; each vertex of the H component has degree degH + orderK + orderG, which is is 

also even; and similarly each vertex of the K component has even degree.  Since every vertex of the join has even degree, by 

Theorem 6.1 it is Eulerian.
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#

GraphJoin

RenameSubscriptGraph[CycleGraph[5], G],

GraphJoin

RenameSubscriptGraph[CompleteGraph[2], H],

RenameSubscriptGraph[ CompleteGraph[2], K],

VertexLabels → "Name",

VertexLabels → "Name" & /@ Show, EulerianGraphQ



G1

H1

K1

K2

H2

G2
G3

G4

G5

, True

□ 6.4

Module (* a. *)

{g = CycleGraph[5]},

Show#, PlotLabel → EulerianGraphQ[#], ImageSize → Tiny &

/@ {g, GraphComplement[g]}



True

,

True



Module (* b. *)

{g = CycleGraph[4]},

Show#, PlotLabel → EulerianGraphQ[#], ImageSize → Tiny &

/@ {g, GraphComplement[g]}



True

,

False


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Module (* c. *)

{g = EdgeDelete[CycleGraph[5], 1 2]},

Show#, PlotLabel → EulerianGraphQ[#], EulerianTrailGraphQ[#], ImageSize → Tiny &

/@ {g, GraphComplement[g]}



{False, True}

,

{False, True}



For d., note that because G has a Eulerian trail it must have exactly 2 vertices of odd degree.  Similarly G must not have 2 odd 

vertices; but since it is Eulerian, it must have at least one odd vertex.  Now if G were of odd order, then every vertex has an 

even number of neighbors; so any odd vertex in G is also odd in G, and so G would also have 2 odd vertices, which is a 

contradiction.  G must therefore be of even order, and every vertex has an odd number of neighbors; so any odd vertex in G is 

even in G.  This means that G cannot be of order 2 or G would consist of exactly 2 even vertices, which is a contradiction.  

Also, G cannot be of order 4 or G would have exactly 2 odd vertices, which is also a contradiction.  So we try a graph of order 6:

Module (* d. *)

{g = EdgeDelete[CycleGraph[6], 1 2]},

Show#, PlotLabel → EulerianGraphQ[#], EulerianTrailGraphQ[#], ImageSize → Tiny &

/@ {g, GraphComplement[g]}



{False, True}

,

{False, False}



Module (* e. *)

{g = EdgeAdd[CycleGraph[3], 1 4]},

Showg, PlotLabel → EulerianTrailGraphQ[g], ImageSize → Tiny,

Module

{h = EdgeDelete[g, 1 4]},

Showh, PlotLabel → EulerianGraphQ[h], ImageSize → Tiny





{True}

,

{True}



□ 6.5

The vertices of K5 are all of even degree, so the graph is Eulerian.  Consider K5 with a single edge removed: the only edge that 
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can be added to it is the one that was just removed, yielding K5.

□ 6.6

For G to be non-Eulerian it (Theorem 6.1) has to have at least one vertex of odd degree.  Because it is regular, then all vertices 

have (the same) odd degree.  By Theorem 2.6 then the order of G is even, and therefore all vertices of G are of (the same) 

even degree.  Then, if G is connected, by Theorem 6.1 it is Eulerian.

□ 6.7

a. The order of G ≅ F is also equal to n and odd; since u and v are connected to each other and every vertex of G and G ≅ F, the 

degrees of u, v are equal and odd.  Therefore H is not Eulerian.

b. Since G is r-regular of odd order, by Theorem 2.6 r must be even.  Also, G ≅ F is also of the same odd order and regular of 

even order.  Therefore H contains exactly two vertices u and v of odd order, and by Corollary 6.2 contains a Eulerian trail.

Manipulate

#

Module

(* generate 2-regular graph of odd degree *)

K = RandomGraph

DegreeGraphDistribution[

Table[2, k*2 + 1]],

Module

(* generate H as described in the problem*)

H = GraphUnion

RenameSubscriptGraph[K, G],

RenameSubscriptGraph[GraphComplement[K], F],

EdgeAdd

H,

Append

Flatten{u #, v #} & /@ VertexList[H],

u v & /@ 

Show[SetProperty[#, VertexLabels → "Name"]] &,

EulerianGraphQ,

EulerianTrailGraphQ,

{k, 1, 5, 1}
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k

ShowSetPropertyEdgeAddGraphUnion

RenameSubscriptGraph , G, RenameSubscriptGraph , F,

u, GraphUnionRenameSubscriptGraph , G,

RenameSubscriptGraph , F, v, u v, VertexLabels → Name, False,

EulerianTrailGraphQEdgeAddGraphUnionRenameSubscriptGraph , G,

RenameSubscriptGraph , F,

u, GraphUnionRenameSubscriptGraph , G,

RenameSubscriptGraph , F, v, u v

c. False, since by b. H has a Eulerian trail.

□ 6.8

a. Consider the multigraph G ' constructed from G by duplicating each edge; then G ' has all vertices of even degree and is 
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Eulerian.  Its Eulerian circuit corresponds to a closed walk of G containing every edge twice; it is spanning because G is 

connected.

b. Similarly, a multigraph G '' constructed by triplicating every edge of G is Eulerian iff all vertices are of even degree; this is 

true iff all vertices of G are of even degree, that is, if G itself is Eulerian.

6.2 Hamiltonian Graphs

□ 6.9

Module

G = Graph

Join[

z # & /@ {t, u, v, w, x, y},

{x y, y u, u w, w y, t u, v w}], VertexLabels → "Name",



G,

ApplyAnd, (* Holds for any cardinality of S *)

AllTrue(* Holds for each possible S of the cardinality *)

Length[ConnectedGraphComponents[

VertexDelete[G, #]]] & /@

SubsetsVertexList[G], {#},

LessEqualThan[#] & /@

Range[1, VertexCount[G] - 1]

(* all possible cardinalities of a proper nonempty subset *)





z

t
u

v

w

x
y

, True

This shows that the requirement of k(G - S) ≤ S  is necessary but not sufficient for a graph G to be Hamiltonian.

□ 6.10

Since ∀ u, v ∈ G : ∀ w ∈ G, G - u, G - u - v : deg w ≥ 5, ∀ w, x ∈ G, G - u, G - u - v : deg w + deg x ≥ 10 so by Theorem 6 

G, G - u, G - u - v are Hamiltonian.
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Module

G = RandomGraphDegreeGraphDistribution[Table[6, 10]],

(* random 6-regular graph of order 10 *)



G,

AllTrue(* are all Hamiltonian *)

VertexDelete[G, #] & /@ SubsetsVertexList[G], 2, (* removing up to 2 vertices *)

HamiltonianGraphQ

 , True

□ 6.11

Since ∀ n : ∀ u ∈ Cn : degCn
u = n - 2 - 1 = n - 3, we have ∀ n : ∀ u, v ∈ Cn : deg u + deg v = (n - 3) + (n - 3) = 2 (n - 3).

Reduce[2 (n - 3) ≥ n, n] // TraditionalForm

n ≥ 6

By Theorem 6 Cn≥6 is Hamiltonian.  Additionally, for C5 the degree of each vertex being n - 3 = 2 we see that C5 = C5, which is 

obviously Hamiltonian.

6.12

Note first that ∀ g ∈ G, h ∈ H : degG+H g = 3 + 11 = 14, degG+H h = 4 + 12 = 16.

a.  Since the degree of very vertex is even, by Theorem 1 G + H is Eulerian.

b.  Since for any two vertices ∀ u, v ∈ G + H : deg u + deg v ≥ 14 + 14 = 28 ≥ 23, by Theorem 6 G + H is Hamiltonian.
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#

GraphJoin

RenameSubscriptGraphRandomGraphDegreeGraphDistribution[Table[3, 12]], G,

RenameSubscriptGraphRandomGraphDegreeGraphDistribution[Table[4, 11]], H,

VertexLabels → "Name" & /@ 

Show, EulerianGraphQ, HamiltonianGraphQ



G1

H1

H2

H3

H4
H5

H6

H7

H8

H9

H10

H11

G2

G3

G4

G5

G6
G7

G8

G9

G10

G11

G12

, True, True

□ 6.13

a.  Any Eulerian graph with the addition of an unconnected vertex.  The graph cannot be Hamiltonian because the added 

vertex cannot be reached by any path.

b.  All Kn where n is even have vertices with odd degree, so for n even and n > 2 are Eulerian.  Additionally, by Theorem 6 they 

are Hamiltonian for:

Reduce[2 (n - 1) ≥ n, n] // TraditionalForm

n ≥ 2

c.  Any Kn with a single edge removed is Hamiltonian for:

Reduce[2 (n - 1 - 1) ≥ n, n] // TraditionalForm

n ≥ 4

From b. Kn is Eulerian; then Kn with a single edge removed is not Eulerian but has a Eulerian trail.

d.  Any Cn>2 with an additional unconnected vertex cannot be Hamiltonian.  It is also not Eulerian, but is a Eulerian trail.

□ 6.14

a. A Eulerian graph has a Eulerian circuit; a Hamiltonian graph has a Hamiltonian cycle.  Construct a graph in which it is 

impossible to traverse all vertices without going through some other vertex more than once, for example:
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#[

Graph[

Flatten[{a b#, b#  c} & /@ Range[4]]]] & /@

Show, HamiltonianGraphQ, EulerianGraphQ, KVertexConnectedGraphQ[#, 2] &

 , False, True, True

b. For G to be Hamiltonian, the vertices should be of ‘sufficiently high’ degree.  For G to be Eulerian its vertices must all be of 

even degree; because G is not Eulerian all of its vertices then will be of odd degree, which implies that the order of G is even.  

Lastly, G cannot be complete or G will be disconnected.  So take K6 with C6 removed:

Module

g = EdgeDeleteCompleteGraph[6], EdgeList[CycleGraph[6]],

Module

{h = GraphComplement[g]},

g, HamiltonianGraphQ[g], EulerianGraphQ[g], h, EulerianGraphQ[h]

 , True, False, , True

□ 6.15

If the subdivision graph G*of a graph G is Hamiltonian, then it has a cycle traversing all vertices of G*, and this cycle certainly 

traverses the vertices added in the subdivision; which means that it traverses all the edges of G.  Therefore, G is Eulerian.

However, consider that while traversing these vertices corresponding to all the edges of G, the Hamiltonian cycle of G* also 

traverses the vertices corresponding to the ones originally in G exactly once; this means that the degree of each vertex in G is 

exactly 2.  That is to say, the theorem is true, but (rather trivially) it only applies cycles.
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SubdivisionGraph[g_] :=

Graph

Flatten

{#[[1]] w#, w#  #[[2]]} & /@ EdgeList[g]

Grid

Labeled#, EulerianGraphQ[#],

Module

sdg = SubdivisionGraph[#],

Labeledsdg, HamiltonianGraphQ[sdg]

 &

/@ {

CycleGraph[5],

RandomGraph[{10, 20}]}

True
True

False False

□ 6.16

a. If r is even, then G is Eulerian by Theorem 6.1.  Conversely, since G is of even order, if r is odd then G is r-regular with r even 

and therefore G is Eulerian.

b. Given r, for any pair u, v of nonadjacent vertices (in fact, for any pair of vertices at all) deg u + deg v = 2 r ≥ G or 

2 r < G .  In the former case, G is Hamiltonian by Theorem 6.6.  In the latter case, consider G: the it is r-regular with 

r = (G - 1) - r so for any pair u, v of vertices in G, 

deg u + deg v = 2 ((G - 1) - r) = 2G - 2 - 2 r > 2G - 2 - G = G - 2 and since G is of even order 

deg u + deg v ≥ G and  G is Hamiltonian.

□ 6.17

G(3) adds a large number of vertices as the order of G increases; this presents an upper limit to the order of G.  In a given 

Hamiltonian cycle of G(3) the best case requires that for each vertex of G, each of its two adjacent edges is incident with one 
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of the added vertices (and not with a different vertex of G).  Since the added vertices are neighbors only of vertices of G, 

similarly each of them must itself be incident with two vertices of G.  This implies that the number of added vertices can be at 

most equal to the order of G:

ReduceBinomial[G, 3] ≤ G ∧ G ≥ 3, G, Integers // TraditionalForm

G  3 ∨ G  4

This is a necessary but not sufficient condition.

