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Abstract Algebras
set

binary algebraic structure

semigroup

monoid

group

commutative group

cyclic group

+ binary operation

+ associative binary operation

+ identity

+ inverse

+ commutative operation

+ generator

prime order group

+ prime order

finite group

symmetric group

+ prime order

alternating group

+ finite order

Glossary
: reads as “so that”

  +i ,   ⋅i summation, multiplication over i

    ( {i i ordered, unordered set over i

  ∧ ∨ < >, , , scalar operators

  ∩ ∪ ⊂ ⊃, , , set operators

=n congruent modulo n
< is normal to, is ideal to

fx function application 
  
f x( )

commutative group abelian group
maximal p-group Sylow p-group
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§0.1 Preliminaries
1. proving theorems
2. set
3. precision?
4. definition
5. A triangle with vertices P, Q, R is the collection of points X such that

• X is in the line segment PQ, or
• X is in the line segment QR, or
• X is in the line segment RP.

6. An equilateral triangle is a triangle with vertices P, Q, R such that the length of the line segment PQ equals both 
the length of the line segment QR and the length of the line segment RP.

7. A right triangle is a triangle with vertices P, Q, R in which the two line segments through one of its vertices (say PQ 
and PR) are such, that for any point X on PQ there is no point Y on PR such that the length of the line segment XY 
is less than the length of the line segment XP.

8. The interior of a triangle is the collection of points X such that the line segments XP, XQ, XR from X to its vertices 
P, Q, R have only the vertices in common with the triangle.

9. A circle with center C and radius r is the collection of points X such that the length of the line segment XC equals 
r.

10. A disk with center C and radius r is the collection of points X such that the length of the line segment XC is less 
than or equal to r.

11. Define the relationship between PQ and PR in 7. to be a right angle.  Then, a rectangle with vertices P, Q, R, S is 
the collection of points formed by the four line segments PQ, QR, RS, SP, where PQ is at a right angle to QR, QR to 
RS, RS to SP, and SP to PQ.

12. Let n and m be even integers.  Then by (2), there are integers p, q such that n = 2p, m = 2q.  Then n + m = 2p + 2q 
= 2(p + q), so n + m is even.

13. Let n, m, p, q as in 12.  Then nm = 2p · 2q = 4pq.  Since pq is an integer, 4pq is an integral multiple of 4.
14. Define an odd integer m to be an integer such that there exists another integer n such that m = 2n + 1.

Let r be an even integer and s an odd integer.  Then there are integers p, q such that r = 2p, s = 2q + 1.  So r + s = 
2p + 2q + 1 = 2(p + q) + 1, so r + s is odd.

15. counterexample
16. A B F G M, C D J, E H K N, I, L, O.
17. 1, 2, 4, 8, 16, 31 (the conjecture is false).
18. Suppose that i is the square of an odd integer k.  Then

      ∃ ∈ = + ⇒ = = + = + +i k l i k l l l� : ( )2 1 2 1 4 4 12 2 2

Since i is also even,

      
∃ ∈ = ⇒ + + = ⇒ + + = ∉j i j l l j l l j� �: 2 4 4 1 2 2 22 2 1

2

which is a contradiction, so k cannot be odd.  Since k must be even,

∃l ∈� : k = 2l ⇒ i = k2 = (2l) 2 = 4l2

so i is indeed an integral multiple of 4.

19. Let n = 0, then ( )n + = = />3 3 9 92 2 .

20. Let     n n n n2 22 3 1 1 1+ = ⇒ = ⇒ = − ∨ = + , so n is not unique.

21. Let n n= ⇒ + = + =2 4 2 4 82 2 .

22. Let n n= ⇒ + = + =3 5 3 5 142 2 .

23. Let     n n= − ⇒ + = − + =3 5 3 5 142 2( ) .  With 22., n is not unique.

24. Let     n n n= > ⇐ >0 0 02 2: , which is a contradiction.

25. Let n ∈�,n < 0 ⇒ n 2 > 0 ⇒ n 2 > 0 > n .

26. Let 
    
x x x= ⇒ < ⇐ ( ) < ⇐ <1

2
2 1

2

2
1
2

1
4

1
2

, which is a contradiction.
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27. Let     n n n= > ⇐ > ⇐ >2 2 2 4 22 2: .

28. Let
    

n n n
n n n

= = ⇐ = ⇐ =
= = ⇐ = ⇐ =






0 0 0 0 0
1 1 1 1 1

2 2

2 2
:
:

, so x is not unique.

29. Let j be an odd integer, so
∃k ∈ � : j = 2k + 1

⇒ j 2 = (2k + 1)2

= 4k2 + 4k + 1

= k2 + k ∈�

30. ∃m ∈� : n = 3m + 1 , so 
    
n m m m m m2 2 2 23 1 9 6 1 3 3 2 1= + = + + = +( ) +( ) , and     3 22m m+  is integral.

31. Let     n n n= − < ⇐ − < − ⇐ − < −2 2 2 8 23 3: ( ) .

32. Let 
    
n m n

m
= − = ( ) = ( ) = − = /<−2 1 2 4 1

2
2
1

2 2, : ( ) .

33. n
m

n
m

m n nm n n m n m( ) < ⇒ = < ⇒ < ≥ ⇒ /<
2 20 0( ) ( ) .

34.
    

n
m

n
m

m n mn n n m n m
m n mn n n m n m

( ) ≤ ( ) ⇒ ≥ ≤ ⇒ ≠ ≤ ⇒ <
≤ ≥ ⇒ ≠ ≥ ⇒ /<







3 2 3 2

3 2
0 0
0 0
: ( )
: ( )

.  So let m = –1 and n = –2:

    
n
m

n
m( ) ≤ ( ) ⇒ ( ) ≤ ( ) ⇒ ≤−

−
−
−

3 2
2
1

3
2
1

2
8 4, which is a contradiction.

§0.2 Sets and Relations
♥ 17. An equivalence relation ∼ extracts a property from the whole identity of its arguments and asserts the equality of just 

this property: equivalence is property equality.  For example, ‘congruence modulo’ ≡ asserts equality of the 
remainder under division.

1. {x ∈� | x 2 = 3} = {− 3 , + 3}

2. {m ∈� |m2 = 3} = ∅

3. m ∈� |mn = 60 for some n ∈�{ } = ± 1, 2, 3, 4, 5, 6,10,12, 15, 20,30{ }
4. m ∈� |m2 − m < 115{ } .  Solve the inequality:

    m m m m2 2115 115 0− = ⇒ − − = ⇒

m =
+ ± − − ⋅ ⋅ −

⋅
= ± +

= ± ≈ −

1 1 4 1 115

2 1
1 1 460

2
1 461 10 2 11 2

2

1
2

( )

( ) . , .
  
1
2

1 461( )−
 
1
2

1 461( )+0

so     m ∈ − − …{ , , , , }10 9 10 11 .
5. not a set
6. ∅
7. ∅
8. �

9. �

10. m
2 |m ∈�{ }

11. {(a,1), (a,2), (a,c), (b,1), (b,2), (b,c), (c,1), (c,2), (c,c)}
12. function one-to-one onto

a. yes no no
b. yes no no
c. no
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d. yes yes yes
e. yes no no
f. no

13. Map x to y(x).
P

A B

C D

x

y(x)

14 a.       f x x: [ , ] [ , ]:0 1 0 2 2→ a

b.
      
f x x: [ , ] [ , ]: ( )1 3 5 25 1 520

2
→ − +a

c.
      
f a b c d x x a

d c
b a

c: [ , ] [ , ]: ( )→ − −
−

+a

15. f : S → �: x a tan xπ − 1
2π( )

16. a. P P( ) , ( )∅ = ∅ ∅ = 1

b. P P({ }) ,{ } , ({ })a a a= ∅{ } = 2

c. P P({ , }) , { }, { }, { , } , ({ , })a b a b a b a b= ∅{ } = 4

d. P P({ , , }) , { }, { }, { , }, { }, { , }, { , }, { , , } , ({ , , })a b c a b a b c a c b c a b c a b c= ∅{ } = 8

17. Conjecture 
      
P ( )A

A= 2 .

Let An be a series of sets such that |An| = n, and     A An n⊂ +1.

•
      
P P( ) ( )A0 1= ∅ = .