G3[g_] :=

HighlightGraph (* highlight the original graph;

because the addend graph also contains the original vertices *)

GraphUniong, (* union the original graph with the addend edges and vertices *)

Graph

Flatten

Function[x, x v#] /@ # &

/@ SubsetsVertexList[g], {3},

g, VertexLabels → "Name"

For G = 3, suppose G were disconnected; then G(3) is not Hamiltonian.  If G is connected, then G(3) is Hamiltonian.  For 

G = 4, since even K4(3) is Hamiltonian, all graphs G of order 4 have G(3) Hamiltonian:

Module

{g3 = G3[#]},

Labeledg3, HamiltonianGraphQ[g3] & /@

{Graph[Range[3], {1 2}], PathGraph[Range[3]], Graph[Range[4], {}]}



1

2

3

False

,
1

2

3

True

,

1

2

34

True



For illustration, even the maximally connected higher-order graphs do not have Hamiltonian G(3):
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Module

{g3 = G3[#]},

Labeledg3, HamiltonianGraphQ[g3] & /@

CompleteGraph /@ Range[5, 8]



1
2

3

4 5

False

,

1

23
4

5

6

False

,

1

2
3

4
5

6

7

False

,
12

3
4

5

6
7

8

False



□ 6.18

The bound of Corollary 7 is not ‘sharp’ in the sense that it is a necessary condition.  Certainly for orders n of 3 and 4 the 

degree of each vertex must be at least 1
2

n ≥ 2 for a cycle to exist and a graph can be Hamiltonian; but for higher orders n 

obviously a cycle (all vertices of degree 2, and thus less than 1
2

n) is Hamiltonian.  The question is whether the statement of 

the Corollary that all graphs satisfying a looser vertex degree requirement must be Hamiltonian can have a lower bound; say 

∀ v ∈ V(G) : deg v ≥ 1
2
G - 1; or, can a non-Hamiltonian counterexample be found.  Now, for any even n we can construct a 

disconnected graph as the union of two components K 1
2 n where the looser degree requirement holds and is obviously non-

Hamiltonian.  For an odd n we can construct a graph from one K 1
2 n and one K 1

2 n-1, where each vertex in the latter is con-

nected to some single vertex v in the former.  Again, the looser degree requirement holds, and while this graph is not discon-

nected, v is a cut-vertex and so again this graph is non-Hamiltonian.  Therefore the bound of the Corollary is indeed ‘sharp’.

□ 6.19

The degree of each G1 vertex in the union is ∀ g ∈ V(G1) : deg g ≥ 1
2
G1 +

1
2
G2 =

1
2
(G1 + G2) =

1
2
G; similarly for 

the degree of the G2 vertices.  Therefore Corollary 7 holds for G.

□ 6.20

The order is at least 3 by axiom; obviously the graph is connected since it contains Hamiltonian paths; so remains to be 

shown only that the graph contains no cut-vertex.  Suppose it did; then removing that vertex would separate the graph into 
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two components, contradicting the assumption that there exists a Hamiltonian path with that vertex initial.  Therefore, the 

graph is 2-connected.

□ 6.21

Suppose to the contrary that there is a graph G such that for all nonadjacent u, v ∈ V(G) : deg u + deg v ≥ G - 1 that does 

not contain a Hamiltonian path; construct the join G + K1 by adding a new vertex k and edges from it to every vertex of G.  Any 

nonadjacent u, v in G are still nonadjacent in the join, and k is not nonadjacent to any vertex; thus it happens that for every 

nonadjacent u, v of the join degG+K1
u + degG+K1

v ≥ (G - 1) + 2 = G + 1 = G + K1, so by Theorem 6 the join is Hamilto-

nian.  By assumption that G is not Hamiltonian it follows that every Hamiltonian cycle of the join must traverse k; but then G 

contains a Hamiltonian path, which is a contradiction.

□ 6.22a

Let one vertex be disconnected (of degree zero); and consider the remaining graph of order 9 and size 28.  K9 is of size 
1
2

9 ·8 = 36; so K9 with eight arbitrary edges removed is of the required size.  Since this graph is disconnected it is not 

Hamiltonian.

Module

g = VertexAdd (* add one disconnected vertex *)

EdgeDelete (* remove 8 arbitrary edges *)

CompleteGraph[9],

RandomSampleEdgeList[CompleteGraph[9]], 8, (* 8 arbitrary edges *)

10,

Labeled

LabeledShowg, ImageSize → Tiny,

{VertexCount[g], EdgeCount[g]},

HamiltonianGraphQ[g]

{10, 28}
False

□ 6.22b

The degrees a, b of the remaining two vertices can be deduced:
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Reduce

1

2
(5 × 5 + 3 × 6 + a + b)⩵ 28 ∧ (* degree sum must correspond to graph size *)

0 ≤ a < 5 ∧ (* at least one vertex must have low enough degree not to trigger Theorem 6 *)

0 ≤ b < 10 (* other degree must be meaningful *),

{a, b}, Integers // TraditionalForm

a 4 ∧ b 9

This is Hamiltonian by Theorem 11:

IsPosyHamiltoniandegrees_List :=

AllTrue

Range
1

2
Length[degrees] - 1 ,

Length[Select[degrees, LessEqualThan[#]]] < # &

IsPosyHamiltonian[{5, 5, 5, 5, 5, 6, 6, 6, 4, 9}]

True

Module

g = RandomGraph

DegreeGraphDistribution[{5, 5, 5, 5, 5, 6, 6, 6, 4, 9}],

VertexLabels → "VertexDegree",

ImageSize → Small,

HighlightGraph

g,

FindHamiltonianCycle[g]

5

5
5

5

5

6

6

6

4

9

□ 6.23a

Since this is a generalization of 6.22 (where k was 5), try the same approach as 6.22a and see if we can construct a graph 

with the given properties in which one vertex is of degree zero and the remaining vertices are a complete graph with a certain 

number l edges removed:
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Reduce
1

2
*(2 k - 1)*(2 k - 2) - l⩵ k2 + k - 2, {k, l}, Integers // TraditionalForm

c1 ∈ ℤ ∧ k  c1 ∧ l c1
2 - 4 c1 + 3

Then construct such a graph (which is obviously not Hamiltonian) and verify that the required properties hold:

Manipulate

Module

h = Module

{K = CompleteGraph[2 k - 1]},

VertexAdd

EdgeDeleteK,

TakeEdgeList[K], 3 - 4 k + k2, (* remove l edges *)

{2 k}, (* add the single degree-0 vertex *)

Labeledh, VertexCount[h] == 2 k ∧ EdgeCount[h] == k2 + k - 2,

{k, 3, 10, 1}

k



True



□ 6.23b

Again, deduce the degrees of the remaining two vertices:

Reduce

1

2
(k*k + (k - 2) (k + 1) + a + b)⩵ k2 + k - 2 ∧ (* degree sum must correspond to graph size *)

0 ≤ a < k ∧ (* at least one vertex must have low enough degree not to trigger Theorem 6 *)

0 ≤ b < 2 k (* other degree must be meaningful *),

{a, b}, Integers // TraditionalForm

c1 ∈ ℤ ∧ c1 ≥ 0 ∧ k  c1 + 1 ∧ a c1 ∧ b 2 c1 + 1
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That is, the two remaining vertices have degree c1 = k - 1 and 2 c1 + 1 = 2 (k - 1) + 1 = 2 k - 1.  For the purposes of Theorem 

11 we only need to consider vertices with degree less than G
2

= 2 k

2
= k, which for k ≥ 3 is only the one with degree k - 1.  

The number of vertices with degree at most k - 1 (that is, 1) is less than k - 1 if 1 < k - 1 ⧦ k > 2 ⧦ k ≥ 3, which is true by 

axiom; so the Theorem holds and G is Hamiltonian.

□ 6.24a

Label the k + 1 vertices of degree 2 as li and the k others as ri.  Since a Hamiltonian cycle must traverse all li it must contain 

all 2 (k + 1) edges between them and the ri.  But since there are only k vertices ri that means that some ri must be traversed 

twice; which is a contradiction.

AllTrue

Range[100],

¬ HamiltonianGraphQ

EdgeAdd

RenameSubscriptGraph[CompleteGraph[#], r],

(* construct ri as Kk for maximal Hamiltonian opportunity *)

FlattenTable{li  ri, li  rMod[i+1,#,1]}, i, # + 1

(* add li by distributing edges to ri *)

 &

True

□ 6.24b

Manipulate

Module

g = EdgeAdd

RenameSubscriptGraphCycleGraphk, VertexLabels → "Name", ImageSize → Small, r,

FlattenTable{li  ri, li  rMod[i+1,k,1]}, i, k,

HighlightGraphg, FindHamiltonianCycle[g],

{k, 3, 20, 1}
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k

HighlightGraphEdgeAddRenameSubscriptGraph

1 2

3

, r,

{l1  r1, l1  r2, l2  r2, l2  r3, l3  r3, l3  r1},

FindHamiltonianCycleEdgeAddRenameSubscriptGraph

1 2

3

, r,

{l1  r1, l1  r2, l2  r2, l2  r3, l3  r3, l3  r1}

EdgeAdd: A graph object is expected at position 1 in

EdgeAddRenameSubscriptGraph

1 2

3

, r, {l1  r1, l1  r2, l2  r2, l2  r3, l3  r3, l3  r1}.
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FindHamiltonianCycle : A graph object is expected at position 1 in

FindHamiltonianCycleEdgeAddRenameSubscriptGraph

1 2

3

, r, {l1  r1, l1  r2, l2  r2, l2

 r3, l3  r3, l3  r1}.

HighlightGraph: A graph object is expected at position 1 in

HighlightGraphEdgeAddRenameSubscriptGraph

1 2

3

, r, {l1  r1, l1  r2, l2  r2, l2  r3, l3

 r3, l3  r1}, FindHamiltonianCycleEdgeAddRenameSubscriptGraph

1 2

3

, r, {l1

 r1, l1  r2, l2  r2, l2  r3, l3  r3, l3  r1}.
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HighlightGraph: A graph object is expected at position 1 in

HighlightGraphEdgeAddRenameSubscriptGraph

1 2

3

, r, {l1  r1, l1  r2, l2  r2, l2  r3, l3

 r3, l3  r1}, FindHamiltonianCycleEdgeAddRenameSubscriptGraph

1 2

3

, r, {l1

 r1, l1  r2, l2  r2, l2  r3, l3  r3, l3  r1}.

6.3 Exploration: Hamiltonian Walks

WalkLength[g_] := (* return operator that returns lengths of walks of the given graph *)

Functions, (* function taking vertex list *)

Total(* total distance of all subsequences *)

GraphDistanceMatrix[g]〚#〚1〛〛〚#〚2〛〛 & /@

(* distance between the two vertices of a subsequence *)

Subsequences[s, {2}](* for all subsequences of length 2 *)

DisplayWalkg_, w_List := (* display a walk overlayed onto a graph *)

Labeled

Show

g,

Graphics

Red, Dashed,

Arrow

GraphEmbedding[g]〚#〛 & /@

Subsequences[w, {2}],

{w, WalkLength[g][w]}
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FindHamiltonianWalkg_, o_: MinimalBy :=

First

o

Append#, First[#] & /@ (* close walk *)

PermutationsVertexList[g],

(* for all possible permutations of the entire vertex list *)

WalkLength[g],

1 (* just return the first minimal walk *)

□ 6.25

Since for all distinct u, v ∈ Kn : d(u, v) = 1, obviously h(Kn) = h+(Kn) = n.  For any Ks,t a Hamiltonian walk of length s + t can be 

constructed by alternating between the bipartite sets and picking any as-yet untraversed vertex from that set, so 

h(Ks,t) = 2 max {s, t}:
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Manipulate

Module

{st = Max[{s, t}]},

HighlightGraph[

CompleteGraph[{s, t}],

ReplacePart[

Flatten[

{Mod[#, s, 1] Mod[s + #, t, s + 1], Mod[s + #, t, s + 1] Mod[# + 1, s, 1]} & /@ Range[st]],

2 st → (s + t) 1]],

{s, 1, 10, 1}, {t, 1, 10, 1}

s

t

The maximum distance in Ks,t is 2; a cyclic ordering of maximal length can be constructed by traversing all the vertices in one 

bipartite set followed by all the vertices in the other set, resulting in a path of length 

h+(Ks,t) = 2 (s - 1) + 1 + 2 (t - 1) + 1 = 2 (s + t - 1).
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□ 6.26

Module

g = Graph{1 2, 2 3, 3 4, 4 1, 1 5}, VertexLabels → "Name", ImageSize → Small,

DisplayWalkg, FindHamiltonianWalk[g]

1

2

3

4

5

{{1, 2, 3, 4, 5, 1}, 6}

□ 6.27

Module

g = StarGraph5, VertexLabels → "Name", ImageSize → Small,

DisplayWalkg, FindHamiltonianWalk[g]

1

2

3

4

5

{{1, 2, 3, 4, 5, 1}, 8}

□ 6.28a

A walk of maximal length is constructed by sequentially traversing maximally distant (opposite) vertices:

Simplify
1

2
n - 1

1

2
n +

1

2
n - 1 +

1

2
n + 1  // TraditionalForm

1
2
n2 - 2 n + 4

For example:

% /. n → 8

26

Verify by exhaustively searching for the length of a maximal walk:
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Module

{g = CycleGraph[8]},

WalkLength[g]

FindHamiltonianWalkg, MaximalBy

26

Manipulate

Module

graph = CycleGraphn, VertexLabels → "Name", ImageSize → Small,

walk = AppendFlattenTransposePartitionRange[n],
1

2
n, 1,

DisplayWalk[graph, walk],

{{n, 8}, 4, 20, 2}

n

DisplayWalk

1

2

3

4

5

6

7

8

, {1, 5, 2, 6, 3, 7, 4, 8, 1}

□ 6.28b

Similar approach as in a):

FullSimplifyn
1

2
n , Mod[n, 2]⩵ 1 ∧ Element[n, Integers] // TraditionalForm

n 
n

2


That didn’t work.  Be more explicit about n being odd:

Simplify(2 m + 1)
1

2
(2 m + 1) , Element[m, Integers] // TraditionalForm

m (2m + 1)
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% /. m →
1

2
(n - 1) // TraditionalForm

1
2
(n - 1) n

% /. n → 7 // TraditionalForm

21

Module

{g = CycleGraph[7]},

WalkLength[g]

FindHamiltonianWalkg, MaximalBy

21

Manipulate

Module

graph = CycleGraphn, VertexLabels → "Name", ImageSize → Small,

walk = FlattenTransposeArrayReshapeRange[n], 2,
1

2
n , {1},

DisplayWalk[graph, walk],

{{n, 7}, 3, 21, 2}

n

DisplayWalk

1

2

3 4

5

6

7

, {1, 5, 2, 6, 3, 7, 4, 1}

□ 6.29

a) Trivially from the definition of diameter as the maximum distance between any two vertices.

b) Obviously not; an example is h+ from 6.28, where for n > 2 : 1
2
n2 - 2 n + 4 < 1

2
n2 = n · 1

2
n = n ·diam(Cn).

□ 6.30
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The length of a minimal walk is equal to the length of a maximal walk if the distance between any two vertices is always 

equal; that is, equal to one: that is, the complete graphs.

AllTrue (* hypothesis holds for all sample graphs *)

Select (* only connected graphs *)

FlattenTableTable(* generate random set of graphs *)

RandomGraphUniformGraphDistribution[n, m],

m, n,
1

2
n (n - 1), {n, 2, 6},

ConnectedGraphQ,

Module

{wl = WalkLength[#]},

(* minimal and maximal total distance of Hamiltonian walk equal *)

wlFindHamiltonianWalk#, MinimalBy ⩵ wlFindHamiltonianWalk#, MaximalBy ⩵

CompleteGraphQ[#] (* iff the graph is complete *) &

True

7 Digraphs

7.1 Strong Digraphs

□ 7.1

a) ∀ u, v ∈ D : ∃ w ∈ D, w ≠ u, v.  Since D - w is strong, it contains a u—v path as does D; therefore D is strong.

b) This follows because there is no single orientation of D that results in strong subgraphs.  Let t, u, v, w ∈ V(D) be the vertices 

of D, and suppose that all four subgraphs are strong.  Now for D - t to be strong, it must form a directed cycle; without loss of 

generality, pick one orientation.  This then also fixes the orientation in the cycle D - w, which in turn fixes the orientation of 

D - v:

GraphicsRow

Graph

{t, u, v, w}, #,

VertexCoordinates → {{-1, -1}, {-1, +1}, {+1, +1}, {+1, -1}}, VertexLabels → "Name" & /@

{{u v, v w, w u}, {u v, v t, t u}, {t u, u w, w t}},

ImageSize → Medium

t

u v

w t

u v

w t

u v

w

But this results in two opposing directions for the u—w edge, which contradicts the assumption that D is oriented.
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□ 7.2

Note that “Eulerian orientation” is not actually defined in the text; but from Wikipedia and Theorem 4 we can conclude it to 

mean: an orientation of a graph resulting in a directed graph that is Eulerian.  Then, a Eulerian directed graph has an underly-

ing graph that is also Eulerian by the same Eulerian circuit.  Also, an orientation can be defined on a Eulerian graph by its 

Eulerian circuit so that this orientation results in a Eulerian directed graph.

□ 7.3

Graph

Range[12],

{1 2, 2 5, 1 3, 3 5, 5 4, 4 1, 5 6,

6 7, 7 8, 8 9, 9 10, 7 10, 10 11, 11 12, 12 5},

VertexCoordinates → {{-2, 0}, {-1, +1}, {-1, 0}, {-1, -1}, {0, 0},

{0, +1}, {+1, +1}, {+2, +1}, {+2, 0}, {+2, -1}, {+1, -1}, {0, -1}}

ConnectedGraphQ[%]

True

Graph

Range[9],

{1 2, 1 3, 2 4, 3 4, 4 5, 5 6, 6 7, 3 7, 7 8, 8 9, 9 1},

VertexCoordinates →

{{-2, 0}, {0, +1}, {0, -1}, {+2, 0}, {+2, -1}, {+1, -2}, {0, -3}, {-1, -2}, {-2, -1}},

ImageSize → Small
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ConnectedGraphQ[%]

True

□ 7.4

Trivially: suppose D is strongly connected.  Now for every u, v in D, there is a v—u path in D that corresponds to a u—v path in 

D; therefore, D is strongly connected.  Mutatis mutandis for the converse.

□ 7.5

(⇒) Suppose that G is strongly connected.  Then for any edge cut separating V(G) into A, B, for any u ∈ A, v ∈ B there is a u—v 

path in G; this path must contain some adjacent a ∈ A, b ∈ B.

(⇐) Suppose that for every edge-cut separating the vertex set into A and B there is an arc from A to B.  Now take any u, v ∈ G 

and show there is a directed path from u to v.  Iteratively: start with A = {u}, B = V(G)\A.  There is an arc from u to a vertex 

u1 ∈ B.  If u1 = v then we are done; otherwise, consider A1 = {u, u1}, B1 = V(G)\A1.  Again, there is an arc from some vertex of 

A1 to a u2 ∈ B1.  Continue this process until we have An = {u, u1, …, un} and un+1 = v; then (u, u1, …, un, v) is a u—v path.  The n 

must exist because v ∈ B and V(G) is finite.  Since there is a directed path for each pair of vertices, the graph is strongly 

connected.

□ 7.6

Recall that in a directed graph, the presence of an arc between two vertices doesn’t preclude the existence of the reverse arc.  

Therefore we can solve for:

Reducen id⩵
i=0

n-1
i, id // TraditionalForm

id 
n

2
-

1
2
∨ n 0

For example, for n = 3 : id = 3
2
- 1

2
= 1.  In the following graph each vertex has indegree 1 but different outdegree:

GraphRange[3], {2 3, 3 1, 3 2}, ImageSize → Small, VertexLabels → "VertexOutDegree"

0 12
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7.2 Tournaments

Tournaments[n_] := (* generate all tournaments of given order, up to isomorphism *)

DeleteDuplicates(* remove isomorphic duplicates *)

Module

el = EdgeList[CompleteGraph[n]],

(* generate the undirected edge list of a complete graph *)

Functionei, (* apply an orientation *)

Graph

MapIndexed(* orient the edge list *)

DirectedEdge @@

IfBitGetei, First[#2] - 1 ⩵ 0, #1, Reverse[#1] &,

el,

VertexLabels → "Name"

 /@ Range0, 2Length[el]-1 (* all possible orientations *),

IsomorphicGraphQ

□ 7.7

Brute force:

Select

Flatten[Tournaments /@ Range[3, 5]], (* all tournaments of order 3 through 5 *)

Functiong, (* return whether all single-edge reorientations are Hamiltonian *)

AllTrue

EdgeAdd[EdgeDelete[g, #], Reverse[#]] & /@ EdgeList[g],

HamiltonianGraphQ



1

2

3

4

5



□ 7.8

If the outdegree of every vertex in a tournament of order n is x, then the indegree is (n - 1) - x.  By the ‘First Theorem’,

Reduce
i=0

n-1

x⩵

i=0

n-1

((n - 1) - x) ∧ n > 0, {x}, Integers // TraditionalForm

c1 ∈ ℤ ∧ c1 ≥ 0 ∧ n 2 c1 + 1 ∧ x c1
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(n - 1) - x /. n → 1 + 2 x // TraditionalForm

x

□ 7.9

(⇒) By Theorem 8 there is a Hamiltonian path (v0, …, vn-1).  Since T is transitive, ∀ i, j : i < j there is an i— j arc, and this 

defines the orientation of all the arcs.  Therefore od vi = (n - 1) - i, which are unique.

(⇐) The outdegree sequence must therefore be {n - 1, …, 0}.  Pick the vertex with highest outdegree; this is incident with all 

other vertices.  From the remaining n - 1 vertices pick the one with highest outdegree n - 2; this again is incident with all 

other vertices.  Continue until the last vertex with zero outdegree remains.  The sequence of vertices so chosen is a Hamilto-

nian path and all arcs point ‘in the direction of’ the path, showing that the tournament is transitive.

□ 7.10

Let d(u, v) = k and a shortest path between the vertices be (u, v1, …, vk-1 = v).  Since this is a shortest path all u—v arcs are 

incident to u, and id u ≥ k - 1.

□ 7.11

By the ‘First Theorem’ ∑i id vi = ∑i od vi, so id vn-1 + ∑i<n-1 id vi = od vn-1 + ∑i<n-1 od vi ≥ od vn-1 + (n - 1) + ∑i<n-1 id vi and 

id vn-1 ≥ od vn-1 + (n - 1).  Then it must be that id vn-1 = n - 1 and od vn-1 = 0.  Since nothing is reachable from vn-1, the 

tournament is not strongly connected.

□ 7.12a

EdgeAdd

GraphUnion

RenameSubscriptGraphCycleGraph5, DirectedEdges → True, outer,

RenameSubscriptGraphCycleGraph5, DirectedEdges → True, inner,

outer1  inner1

Clearly every vertex lies on a cycle, yet the graph is not strongly connected.
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□ 7.12b

Graph

{1 2, 2 3, 3 4, 4 1, 3 1, 2 4},

VertexCoordinates -> {{-1, 0}, {0, +1}, {+1, 0}, {0, -1}},

VertexLabels → "Name", ImageSize → Tiny

1

2

3

4

Even though the tournament is strongly connected, there is no Hamiltonian 1—3 nor 3—1 path.

□ 7.12c

In the above graph, 3 1 is an arc but does not lie on a Hamiltonian cycle.

□ 7.13

Suppose there are u—v and v—u paths of minimal and equal length.  Since either u v or v u, d(u, v) = d(v, u) = 1, which is 

impossible.

□ 7.14

By the ‘First Theorem’ again, ∑i
n od vi = ∑i

n id vi ⇒ n ·x = n · ((n - 1) - x) ⇒ x = (n - 1) - x ⇒ 2 x = n - 1 ⇒ x = 1
2
(n - 1).  This has 

a solution for odd and not for even n.

□ 7.15

By induction.  For any strongly connected tournament Tn of order n, Tn is Hamiltonian and contains a cycle of order n.  Further-

more, by Theorem 11 it contains a strongly connected subtournament Tn-1 = Tn - v of order n - 1.