• Let 
      
P ( )An

An= 2 .

There is s An n+ ∉1  such that A A sn n n+ += ∪1 1.  Consider the set

′ = ∪ ∪( )+⊆
A P P sn nP An

{ }1U
Since every element of   ′An  is a subset of   An+1,       ′ ⊆ +A An nP ( )1 .

Every subset P of     An+1 either does or does not contain     sn+1:

s P P A P A
s P P s A P A
n n n

n n n n

+

+ +

∉ ⇒ ⊆ ⇒ ∈ ′
∈ ⇒ ⊆ ⇒ ∈ ′

1

1 1\ { }

so       P ( )A An n+ ⊆ ′1 .

So       P ( )A An n+ = ′1 , and 
      
P P( ) ( )A An n

A A An n n
+

+= ⋅ = ⋅ = = +
1

1
2 2 2 2 2 1 .

18. Let f A B BA: →( ) ∈ .

• For each subset   P A⊆ , there is a corresponding function

f A B a
a P
a PP : :

:
:

→
∉
∈





a
0
1

Let there be two such subsets P P A, ′ ⊆  such that   f fP P= ′ .  Then ∀ ∈a A :

    a P f a f a a PP P∈ ⇒ = = ⇒ ∈ ′′( ) ( ) 1 ;   a P a P∉ ⇒ … ⇒ ∉ ′
so   P P= ′ .
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• Conversely, for each function   f BA∈  there is a corresponding subset   P Af ⊆ :

  
P a A f af = ∈ ={ }| ( ) 1 .

Let there be two functions     f f BA, ′ ∈  such that   P Pf f= ′ .  Then  ∀ ∈a A :

  
∨

=
=

⇒ ∨
∉
∈












⇒ ∨

′ =
′ =





f a
f a

a P
a P

f a
f a

f

f

( )
( )

( )
( )

0
1

0
1

so   f f= ′ .

So,    P B Af
A: ( )→ P  is a bijection, and 

   
B AA = P ( ) .

19. For every element of A there is a distinct singleton subset containing just that element, which is an element of       P ( )A

.  ∅ is not such a singleton set, yet is an element of       P ( )A .  So 
      
P ( )A A> .

Let A be such that 
  
A =ℵ.  Then the power set of A has 

      
P ( )A >ℵ, and 

      
P P P( ) ( )A A( ) > , ad infinitum.

20. a. It is possible to define addition in � in terms of the union of disjoint sets, so

  
2 3 5 2 3 5+ = ⇐ = = ∪ =A B A B, , .

i. 3 + ℵ0 = 0{ } ∪ �
+ =

(*)

�
+ = ℵ0 , where (*) : φ : �

+ → 0{ } ∪ �
+ : m a m − 1 .

ii. ℵ0 + ℵ0 = �
+ − 1

2( ) ∪ �
+ =

(*)

�
+ = ℵ0 , where (*) φ : �

+ → �
+ − 1

2( ) ∪ �
+ :m a

m odd :  1
2

m − 1( ) + 1
2

m even :  1
2
m

 
 
 

  
.

b. It is possible to define multiplication in � in terms of a Cartesian product:

 
2 3 1 2 1 2 3 6⋅ = × ={ , } { , , } , so

ℵ0 ⋅ ℵ0 = �
+ × �

+ =
fig 14

�
+ = ℵ0 .

21. 102 digits, 105 digits.  By extrapolation,   10 0ℵ  would equal the number of digits of the form 0.###…, where ‘#’ is 
repeated   ℵ0 times— name this set R.  Since any number in ′ R = x ∈� | 0 ≤ x < 1{ }  can be expressed arbitrarily 

precise by an element of R,   ′ ⊆R R.  Since   R R⊆ ′ ,   R R= ′ .  By Exercise 15, 
  

′ =ℵR , so 
 
R =ℵ and 10 0ℵ =ℵ.