7.3 Decision-Making

ElectionFirstChoice[l_] := (* count first choices *)

SortBy

{#〚1, 1〛, Total[#〚All, 2〛]} & /@

GatherBy

#〚2〛, First[#] & /@ l,

First,

-Last[#] &
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ElectionTotalOrdering[l_] := (* count total ordering *)

Module

t =

Module

{total = Total[#〚All, 2〛]},

Iftotal ≥ 0, (* *** ignoring zero case; should remove edge *)

{#〚1, 1〛, total},

{Reverse[#〚1, 1〛], -total} & /@

GatherBy

Flatten

Functione,

If

Hash[#〚1〛] < Hash[#〚2〛],

#, First[e],

Reverse[#], -First[e] & /@

Subsequences[Rest[e], {2}] /@

l,

1,

First,

Graph

DirectedEdge @@@ t〚All, 1〛,

EdgeWeight → t〚All, 2〛,

VertexLabels → "Name", EdgeLabels → "EdgeWeight", ImageSize → Small

□ 7.16

ThroughElectionFirstChoice, ElectionTotalOrdering[

{{18, a, b, c},

{17, a, c, b},

{13, b, a, c},

{16, b, c, a},

{16, c, a, b},

{18, c, b, a}}]

{{a, 35}, {c, 34}, {b, 29}},

3

2

1
a

b

c



Considering first choices only, a should win; but considering the total ordering, c should.
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□ 7.17

ElectionRunoff[l_, cases_] :=

ElectionFirstChoice

DeleteCases(* remove the last-choice winner *)

cases /@

l

ElectionRunoffNoLast[l_] :=

ElectionRunoffl,

ElectionFirstChoice[l]〚-1〛〚1〛

ElectionRunoffNoLastTwo[l_] :=

ElectionRunoffl,

ElectionFirstChoice[l]〚-2〛〚1〛 ElectionFirstChoice[l]〚-1〛〚1〛

(* *** shouldn't use patterns but equality *)


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Through

ElectionFirstChoice, ElectionRunoffNoLast, ElectionRunoffNoLastTwo, ElectionTotalOrdering[{

{12, a, b, c, d},

{11, a, b, d, c},

{28, a, c, b, d},

{10, a, c, d, b},

{27, a, d, b, c},

{26, a, d, c, b},

{11, b, a, c, d},

{10, b, a, d, c},

{25, b, c, a, d},

{9, b, c, d, a},

{24, b, d, a, c},

{29, b, d, c, a},

{10, c, a, d, b},

{9, c, a, d, b},

{22, c, b, a, d},

{12, c, b, d, a},

{21, c, d, a, b},

{20, c, d, b, a},

{11, d, a, b, c},

{8, d, a, c, b},

{21, d, b, a, c},

{7, d, b, c, a},

{20, d, c, a, b},

{25, d, c, b, a}

}]

{{a, 114}, {b, 108}, {c, 94}, {d, 92}},

{{c, 139}, {b, 136}, {a, 133}}, {{b, 215}, {a, 193}},
3402

44

30

38

b

a

c

d



The college tournament of paired comparisons is not transitive; although one might argue that even in this case, a is the 

winner because it has the highest outdegree.  Who should win is a subjective question; if voters are already being troubled to 

express a ranked preference, I would suggest that some method of awarding points based on order retains the most informa-

tion in the result.  This, however, has no connection to graph theory.

□ 7.18

The outcome can be derived from the family tournament in Figure 7.18; H→F, T→GM, C→H, T→C.  This is one way of resolving 

the cycle in the tournament, but the outcome is dependent on the arbitrary order in which the resolution occurs.  The outcome 
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in this particular case (C) happens to coincide with Edwin’s preference.

7.4 Wine Bottle Problems

As an aside, while ‘wine bottle problems’ appeared to have some similarity to groups, I don’t find a way to model them as 

such: if we consider the group elements as ‘bottle states’ or configurations and ‘pourings’ as the operations, then there is no 

identity element that is unmoved by any operation; if we approach it as a permutation group and view the elements them-

selves as the pourings and the operation as composition, then some operations are undefined (for example, the same 

pouring cannot be applied twice in a row).

WineBottlePouri_, j_, B_, BM_ :=

Module

poured = MinBi, BMj - Bj, (* amount that will be poured *)

ReplacePartB, i → Bi - poured, j → Bj + poured

WineBottleOperateel_List, m_, v_ := (* from the given established list of edges,

maximum bottle capacity, and starting vertex, return the recursively reachable edges *)

Union @@ 

Module

{e = v Pour[#〚1〛, #〚2〛, v, m]}, (* graph edge created by the pouring *)

IfEqual @@ e ∨ MemberQ[el, e], (* self-edge or edge already found *)

el, (* terminate recurstion *)

IfFreeQ[el, e〚2〛], (* destination configuration not already found? *)

WineBottleOperate[Append[el, e], m, e〚2〛],

(* recursively determine reachable configurations *)

Append[el, e](* otherwise just add the new transition

to the existing configuration *)

 & /@

Select(* all possible pourings between two distinct bottles *)

Tuples[Range[Length[m]], 2],

Apply[Unequal]

□ 7.19a

Seems like the smallest number of pourings is 1 + 7 = 8; one to fill the 8-liter bottle, then the 7 pourings shown:
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Module

g = Graph

WineBottleOperate[{}, {3, 5, 8}, {0, 0, 8}],

VertexLabels → "Name",

HighlightGraph

g,

DirectedEdge @@@ Subsequences

FindShortestPath[g, {0, 0, 8}, {0, 4, 4}],

{2}

{0, 0, 8}

{0, 5, 3}

{3, 0, 5}

{0, 1, 7}

{1, 0, 7}

{3, 1, 4}

{0, 2, 6}

{2, 0, 6}

{3, 2, 3}

{0, 3, 5}

{3, 3, 2}

{0, 4, 4}

{3, 4, 1}

{3, 5, 0}

{1, 5, 2}

{2, 5, 1}

□ 7.19b

Four; the initial, and:
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Module

g = Graph

WineBottleOperate[{}, {3, 5, 8}, {0, 0, 8}],

VertexLabels → "Name",

HighlightGraph

g,

DirectedEdge @@@ Subsequences

FindShortestPath[g, {0, 0, 8}, {0, 2, 6}],

{2}

{0, 0, 8}

{0, 5, 3}

{3, 0, 5}

{0, 1, 7}

{1, 0, 7}

{3, 1, 4}

{0, 2, 6}

{2, 0, 6}

{3, 2, 3}

{0, 3, 5}

{3, 3, 2}

{0, 4, 4}

{3, 4, 1}

{3, 5, 0}

{1, 5, 2}

{2, 5, 1}

□ 7.19c

Six; the initial, and:
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Module

g = Graph

WineBottleOperate[{}, {3, 5, 8}, {0, 0, 8}],

VertexLabels → "Name",

HighlightGraph

g,

DirectedEdge @@@ Subsequences

FindShortestPath[g, {0, 0, 8}, {1, 0, 7}],

{2}

{0, 0, 8}

{0, 5, 3}

{3, 0, 5}

{0, 1, 7}

{1, 0, 7}

{3, 1, 4}

{0, 2, 6}

{2, 0, 6}

{3, 2, 3}

{0, 3, 5}

{3, 3, 2}

{0, 4, 4}

{3, 4, 1}

{3, 5, 0}

{1, 5, 2}

{2, 5, 1}

Graph Theory.nb     123



□ 7.20

Module

g = Graph

WineBottleOperate[{}, {1, 2, 9}, {0, 0, 3}],

VertexLabels → "Name",

HighlightGraph

g,

DirectedEdge @@@ Subsequences

FindShortestPath[g, {0, 0, 3}, {1, 2, 0}],

{2}

{0, 0, 3}

{0, 2, 1}

{1, 0, 2}

{0, 1, 2}{1, 1, 1}

{1, 2, 0}

8  Matchings and Factorizations

ConstructBipartiteGraphedges_List :=

Module

top = First /@ edges,

bottom = SortDeleteDuplicates[Flatten[Rest /@ edges]],

Graph

Join[top, bottom],

Flatten

Thread

Function{x}, UndirectedEdgeFirst[#], x[Rest[#]] & /@ edges,

VertexLabels → "Name",

VertexCoordinates → Join

Tablei -
1

2
Length[top], +1, i, 0, Length[top] - 1,

Tablei -
1

2
Length[bottom], -1, i, 0, Length[bottom] - 1
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8.1  Matchings

□ Theorem 8.7

α′ G + b′ G = G

(≤) A maximal cover of α′ G edges coincides with 2α′ G vertices; the remaining G - 2α′ G vertices can be covered by 

as many edges, so a minimal cover has no more than β′ G ≤ α′ G + (G - 2α′ G) = G - α′ G edges, and 

α′ G + β′ G ≤ G. 

(≥) A minimal edge cover of G induces a subgraph F with size β′ G.  Because F is minimal, it contains no paths of length 3 

or more (or cycles); in other words, F consists of components which are stars (or trees).  Thus a matching of 

G - β′ G edges can be generated by picking one edge from each component, and α′ G ≥ G - β′ G 

⇒ α′ G + β′ G ≥ G.

A forest of order n and size n - k has k components.  The size of F is 

β′ G = F - F + β′ G = F - (F - β′ G), so F has F - β′ G = G - β′ G components.

□ 8.1

Reduce

Between[EdgeCount[CompleteGraph[n]], {0, 6}] ∧ n > 1 (* nontrivial *),

{n}, Integers // TraditionalForm(* u0 *)

n 2 ∨ n 3 ∨ n 4

EdgeCount[CompleteGraph[n]] /. n → {2, 3, 4} // TraditionalForm

{1, 3, 6}

;

The number of distinct paths in a tree is always 1 (u1).  A transitive tournament has no cycles (u2).  A tree of order 6 has size 

5; every edge in a tree is a bridge, so a tree of order 6 has 5 bridges (u3).  By Theorem 2.6 an r-regular graph of order 7 exists 

iff r is even; nonempty implies r > 0 (u4).  A tree of order 5 has 4 edges, so the degree cannot be larger than 4; a tree is 

connected so the maximum degree must be at least 2; the following are examples of trees of all three possibilities (u5):

GraphicsRow

RandomGraphDegreeGraphDistribution[#] & /@ {{4, 1, 1, 1, 1}, {3, 2, 1, 1, 1}, {2, 2, 2, 1, 1}}

(u6) Suppose all vertices in a graph of order 5 are cut-vertices: then none of those vertices can be end-vertices, which is to say, 

all vertices have degree at least 2; which means that the graph is connected and contains either C5 or a ‘bowtie’ constructed 
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from two abutting C3s; and only the latter has a single cut-vertex.  Now suppose that only 4 of the vertices are cut-vertices: 

again, those four have to be of degree at least 2; one of those could be a cut-vertex if it is adjacent to the remaining end 

vertex; and there are only two possibilities for the putative cut-vertices to be connected, one of which produces a configura-

tion with just two cut-vertices.  Now suppose that only 3 of the vertices are cut-vertices: P5 is such a graph.

GraphicsRow

CycleGraph[5],

HighlightGraph[Graph[{c 1, 1 2, 2 c, c 3, 3 4, 4 c}], {c}],

HighlightGraph[EdgeAdd[CycleGraph[4], {4 5}], {4}],

HighlightGraph[EdgeAdd[CycleGraph[3], {3 4, 4 5}], {3, 4}],

HighlightGraph[PathGraph[Range[5]], {2, 3, 4}],

ImageSize → Full

The resultant graph is shown, with a perfect matching highlighted:

Module

g = ConstructBipartiteGraph[{

{u0, w1, w3, w6},

{u1, w1},

{u2, w0},

{u3, w5},

{u4, w2, w4, w6},

{u5, w2, w3, w4},

{u6, w3}}],

HighlightGraphg, FindIndependentEdgeSet[g]

u0 u1 u2 u3 u4 u5 u6

w0 w1 w2 w3 w4 w5 w6
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□ 8.2

Module

g = ConstructBipartiteGraph

A, a, c, f,

C, c, f,

EE, a, c, f,

{B, a, b, c, d, e, g},

D, b, c, d, e, f, g,

F, a, f,

HighlightGraphg, FindIndependentEdgeSet[g]

A C EE B D F

a b c d e f g

A perfect matching is not possible; specifically, N {A, C, E, F} = {a, c, f} and so Hall’s condition is not satisfied.
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□ 8.3

GraphicsRow

Module

g = ConstructBipartiteGraph[#],

HighlightGraphg, FindIndependentEdgeSet[g] & /@ {

{

{a, v, w, x, z},

{b, w, z},

{c, v, y},

{d, w, x, y, z},

{e, v, x, y}},

{

{a, v, w, x, y, z},

{b, w, z},

{c, v, w, x, y},

{d, w, z},

{e, w, z}}}

a b c d e

v w x y z

a b c d e

v w x y z

There is a perfect matching for G1, but not for G2: N {b, d, e} = {w, z} and so Hall’s condition is not satisfied.

□ 8.4

For any subset X ⊆ U each of the vertices of X have distinct degree.  Since G is connected, the degree is at least 1, and so the 

maximal degree in X is at least X, and N(X) ≥ X, satisfying Hall’s condition.

□ 8.5

A tree of order 2 k is of size 2 k - 1.  Assuming the tree has a perfect matching of order k, the other perfect matching would 

have to consist only of the remaining edges, of which there are (2 k - 1) - k = k - 1.  Therefore a tree can have at most one 

perfect matching.
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□ 8.6a

Select(* all without perfect matchings *)

DeleteDuplicates(* remove isomorphisms *)

Select(* only connected graphs *)

Graph[Range[4], #] & /@

SubsetsEdgeList[CompleteGraph[4]],

(* all permutations of edges of an order-4 graph *)

ConnectedGraphQ,

IsomorphicGraphQ,

LengthFindIndependentEdgeSet[#] < 2 &

 

□ 8.6b

Assume the contrary of a graph G of even order G that does not have a perfect matching; then α′ < 1
2
G and 

β′ = G - α′ > 1
2
G.  Pick one of the edges of *****

The Wikipedia entry on claw-free graphs gives an outline of the original proof by Sumner (1974).

□ 8.7

GraphicsRow

Module

{g = Graph[{1 2, 2 3, 3 4, 4 1, 3 5, 5 6, 6 7, 7 8, 8 5}]},

Labeled

HighlightGraph[g, #],

IndependentEdgeSetQ[g, #] & /@ {

{1 2, 3 4, 5 6, 7 8},

{2 3, 4 1, 6 7, 8 5}}

True True
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□ 8.8

Begin by characterizing all perfect matchings of the Petersen graph by the number of spokes used, and then counting how 

many edges remain available in the outer cycle (OC) and the inner cycle (IC).  Note that P5 has 10 vertices and thus needs 5 

independent edges to form a perfect matching:

◼ 0 spokes: this leaves 2 edges in IC and 2 in OC: impossible

◼ 1 spoke: this leaves 2 edges in IC and 2 in OC, so 1 possibility (up to isomorphism)

◼ 2 spokes: the spokes are adjacent either in OC or in IC, so without loss of generality assume they are adjacent in OC: this 

leaves only 1 edge in IC and 1 edge in OC: impossible

◼ 3 spokes: similarly, without loss of generality assume the spokes are adjacent in OC: this leaves 0 edges in IC and 1 in OC: 

impossible

◼ 4 spokes: this leaves 0 edges in IC and OC: impossible

◼ 5 spokes: 1 possibility (up to isomorphism)

None of the perfect matchings with 1 spoke are disjoint: a rotation leaves either intersecting edges on the OC or the IC.  

Obviously the perfect matchings with 1 spoke are not disjoint with the one with 5 spokes.  So therefore the Petersen graph 

does not have disjoint perfect matchings.

Module

{g = PetersenGraph[5, 2]},

HighlightGraph[g, #] & /@

DeleteDuplicates (* all disjoint perfect matchings *)

Select(* all perfect matchings *)

SubsetsEdgeList[g], {5}, (* all picks of 5 edges *)

IndependentEdgeSetQ[g, #] &, (* picks that form a matching *)

IntersectingQ

 

□ 8.9

In other words, if αGi
= i ∧ αGi

+ αGi

′ = 5⇒ αGi
= i ∧ αGi

′ = 5 - i.  For any i, Gi is certainly of smallest order if Gi = 2:

□ 8.10

Pick the 4 independent vertices and call the two remaining vertices A and B; since the independent vertices are not mutually 

adjacent but the graph is connected, they must be either:
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◼ all adjacent to only the same remaining vertex (without loss of generality) A; in which case A must be adjacent to B, and 

thus αG = 5;

◼ all adjacent to some combination of both A and B; in which case there are at least two independent edges and αG
′ ≥ 2. 

□ 8.11

In other words, a class of graphs for which the number of independent vertices is the same as the minimal number of 

covering edges: e.g., K1,n.

□ 8.12a

In P3, the outer vertices constitute a covering but do not contain the minimum covering of the internal vertex. (false)

□ 8.12b

In P4, the inner edge is a (maximal) independent set of edges that is not contained in the maximum independent set of the 

outer two edges.  (false)

□ 8.13

GraphicsRow

Module

g = Graph

{u, v, t, w, x, y, z},

{u v, u t, v t, t w, t x, t y, t z},

VertexCoordinates → {{-2, +2}, {-2, -2}, {0, 0}, {+1, +2}, {+2, +1}, {+2, -1}, {+1, -2}},

VertexLabels → "Name",

HighlightGraph[g, #[g]] & /@ 

FindIndependentVertexSet,

FindVertexCover,

FindIndependentEdgeSet,

FindEdgeCover,

ImageSize → Full
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□ 8.14

G has a perfect matching iff αG
′ = 1

2
G ⇒ βG

′ = G - αG
′ = 1

2
G = αG

′ .

□ 8.15
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In G1 + G2, each vertex of G1 is connected to every vertex of G2.  Now considering an independent edge set of αG, since 

G2 > G1 we can have G1 independent edges from the vertices of G1 incident to some G1 vertices of G2, leaving 

G2 - G1 vertices in G2 yet without edges.  But αG2

′ ≥ 1
2
(G2 - G1) so we can have that many independent edges in 

G2 and connect all G1 independent edges from G1 to the remaining vertices of G2; so that 

αG
′ = G1 +

1
2
(G2 - G1) =

1
2
(G1 + G2).  Then G has a perfect matching and αG

′ = βG
′ .

□ 8.16

A lower bound for the minimum vertex cover occurs in the best case, where all vertices of G are incident to some vertex of 

maximal degree Δ; in that case, β = G
Δ+1

.

8.2  Factorization

(* This isn't fool-proof: it assumes that any 1-factor contributes to a factorization,

and I don't know that that's true. So far it gives meaningful results, though. *)

MyFactorizeg_, f_ := Module

matching = f[g],

Module

g1 = EdgeDeleteg, matching,

If

EmptyGraphQ[g1],

matching,

AppendMyFactorizeg1, f, matching

□ Theorem 11

Every 3-regular bridgeless graph contains a 1-factor ⇐ (Theorem 10)

∀ S ⊂ VG : kodd(G - S) ≤ S

G - S has no odd components ⇒ kodd(G - S) = 0

G - S has odd components Gi, and 3 kodd(G - S) ≤ 3S

at least 3 kodd(G - S) edges in G between vertices of S and vertices of G - S

for each Gi, let Xi be the set of edges in G between S and Gi

There are kodd(G - S) such Xi, andXi ≥ 3

Xi is odd

+v∈Gi
degGi

v is even (Theorem 2.1)

+v∈Gi
degG v is odd

degG v = 3 ⇐ G is 3-regular

Gi is odd ⇐ Gi is an odd component

Xi > 1

G is bridgeless

no more than 3S edges between vertices of S and vertices of G - S

∀ s ∈ S : degG s = 3 (some of the edges could be between vertices of S)

□ Theorem 13

Petersen Graph PG is not 1-factorizable ⇐

suppose PG is 1-factorizable
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∃ F1, F2, F3 1-factors ⇐

PG is 3-regular

the spanning subgraph H : EH = EF1 ⋃ EF2 is a union of cycles

H is 2-regular

H = 2 C5 ⇐

H is not a single cycle ⇐

PG is not Hamiltonian

C5 is the smallest cycle in PG

VPG = 10

contradiction ⇐

C5 does not contain a 1-factor

□ Theorem 16

Module

g = RandomGraphDegreeGraphDistribution[Table[4, 10]],

GraphicsRow

Graph[g, VertexLabels → "Name"],

Graph

u#〚1〛  w#〚2〛 & /@ FindEulerianCycle[g]〚1〛,

VertexLabels → "Name",

ImageSize → Full, Dividers -> {Center, False}
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□ 8.17

As cubic (3-regular) graphs, since G1 and G3 have fewer than three bridges they have 1-factors by Theorem 12.  A 1-factor of 

G1 cannot lack the bridge, because the two lobes are of odd order and cannot contain a 1-factor.  The 1-factor that does 

contain the bridge leaves two C5 when removed, which also cannot contain 1-factors, so G1 is not factorizable:
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Module

g = Graph{1 2, 1 3, 1 4, 2 3, 3 4,

2 5, 4 5, 5 6, 6 7, 6 9, 7 8, 8 9, 7 10, 8 10, 9 10},

VertexLabels → "Name",

GraphHighlightStyle → "Thick",

GraphicsRow

Join

HighlightGraph[g, {1 4, 2 5, 6 7, 9 10}],

#[{1 2, 3 4, 5 6, 7 8, 9 10}] & /@

HighlightGraph[g, #] &, Graph[EdgeDelete[g, #]] &

,

ImageSize → Full, Dividers → {{False, True}, None}


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5
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79

8 10

The answer key states that G3 is not factorizable, but this seems to give one:
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Module

g = PetersenGraph7, 2, EdgeStyle → Thick,

HighlightGraphg, MyFactorizeg, FindIndependentEdgeSet

As for G2, considering that if a perfect matching did not contain each of the three bridges the corresponding attached nodes 

(being of odd order) cannot possibly contain a 1-factor.  Since a perfect matching must therefore contain the three bridges, 

the K1,3 remaining at the center cannot possibly contain a 1-factor; so G2 does not contain a 1 factor and is not factorizable.

□ 8.18

Generalize the construction of G2 of Exercise 17 to find arbitrary odd-regular graphs that do not contain a 1-factor:
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Manipulate

Module

g = GraphUnion @@ Append

Map

RenameSubscriptGraph

Module

t = Tablei, i, (r + 1) - (r - 1) + 1, r + 1,

EdgeAdd

EdgeAdd

EdgeDelete

CompleteGraph[r + 1],

ApplyUndirectedEdge /@ Partition[t, 2],

# (r + 2) & /@ t,

(r + 2) (r + 3),

# &,

Range[r],

Graph

Join @@ Append

Module

t = Tablevi, i, r,

Functioni,

ir+3  # & /@ Dropt, i /@ Range[r],

c v# & /@ Range[r],

Labeledg, 

RegularGraphQ[g],

LengthEdgeListFindIndependentEdgeSet[g] ⩵
1

2
LengthVertexList[g],

{{r, 5}, 3, 9, 2}
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r

GraphUnionRenameSubscriptGraph , 1,

RenameSubscriptGraph , 2,

RenameSubscriptGraph , 3, RenameSubscriptGraph , 4,

RenameSubscriptGraph , 5, 

RegularGraphQGraphUnion

RenameSubscriptGraph , 1, RenameSubscriptGraph , 2,

RenameSubscriptGraph , 3, RenameSubscriptGraph , 4,

RenameSubscriptGraph , 5, , False

Graph Theory.nb     137



□ 8.19

This is equivalent to asking for a C9-factorization of K9.  By Theorem 17, such a factorization exists.

Module

g = CompleteGraph9, EdgeStyle → Thick,

HighlightGraphg, MyFactorizeg, FindHamiltonianCycle[#]〚1〛 &

□ 8.20

The proof of Theorem 11 (see above) works by establishing a ‘high enough’ lower bound to X = ⋃i Xi, the number of edges 

in G between the components Gi and S.  If the requirement that G is bridgeless is removed entirely, the lower limit drops from 

3 kodd(G - S) to kodd(G - S), so the resultant inequality  kodd(G - S) ≤ 3S isn’t strong enough to satisfy Tutte’s condition.  

However, if G has at most 2 bridges then X ≥ 3 kodd(G - S) - 2 and 

kodd(G - S) - 2
3
≤ S ⇒ kodd(G - S) ≤ S + 2

3
⇒ kodd(G - S) ≤ S, since obviously S is integral.

□ 8.21

Letting S be the partition of K3,5 that contains 3 vertices, we have kodd(G - S) = 5  3.

□ 8.22a

The inequality works when the lower bound is ‘high enough’ and the upper bound is ‘low enough’.  If G contains two vertices 

of degree 5, then the lower bound X = ⋃i Xi  could be raised by 4 if those two vertices were contained in some Gi; but 

since this is not generally true, the best we can still do is X ≥ 3 kodd(G - S).  On the upper bound, it could still be that 

X ≤ 3S if the two vertices of degree 5 were, for example, both in S.  But since this is not generally true (for example, the 

vertices could be both in some Gi), the best we can do is X ≤ S + 2.  But then 

3 kodd(G - S) ≤ S + 2 ⇒ kodd(G - S) ≤ S + 2
3
⇒ kodd(G - S) ≤ S and Tutte’s condition remains satisfied.
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□ 8.22b

The three vertices of degree 5 allow a greater number of edges X from S to ⋃i Gi:

Module

g = GraphUnion @@ Function

l,

EdgeAdd

RenameSubscriptGraph[%269, l],

# l# & /@ Range[3]

 /@ {a, b, c, d, e},

Labeled

HighlightGraphg,

FindIndependentEdgeSet[g],

GraphHighlightStyle → "Thick",

Counts[VertexDegree[g]]

5 → 3, 3 → 35

The lobes are of odd order and so cannot have a 1-factor without one of the three edges connecting them to the graph center.  

Since there are only three vertices in the center, there are two lobes containing a vertex that is not incident to any edge of the 

matching.

□ 8.23

A 3-regular graph with a single bridge is depicted in the figure on the left.  If there are multiple bridges, they cannot be 

adjacent because it would force the existence of a third bridge which lies on a different pathh; as in the center figure.  Thus, a 

3-regular graph with multiple bridges must have the bridges non-adjacent, as in the figure on the right.
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Module

{MyNode}, (* can't define local function here *)

MyNodei___ := 

Dashed,

Circle[],

Dashing[{}],

Rotate

Line[{{0.6, +0.2}, {1.0, 0.0}, {0.6, -0.2}}],

Point[{{1.0, 0.0}}],

#,

{0, 0} & /@ i;

GraphicsRow

Graphics

PointSize[Large],

Translate[MyNode[{0}], {0, 0}],

TranslateMyNodePi, {4, 0},

Line[{{1, 0}, {3, 0}}],

Graphics

PointSize[Large],

Translate[MyNode[{0}], {0, 0}],

Line[{{1, 0}, {3, 0}, {3, 1}}],

Point[{{3, 0}}],

TranslateMyNode
3

2
Pi, {3, 2},

Line[{{3, 0}, {6, 0}}],

TranslateMyNodePi, {6, 0},

Graphics

Translate[MyNode[{0}], {0, 0}],

Line[{{1, 0}, {3, 0}}],

TranslateMyNode0, Pi, {4, 0},

Line[{{5, 0}, {7, 0}}],

TranslateMyNodePi, {8, 0},

ImageSize → Full

Now consider one of the lobes, with the given graph attached to it:
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Show

Graph

{1 2, 2 3, 2 4, 3 5, 3 6, 4 5, 4 6, 5 6},

VertexCoordinates → {{0, 0}, {2, 0}, {4, +1}, {4, -1}, {6, +1}, {6, -1}},

GraphHighlight -> {1 2, 3 5, 4 6},

GraphHighlightStyle → "Thick",

Graphics

Dashed,

Circle{-2, 0}, 2, -
1

2
Pi, +

1

2
Pi,

Dashing[{}],

Line[{{-1.2, +0.4}, {0, 0}, {-1.2, -0.4}}]



For this graph, there cannot be a 1-factor that does not contain the bridge, because the appendage would not contain a 

perfect matching.  By Theorem 12 then, the graph contains a 1-factor that also contains the bridge.  By extension, all 3-

regular graphs in which the bridges are configured as in the above right figure contain a 1-factor, that also contains each of 

the bridges.

□ 8.24

Removing a 1-factor from a 3-regular graph results in a 2-regular graph, which is to say, a graph in which the components are 

cycles.  This is a 2-factor of the graph.  Note:  It’s unclear why the graph has to be bridgeless:
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Module

g = Graph

{1 2, 3 4, 1 3, 1 4, 2 3, 2 5,

4 5, 5 6, 6 7, 6 8, 7 9, 8 10, 7 10, 8 9, 9 10},

GraphHighlightStyle → "Thick",

h = {1 2, 3 4, 5 6, 7 10, 8 9},

GraphicsRow

HighlightGraph[g, h],

GraphEdgeDelete[g, h], VertexCoordinates → GraphEmbedding[g],

ImageSize → Full

□ 8.25

Observe first that Cn×K2 is 3-regular.  For even n, a 1-factor can be found in the K2-part of the product, as shown below left.  

For odd n, a 1-factor can be found as shown below right.  The resulting 2-factors are of even length and is 1-factorable.  The 

graphs are therefore all 1-factorable.
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Manipulate

Module

g, of1, of2, of3,

g = GraphProduct[CycleGraph[n], CompleteGraph[2], {}];

If

EvenQ[n],

of1 = {#, 1} {#, 2} & /@ Range[n];

of2 = Join @@ Tablei, j i + 1, j, i, 1, n, 2, j, 2;

of3 = Join @@ Tablei, j Modi + 1, n, 1, j, i, 2, n + 1, 2, j, 2,

of1 = Join

{{1, 1} {1, 2}},

Tablei, j i + 1, j, i, 2, n, 2, j, 2;

of2 = Join

{{1, 1} {2, 1}, {1, 2} {2, 2}, {n, 1} {n, 2}},

Tablei, 1 i, 2, i, 3, n - 1;

of3 = Join

{{n, 1} {1, 1}, {n, 2} {1, 2}, {2, 1} {2, 2}},

Tablei, j i + 1, j, i, 3, n - 1, 2, j, 2;

HighlightGraph

g,

Join

Style#, Thick, Green & /@ of1,

Style#, Thick, Red & /@ of2,

Style#, Thick, Blue & /@ of3,

{n, 4, 20, 1, Appearance → "Labeled"}

n 4

HighlightGraphGraphProduct , , {},

{{1, 1} {1, 2}, {2, 1} {2, 2}, {3, 1} {3, 2}, {4, 1} {4, 2},

{1, 1} {2, 1}, {1, 2} {2, 2}, {3, 1} {4, 1}, {3, 2} {4, 2},

{2, 1} {3, 1}, {2, 2} {3, 2}, {4, 1} {1, 1}, {4, 2} {1, 2}}

□ 8.26

The 2-factor containing u1  v1 must also contain u5  v5; and must therefore pass through at least u2 or u3.  If it passes 

through u2, it must also pass through u3 and u4, since the graph is 4-regular and u3, u4 obviously cannot form a cycle 

independently.  Mutatis mutandis if it passes through u3.  Similarly the 2-factor must pass through all of v2, v3, v4.  This 

means the 2-factor passes through all vertices and is thus Hamiltonian.

Graph Theory.nb     143



□ 8.27

Module

g = CompleteGraph

{2, 2, 2},

VertexLabels → "Name",

VertexCoordinates → {{-10, +5}, {+2, -1}, {0, -10}, {0, +2}, {+10, +5}, {-2, -1}},

e = {1 3, 3 5, 5 4, 4 2, 2 3, 3 6, 6 4, 4 1, 1 6, 6 2, 2 5, 5 1},

GraphicsRow

Graph

Join @@ ({u#, w#} & /@ Range[6]),

u#〚1〛  w#〚2〛 & /@ e,

VertexCoordinates → Join @@ ({{#, -1}, {#, +1}} & /@ Range[6]),

VertexLabels → "Name",

HighlightGraphg,

Join

Style#, Red, Thick & /@ {1 3, 3 6, 6 4, 4 2, 2 5, 5 1},

Style#, Blue, Thick & /@ {1 4, 4 5, 5 3, 3 2, 2 6, 6 1},

ImageSize → Full
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□ 8.28

Removing the two 1-factors results in a 4-regular graph.  By Theorem 16 that graph is 2-factorable.  Taking the union of one 

of the 2-factors with one of the 1-factors results in a 3-regular spanning graph of G, that is, a 3-factor.

□ 8.29

By Theorem 20, any complete graph of even order 2 k can be factored into k - 1 Hamiltonian cycles and a single 1-factor; if 

we can pick one edge from each of the cycles (leaving k - 1 Hamiltonian paths of 2 k - 1 edges each) and adjoin them to the 
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1-factor (having k edges), that could be converted into a kth Hamiltonian path (having k + (k - 1) = 2 k - 1 edges).

I believe there are errors in the proof of Theorem 20; there are no “edges parallel to v0 v1” or “edges parallel to v0 vk+1”.  It 

seems this can be fixed by substituting “perpendicular”, but that is an empirical observation based on the cases of k = 3, 5 

and not mathematically sound.  In fact, the proof of the Theorem itself seems equally fuzzy.  Thus, solution by demonstration:

Manipulate(* *** still incorrect for odd k *)

Module

{MHC, MOF, k2 = 2 k, k21 = 2 k - 1},

MHC[r_] := (* generate cyclic Hamiltonian cycle with highlighted edge *)

HighlightGraph

Graph

Range[0, k21],

Join

{0 r + 1, 0 k + r + 1},

TableModk2 + r - i, k21, 1 Modr + i + 1, k21, 1, i, k - 1,

TableMod2 + r - i, k21, 1 Modr + i + 1, k21, 1, i, k - 1,

VertexCoordinates → PrependCirclePoints[k21], {0, 0},

StyleIf[EvenQ[r], r + 1 r + 2, Mod[r + k, k21, 1] Mod[r + k + 1, k2, 1]], Red, Thick;

MOF[] := Graph (* generate 1-factor with highlighted edges contributed from cycles *)

Range[0, k21],

Join

{0 k},

Tablek2 - i i, i, k - 1,

TableStyleIf[EvenQ[r], r + 1 r + 2,

Mod[r + k, k21, 1] Mod[r + k + 1, k21, 1]], Red, Thick, {r, 0, k - 2},

VertexCoordinates → PrependCirclePoints[k2 - 1], {0, 0};

GraphicsRow

Append[Table[MHC[r], {r, 0, k - 2}], MOF[]],

Dividers -> {k → True, False},

ImageSize → Full,

{k, 4, 8, 1}

k

□ 8.30
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Since 27 =6 3, by Theorem 19 there exists a Kirkman triple system of order 27.  By the text preceding that Theorem, 

n = 6 k + 3⇒ k = n-3
6

= 4 there is a 9 C3-factorization of K27.  Since each vertex of K27 is incident to 26 other vertices, there 

must be 13 such factors.

□ 8.31

For no 2-factor to be a Hamiltonian cycle, it has to consist of a cycle of length 3 and a cycle of length 4.

HighlightGraph

CompleteGraph[7, VertexLabels → "Name"],

Join

Apply

Function(* generate a list of edges of a cycle of given length,

renaming, and applying a style *)

{l, r, s},

Style[#, s] & /@ ReplaceEdgeList[CycleGraph[l]], r, {2}

 /@ 

4, {}, Thick, Red,

3, {1 → 5, 2 → 6, 3 → 7}, Thick, Red, Dashed,

4, {2 → 6, 4 → 7}, Thick, Green,

3, {1 → 5, 3 → 4}, Thick, Green, Dashed,

4, {1 → 6, 3 → 7}, Thick, Blue,

3, {2 → 5}, Thick, Blue, Dashed



1

2

3 4

5

6

7

□ 8.32

For this factorization to exist, the factors must consist of one each of the following partitioning of cycles:
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IntegerPartitions[9, All, Range[3, 9]]

{{9}, {6, 3}, {5, 4}, {3, 3, 3}}

The factors of C9 and 3 C3 are symmetrical, so both can be removed first, without loss of generality:

EdgeDelete

CompleteGraph[9, VertexLabels → "Name"],

Join

EdgeList[CycleGraph[9]],

ReplaceEdgeList[CycleGraph[3]], {1 → 1, 2 → 4, 3 → 7}, {2},

ReplaceEdgeList[CycleGraph[3]], {1 → 2, 2 → 5, 3 → 8}, {2},

ReplaceEdgeList[CycleGraph[3]], {1 → 3, 2 → 6, 3 → 9}, {2}

1

2

3

4 5

6

7

8

9

This graph is (obviously) 4-regular.  If we were to remove the factor consisting of C3 ⋃ C6 we should be left with the last factor 

of C4 ⋃ C5.  The factor C3 ⋃ C6 must therefore disconnect the C4 from the C5, meaning that it should consist simultaneously 

of 8 edges and 10 edges, which is impossible; therefore, this factorization cannot exist.
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8.3 Decompositions and Graceful Labelings

(* Given a graph with a vertex labeling, apply the corresponding graceful edge labelings *)

LabelEdges[g_] :=

SetProperty

g,

EdgeLabels → 

# → AbsSubtract @@

Association[PropertyValue[g, VertexLabels]] /@

(* apply the association of vertices to vertex labels as a function to *)

ApplyList, # (* the both ends of the edge, by converting it to a list *) 

 & /@ EdgeList[g]

□ 8.33

K2,2,2 has size 12 and K1,4 has size 4, so there would have to be 3 component graphs.  K2,,2,2 is 4-regular; three of its vertices 

should correspond to the hub of a K1,4, but since each K1,4 is incident with four other vertices, at most two can be placed 

inside K2,2,2.

LengthEdgeList[CompleteGraph[{2, 2, 2}]]

LengthEdgeList[CompleteGraph[{1, 4}]]

12

4
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HighlightGraph

CompleteGraph{2, 2, 2},

VertexCoordinates → {{-1, -1}, {-1, +1}, {0, -0.8}, {0, +0.8}, {+1, -1}, {+1, +1}},

Join

Style3 #, Thick, Red & /@ {1, 2, 5, 6},

Style4 #, Thick, Lighter[Green, .7] & /@ {1, 2, 5, 6}


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□ 8.34

HighlightGraph

CompleteGraph[7],

Table

Modi - 3, 7, 1 i, i Modi + 1, 7, 1, Modi + 1, 7, 1 Modi + 3, 7, 1,

i, 7

□ 8.35

Brute force: C5 and C6 do not have graceful labelings; C8 does:

Function{n},

Select

Join

{n - 1, 0, n}, (* assume WLOG cycle starts like this *)

# & /@ Permutations[Range[1, n - 2], {n - 3}],

(* complete the cycle with all possible permutations *)

DuplicateFreeQ

TableAbs#i - #Modi + 1, n, 1, i, n (* calculate edge labelings *)

 &,

1 (* first one *) /@ {5, 6, 8}

{{}, {}, {{7, 0, 8, 2, 3, 6, 1, 5}}}
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□ 8.36

LabelEdges

Graph

{1 2, 2 3, 3 4, 4 1, 1 3},

VertexLabels → MapIndexedFirst[#2] → #1 &, {0, 2, 5, 1}

2

5

1

3 4

0

2

5

1

For there to exist a graceful labeling of the middle graph, in each triangle two of the edge labels have to add up to the third 

edge label.  One of the triangles contains 6 as an edge label; therefore the other two edges of that triangle must be either 

1, 5 or 2, 4.  In the former case the remaining edge labels are 2, 3, 4 and in the latter 1, 3, 5; in neither case can we make 

two of the three edge labels add to form the third.  Therefore no graceful labeling exists.

A graceful labeling of the third graph can be found by naive brute force:

(* find a graceful labeling of the given graph by brute force *)

GracefulLabeling[g_] :=

First

Select

(* generate all possible vertex labelings;

does not take into account symmetries of the graph *)

Permutations

Range0, LengthEdgeList[g], LengthVertexList[g],

Function{l},

DuplicateFreeQ (* is graceful labeling *)

Map (* calculate edge labelings *)

AbsSubtract @@ (* calculate edge labeling *)

Map (* convert vertex to corresponding labeling *)

(* construct association of vertices to corresponding labelings *)

AssociationThreadVertexList[g] → l,

# &,

(* convert each edge to its corresponding pair of vertices *)

MapApplyList, EdgeList[g],

1
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LabelEdges

Graph

#,

VertexLabels → MapIndexed

First[#2] → #1 &,

GracefulLabeling[#]

 &[Graph[{1 2, 2 3, 3 4, 4 1, 1 5, 2 5, 3 5, 4 5}]]

2

5

8

1

6

4

7 3

02

1 5

8

□ 8.37

Show that the tree has a graceful labeling; then K11 is T-decomposable by Theorem 24:
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LabelEdges[

Graph[

{0 1, 0 2, 0 3, 0 4, 4 5},

VertexLabels → {0 → 1, 1 → 2, 2 → 3, 3 → 4, 4 → 5, 5 → 0}]]

1 2 3 4

5

1

2 3 4 5

0

□ 8.38a

Personally, I find the proof of Theorem 24 somewhat fuzzy and glib; for example, it isn’t shown that the cyclic copies of the 

tree are disjoint.  In any case, there doesn’t appear to be any dependency within the proof that T is a tree and not just any 

graceful graph G; so we can immediately generalize it.

□ 8.38b

Label/number the vertices of K2 m+3 as {0, …, (2 m + 3) - 1} = {0, …, 2 m + 2}.  Arranging the vertices (as in the Theorem) as 

a regular polygon, label the edges as {1, m + 1}, being the distance between the adjacent vertices as measured along the 

edges of the polygon.  Formally, ∀ u, v ∈ V(K2 m+3), we define d(u, v) = min d

(u, v), d


(v, u), where d


(u, v) = min mod2 m+3 v - u 

such that d

(u, v) > 0.  This results in 2 m + 3 edges each of distance {1, …, m + 1}.
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Manipulate

Module

g = SetProperty (* VertexReplace drops the VertexLabels property *)

VertexReplace (* renumber vertices to be 0-base *)

CompleteGraph[2 m + 1],

Tablei + 1 → i, i, 0, 2 m, (* list of associations renumbering vertices *)

VertexLabels → "Name",

SetProperty (* set edge labels *)

g,

EdgeLabels → Functione,

e → Min

Mod[#[Subtract @@ e], VertexCount[g]] & /@ Plus, Minus

 /@ EdgeList[g],

{m, 1, 5, 1}

m

1

1 1

0 1

2

Let G ⊂ K2 m+3 as in Theorem 24.  Since G is graceful, there is exactly one edge each labeled {1, …, m}.  The 2 m + 3 rota-

tions 

8.4 Instant Insanity

It’s not clear that the graph theory contributes materially to the process of finding a solution; it merely restates the problem in 

different terms.  The gist lies in the generation of “the seventeen 2-regular spanning pseudographs” (a manual process to 

which the theory doesn’t contribute) and the matching of those pseudographs to the composite psudograph (again a manual 

and nontrivial process to which graph theory hasn’t contributed anything).
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InstantInsanity[cubes_] := Select

Flatten (* flatten outer product into a plain list *)

Outer @@ (* outer product of rotations of all cubes *)

AppendPrepend(* construct argument list for OuterList, {}, {}, {}, {}, 1 *)

Permute#,

PermutationGroup (* group of rotations of the cube *)

Cycles[{{3, 6, 4, 5}}],

Cycles[{{1, 5, 2, 6}}],

Cycles[{{1, 4, 2, 3}}]

 & /@ cubes,

List, 1,

Length[cubes] - 1,

AllTrue

Transpose[#〚All, 1 ;; 4〛],

DuplicateFreeQ &,

1

□ 8.39

InstantInsanity[{{R, G, R, R, Y, B}, {Y, B, R, B, G, G}, {Y, G, R, G, B, Y}, {G, G, Y, B, B, R}}]

{{{R, G, R, R, Y, B}, {Y, B, G, G, B, R}, {G, Y, B, Y, R, G}, {B, R, Y, B, G, G}}}

□ 8.40

InstantInsanity[{{Y, G, B, G, B, R}, {G, B, R, Y, R, G}, {Y, R, Y, G, B, B}, {G, Y, R, R, B, R}}]

{{{B, G, B, R, Y, G}, {Y, R, G, B, R, G}, {G, Y, R, Y, B, B}, {R, B, Y, G, R, R}}}

□ 8.41

InstantInsanity[{{Y, R, G, R, G, Y}, {Y, Y, G, B, G, Y}, {Y, R, B, R, R, G}, {Y, R, G, G, B, B}}]

{{{Y, R, G, Y, R, G}, {G, Y, B, G, Y, Y}, {R, G, R, B, Y, R}, {B, B, Y, R, G, G}}}

□ 8.42

InstantInsanity[{{G, B, G, R, R, Y}, {R, G, Y, B, R, B}, {Y, Y, G, R, B, G}, {B, R, B, Y, G, Y}}]

{{{G, B, G, R, R, Y}, {R, G, Y, B, R, B}, {Y, Y, R, G, G, B}, {B, R, B, Y, G, Y}}}
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□ 8.43

InstantInsanity[{{G, B, R, Y, Y, Y}, {G, R, Y, B, Y, Y}, {G, Y, B, R, Y, Y}, {G, B, Y, R, Y, Y}}]

{}

□ 8.44

There can never be a unique solution, because in any solution the cubes can be swapped (without rotating) thereby giving 

other solutions; the cubes can be rotated to give other solutions; etc.

□ 8.45

InstantInsanity[{{R, R, R, R, R, R}}]

{{{R, R, R, R, R, R}}}

InstantInsanity[{{R, G, R, G, R, R}, {R, G, R, G, R, R}}]

InstantInsanity[{{R, G, R, G, R, R}, {R, R, G, G, R, R}}]

{{{R, G, R, G, R, R}, {G, R, G, R, R, R}}}

{}

8.6 Bi-Graceful Graphs

□ 8.46

Since a graceful edge labeling is surjective there is an edge with label m; therefore there is a vertex with label 0.  Change the 

label of that vertex to 2 m; then incident edges’ e labelings change to 2 m - f′ e, which are unique and result in a non-graceful 

labeling.

□ 8.47
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9  Planarity

9.1 Planar Graphs

□ 9.1
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GraphicsGrid

MapThread

Function{g, vc0, vc1}, 

(* draw the graph with the first set of vertex coordinates *)

Graphg, VertexCoordinates → vc0,

(* draw the graph with the second (supposedly planar) set of coordinates *)

Labeled (* label with the number of planar regions *)

Graphg, VertexCoordinates → vc1,

2 - VertexCount[g] + EdgeCount[g],

ImageMargins → 10

,

Transpose

 (* transpose function invocation oriented arguments to function slot orientation *)

Graph[(* 9.1a *)

{A, B, C, D, E, Z},

{A D, A C, B E, B D, C E, Z A, Z B, Z C, Z D, Z E},

VertexLabels → "Name"],

AppendCirclePoints[5], {0, 0},

PermuteAppendCirclePoints[5], {0, 0}, Cycles[{{1, 5, 2, 3}}]

, 

Graph (* 9.1b *)

Range[10],

{1 2, 2 3, 3 4, 4 1, 5 6, 6 7, 7 8,

8 5, 1 5, 2 6, 3 7, 4 8, 1 9, 4 9, 2 10, 3 10, 9 10},

EdgeShapeFunction → Function

{pts, e},

Module

{controlPts},

controlPts = pts /. {a_, b_} ⧴ {a, {6 a〚1〛, a〚2〛}, {6 b〚1〛, b〚2〛}, b};

If

pts〚1〛〚2〛 ⩵ -pts〚2〛〚2〛 && Abs[pts〚1〛〚1〛]⩵ 1 && Abs[pts〚1〛〚2〛]⩵ 5,

BezierCurve[controlPts],

Line[pts],

{{-3, -2}, {+3, -2}, {+3, +2},

{-3, +2}, {-1, -1}, {+1, -1}, {+1, +1}, {-1, +1}, {-2, 0}, {+2, 0}},

{{-3, -2}, {+3, -2}, {+3, +2}, {-3, +2}, {-1, -5}, {+1, -5},

{+1, +5}, {-1, +5}, {-2, 0}, {+2, 0}}

, {

Graph[ (* 9.1c *)

Range[6],

{1 2, 2 3, 3 4, 4 5, 5 6, 6 1, 2 6, 2 5, 3 5, 1 5, 2 4}],

{{-2, 0}, {-1, +1}, {+1, +1}, {+2, 0}, {+1, -1}, {-1, -1}},

{{-2, 0}, {-1, +1}, {+1, 0}, {+2, 0}, {+1, -1}, {-1, 0}}

}


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A

B

C

D

ⅇ

Z

A

B

CD

ⅇ

Z

6

9

7

□ 9.2

The Euler Identity must hold:

Reducen - m + r⩵ 2, n⩵ 12, m ==
1

2
k n, r⩵ 8

r⩵ 8 && n⩵ 12 && m⩵ 18 && k⩵ 3

□ 9.3

Using Theorem 2:

Reduce[{m ≤ 3 n - 6, n⩵ 7, m⩵ Total[{3, 4, 4, 4, 5, 6, 6}]}]

False

Reduce[{m ≤ 3 n - 6, n⩵ 12, m⩵ Total[{4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7}]}]

False

□ 9.4a

For n ≥ 3, Theorem 2 must hold, with m = 1
2

n(n - 1) for complete graphs:
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Reducem ≤ 3 n - 6, m ==
1

2
n (n - 1)

3 ≤ n ≤ 4 && m⩵
1

2
-n + n2

K3 and K4 are readily verified as planar; for the cases of n < 3, K1 and K2 are also obviously planar.

□ 9.4b

Theorem 2 doesn’t give a meaningful bound:

Reduce[{m ≤ 3 n - 6, n⩵ r + s, m⩵ r s}, Reals]

s < 3 && r ≥
-6 + 3 s

-3 + s
 || s⩵ 3 || s > 3 && r ≤

-6 + 3 s

-3 + s
 && n⩵ r + s && m⩵ r s

Note that any Kr,s : r, s ≥ 3 however contains a subdivision of K3,3 and is therefore nonplanar.  All the other bipartite graphs 

(K2,3, K2,2, K1,3, K1.,2, and K1,1) are easily verified to be planar.

□ 9.5a

Such a graph must have at least 6 vertices:

Reducem ≤ 3 n - 6, m⩵
1

2
4 n

n ≥ 6 && m⩵ 2 n

GraphicsRow

#[

Graph[{1 2, 1 4, 1 5, 1 6, 2 3, 2 4, 2 6, 3 4, 3 5, 3 6, 4 5, 5 6}]

] & /@

Show, Graph#, GraphLayout → "PlanarEmbedding" &,

PlanarGraphQ, AllTrue[VertexDegree[#], EqualTo[4]] &,

ImageSize →

Full

True True

□ 9.5b

Such a graph must have at least 12 vertices:
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Reducem ≤ 3 n - 6, m⩵
1

2
5 n

n ≥ 12 && m⩵
5 n

2

GraphicsRow

#

Graph

Flatten

MapThread

Tablei + 1 Modi + #2, 12 + 1, i, #1, 11, #3 &,

Transpose[{{0, 1, 1}, {1, 2, 2}, {0, 3, 4}, {2, 3, 4}, {0, 4, 4}, {2, 4, 4}}],

VertexLabels → "Name" & /@

Show, Graph#, GraphLayout → "PlanarEmbedding" &,

PlanarGraphQ, AllTrue[VertexDegree[#], EqualTo[5]] &,

ImageSize →

Full

1

2 3

4

5

6

7

89

10

11

12

1 2

3

4
5

67
89

10

11

12

True True

□ 9.5c

Because by Corollary 3, each planar graph must contain a vertex of degree less than 6.

□ 9.6

a. True

b. False

c. False: consider a maximal nonplanar graph

d. False: might still contain a subdivision of K5 or K3,3

e. False: consider K3,3: m ≤ 3 n - 6⇐ 3 ·3 ≤ 3 ·6 - 6⇐ 9 ≤ 12 but is nonplanar

f. False: add a single triangle to K3,3, is nonplanar

□ 9.7

a. K4

b. Does not exist: even K4 is planar

c. K5 with a single subdivided edge is nonplanar but does not contain K5 (or K3,3) as a subgraph

d. Since K5 has 1
2
·5 ·4 = 10 edges and is nonplanar, and there is no other graph with the same size and order, this is impossi-

ble
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e. K3 has order 3 and size 3 ·3 - 6 = 3, and is planar

f. K3,3 has order 6 and size 9 and is nonplanar.  Add any three edges to it; the resulting graph is still nonplanar.

□ 9.8

K4 can be drawn planar, but one of the four vertices will always be enclosed in the interior:

CompleteGraph4, GraphLayout → "PlanarEmbedding"

That means that in the Cartesian product, that vertex cannot be joined to the ‘other’ K4 without crossing an edge.

Labeled#, "Planar: " <> ToString[PlanarGraphQ[#]] & @

GraphProduct[CompleteGraph[2], CompleteGraph[4], VertexLabels → "Name"]

{1, 1}

{1, 2}

{1, 3}

{1, 4}

{2, 1}

{2, 2}

{2, 3}

{2, 4}

Planar: False

□ 9.9
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Consider the below subgraph.  The edges 26 and 48 can only be drawn by crossing the cycle, the inner edge, or the outer 

edge; thus nonplanar.

EdgeAdd

CycleGraph8,

VertexLabels → "Name",

EdgeShapeFunction → Function

{p, e},

If

List @@ e⩵ {3, 7}, (* can't compare UndirectedEdge? *)

ModuleT = TranslationTransformRotationTransform
π

2


3

2
p〚2〛,

BezierCurve[{

p〚1〛, 2 p〚1〛,

T[2 p〚1〛],

T[{0, 0}],

T[2 p〚2〛],

2 p〚2〛, p〚2〛}],

Line[p]

,

{1 5, 3 7}

1

2

3

4

5

6

7

8

□ 9.10

The graph has a subgraph containing a subdivision of K5 by removing b, a, v, x, z, s and so is nonplanar.

Graph Theory.nb     163



□ 9.11

The edges zt, tv, vx, and xz can be drawn on the outside without crossing any other edges, resulting in a planar 

drawing.

Labeled#, "Planar: " <> ToString[PlanarGraphQ[#]] & @

Graph[{y z, z s, s t, t u, u v, v w,

w x, x y, y s, s u, u w, w y, z t, t v, v x, x z}]

Planar: True

□ 9.12

The graph seems intuitively nonplanar: the inside cycle can’t be ‘untangled’ from the outer one:
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Labeled#, "Planar: " <> ToString[PlanarGraphQ[#]] & @

Graph[

{y z, z t, t u, u v, v w, w x, x y, y t, t v, v x, x z, z u, u w, w y}]

Planar: False

By Kuratowski it should contain a subgraph that is a subdivision of K5 or K3,3.  Note that the graph has 7 vertices of degree 4; 

to reduce it to K5 we would have to remove two vertices by undoing subdivision leaving vertices with degree 3, which could 

thus not result in K5.  The graph must therefore contain a subdivision of K3,3:
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Module

{g0, g1, g2},

g0 = Graph[{y z, z t, t u, u v, v w,

w x, x y, y t, t v, v x, x z, z u, u w, w y}];

g1 = GraphEdgeDelete[g0, {x w, w v}], VertexCoordinates → GraphEmbedding[g0];

g2 = EdgeAdd[VertexDelete[g1, w], {u y}];

GraphicsRow

LabeledHighlightGraph[g0, {x w, w v}], "subgraph",

Labeled

GraphicsRow

HighlightGraph[g1, {w}],

HighlightGraph[g2, {u y}],

ImageSize → Full,

"subdivision",

LabeledGraph[g2,

VertexStyle → {x → Red, t → Red, u → Red, y → Green, z → Green, v → Green}], "bipartition",

ImageSize → Full



subgraph

subdivision

bipartition

PlanarGraphQ

EdgeDelete

CompleteGraph[7, VertexLabels → "Name"],

EdgeList[CycleGraph[7]]

False

□ 9.13a

Following the proof of Theorem 2: since all cycles are of minimum length 4, M ≥ 4 r.  With M ≤ 2 m  we have 

4 r ≤ 2 m⇒ 2 r ≤m.  Substituting into the Euler Identity 2 = n - m + r ≤ n - m + 1
2

m = n - 1
2

m ⇒ 1
2

m ≤ n - 2 ⇒m ≤ 2 n - 4.

□ 9.13b

Since K3,3 is bipartite it contains no triangles.  So m ≤ 2 n - 4⇒ 3 ·3 ≤ 2 ·6 - 4⇒ 9 ≤ 8, which is a contradiction.
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□ 9.13c

Suppose all vertices are of degree at least 4; then m ≥ 1
2

4 n = 2 n.  But to be planar, m ≤ 2 n - 4.  (In any case, we already 

knew that a planar bipartite graph must have a vertex of degree less than 3.)

□ 9.14a

Following the proof of Theorem 2, since all cycles are of minimum length 5, M ≥ 5 r.  With M ≤ 2 m we have 

5 r ≤ 2 m⇒ r ≤ 2
5

m.  Substituting into the Euler Identity 2 = n - m + r ≤ n - m + 2
5

m = n - 3
5

m. 

□ 9.14b

Reducem ≤
5

3
(n - 2), n⩵ 10, m⩵ 15

False

□ 9.14c

Contains a subdivision of K3,3:

Module{g0, g1, g2, g3, g4},

g0 = PetersenGraph[VertexLabels → "Name"];

g1 = EdgeAdd[VertexDelete[g0, 2], 4 7];

g2 = EdgeAdd[VertexDelete[g1, 5], 3 10];

g3 = EdgeAdd[VertexDelete[g2, 4], 9 1];

g4 = EdgeAdd[VertexDelete[g3, 7], 8 6];

GraphicsRow

HighlightGraph[g0, {2, 4 2, 2 7}],

HighlightGraph[g1, {5, 3 5, 5 10}],

HighlightGraph[g2, {4, 9 4, 4 1}],

HighlightGraph[g3, {7, 8 7, 7 6}],

Graph[g4, VertexStyle → {9 → Red, 3 → Red, 6 → Red, 8 → Green, 1 → Green, 10 → Green}]

,

ImageSize → Full
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□ 9.14d

□ 9.15

Suppose the graph is planar but has no vertex of degree less than 5, then n ≥ 12; so if a graph is planar with n < 12, then it 

must have a vertex of degree less than 5.
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Reducem ≤ 3 n - 6, m ≥
1

2
5 n

(n⩵ 12 && m⩵ 30) || n > 12 &&
5 n

2
≤ m ≤ -6 + 3 n

□ 9.16

Consider the subdivision of K5 with a single added vertex on some edge; this is clearly nonplanar, and the removal of any 

single edge results in a maximally planar graph.  Removing an edge incident to the subdivision and removing any other edge 

therefore results in two nonisomorphic maximally planar graphs.

□ 9.17

C6 is planar:

Module

{g = GraphComplement[CycleGraph[6], VertexLabels → "Name"]},

GraphicsRow

g,

Graphg, VertexCoordinates → {{-3, -3}, {+3, +3}, {-2, 0}, {+3, -3}, {-3, +3}, {+2, 0}},

ImageSize → Medium
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C7 contains a subgraph that is a subdivision of K3,3:
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Module

{g0, g1, g2},

g0 = GraphComplement[CycleGraph[7], VertexLabels → "Name"];

g1 = Graph[EdgeDelete[g0, {1 3, 4 6}]];

g2 = GraphEdgeAdd[VertexDelete[g1, 7], 3 4],

VertexCoordinates → DropGraphEmbedding[g1], {7};

GraphicsRow

HighlightGraph[g0, {1 3, 4 6}],

HighlightGraph[g1, {7, 3 7, 7 4}],

Graph[g2, VertexStyle → {1 → Red, 2 → Red, 3 → Red, 4 → Green, 5 → Green, 6 → Green}],

ImageSize → Large
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C8 has too many edges to be planar:

□ 9.18

For G to be maximally planar it must be one edge away from K3,3: that is, 5 vertices must have degree 3 and the remainder 

could have at most degree 2; and for it to be planar, the inequality of Theorem 2 must hold as well:

In[10]:= Reduce[{m < 3 n - 6, m ≥ 5*3 + (n - 5)*2}]

Out[10]= n > 11 && 5 + 2 n ≤ m < -6 + 3 n

□ 9.19

We know that for a planar graph m ≤ 3 n - 6.  Construct a graph for which m = 3 n - 6 by induction: for n = 3, K3 satisfies the 

equality.  Add a vertex and connect it to all three vertices on the outside of the graph; this encloses one of those vertices, but 

exposes the added vertex; resulting in a new graph with three exterior vertices, one added vertex and three added edges and 

thus also satisfies the equality.  Adding one edge to this graph violates the inequality and therefore results in a nonplanar 

graph; thus any graph constructed this way is maximally planar.
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In[27]:= Graph{G1  G2, G2  G3, G3  G1, v G1, v G2, v G3},

VertexCoordinates → AppendCirclePoints[{1, 0}, 3], {3, 0},

EdgeStyle → Tablev Gi → Dashed, i, 3

Out[27]=

In[32]:= Reduce[{m == 3 n - 6, n - m + r == 2, n == 100}]

Out[32]= r⩵ 196 && n⩵ 100 && m⩵ 294

□ 9.20

In[35]:= Reducem⩵ 3 n - 6, m ==
1

2
*
1

3
(3 + 4 + 5) n

Out[35]= n⩵ 6 && m⩵ 12

In[52]:= Module

{g = Graph[{1 2, 1 5, 1 6, 1 3, 2 3, 2 4, 2 5, 2 6, 3 4, 3 5, 4 5, 5 6}]},

Labeled[g, {VertexDegree[g], PlanarGraphQ[g]}, {Top, Bottom}],

PlanarGraphQ[EdgeAdd[g, #]] & /@ EdgeList[GraphComplement[g]]

Out[52]= 

{4, 5, 5, 3, 4, 3}

True

, {False, False, False}

□ 9.21

(Following the proof in the solutions.)  Suppose G is maximal planar with a vertex v, deg v = 2; so m = 3 n - 6 (while I under-

stand that there is a maximal graph with that size, I don’t know that every maximal planar graph has that size).  Consider 

G' = G - v; then: 

In[64]:= Reduce[{m′ ≤ 3 n′ - 6 /. { m′ → m - 2, n′ → n - 1}, m⩵ 3 n - 6}]

Out[64]= False
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□ 9.22

In[65]:= Reducem⩵ 3 n - 6, m⩵
1

2
*4 n

Out[65]= n⩵ 6 && m⩵ 12

9.2 Embedding Graphs on Surfaces

ParametricPlot3D

(2 + Cos[ν]) Cos[μ], (2 + Cos[ν]) Sin[μ], Sin[ν],

{ν, 0, 2 π}, {μ, 0, 2 π}
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