Similar arguments can be made in terms of duodecimal and binary expansions of numbers of ′R , so  12 20 0ℵ ℵ= =ℵ.
22. Since

P(�) =
(17)

2 � = 2ℵ0 =
(18)

ℵ; P(�) =
(19)

0,1{ }�

The next higher cardinals after ℵ0 are

ℵ= 0, 1{ }�
= 0, 1{ } exp �,

0, 1{ } 0 , 1{ }�

= 0, 1{ } exp 0, 1{ } exp �

et cetera.
28.     x y i x y P y x P y xi iR R⇒ ∃ ∈ ⇒ ∈ ⇒: , ,  (symmetric)

    x x i x P x SiR ⇔ ∃ ∈ ⇔ ∈:  (reflexive)

    

x y y z i x y P j y z P

P i j i x y z P
y z

i j

i i

R R

 disjoint
R

∧ ⇒ ∃ ∈ ∧ ∃ ∈

⇒ ⇒ = ∃ ∈
⇒

: , : ,

( ) : , ,  (transitive).

29. not reflexive because   0 0 0 0 0⋅ /> ⇒ /R
30. not symmetric because   2 1 1 2 2 1 1 2≥ /≥ ⇒ /, ,R R .
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31. R is a relation, because

    

x x

x y y x

x y y x x z

x x
x y y x
x y y z x z

=

= ⇒ =

= ∧ = ⇒ =










⇒ ⇒
∧ ⇒









R
R R
R R R

.

x

y

R

32.
  

0 3 3 3 3 6 3 3 0 6 6 3

0 3 3 6 0 6

− = ≤ − = ≤ − = /≤ ⇒

/

, ,

, ,R R R
so R is not transitive.

33. The number of digits of n ∈ �
+  is base 10 notation is 

    
1 10+  log n .  Obviously R is reflexive and symmetric, and 

transitive.

R

0 10 100

34. R is congruence modulo 10 on �
*.

35. a. {1, 3, 5, …}, {2, 4, 6, …}
b. {1, 4, 7, …}, {2, 5, 8, …}, {3, 6, 9, …}
c. {1, 6, 11, …}, {2, 7, 12, …}, {3, 8, 13, …}, {4, 9, 14, …}, {5, 10, 15, …}

36a.
∀r ∈ � : r − r = 0 = 0 ⋅ n ⇒ r ~ r
∀r, s ,r ~ s : ∃q ∈ � : r − s = qn ⇒ s − r = − qn( ) = −q( )n ⇒ s ~ r

∀r, s ,t,r ~ s , s ~ t : ∃p ,q ∈ � : r − s = pn , s − t = qn
r − s + s − t = pn + qn
r − t = (p + q)n ⇒ r ~ t

b. ∀r, s ∈� + ,r ~ s : ∃q ∈ � : r − s = qn ⇒ (n ∈ �)
r − s

n
=

r
n

−
s
n

= q

∃ ′ r n , ′ s n ∈�, ′ ′ r n , ′ ′ s n ∈� : r = ′ r nn + ′ ′ r n , s = ′ s nn + ′ ′ s n , 0 ≤ ′ ′ r n , ′ ′ s n < n

r − s = qn
′ r nn + ′ ′ r n − ′ s nn − ′ ′ s n = qn

′ r n − ′ s n( )n + ′ ′ r n − ′ ′ s n( ) = qn

′ r n − ′ s n +
′ ′ r n − ′ ′ s n( )

n
= q ∧ 0 ≤

′ ′ r n − ′ ′ s n
n

< 1

Since ′ r n , ′ s n ∈� , q ∈ �,
′ ′ r n − ′ ′ s n

n
= 0 ⇒ ′ ′ r n − ′ ′ s n .

c.
{…, –2, 1, 3, …}, {…, –2, 0, 2, …}
{…, –2, 1, 4, …}, {…, –1, 2, 5, …}, {…, –3, 0, 3, …}
{…, –4, 1, 6, …}, {…, –3, 2, 7, …}, {…, –2, 3, 8, …}, {…, –1, 4, 9, …}, {…, –5, 0, 5, …}

§0.3 Mathematical Induction

1. Prove that 
    

+ =
+( ) +( )

= …i n
i

n n n

1

2
1 2 1

6
.

    
n = =

+( ) ⋅ +( )
= ⋅ =1 1

1 1 1 2 1 1

6
2 3
6

12:

6



    

n i i n
n n n

n n
n n n n n

n n n n n n n n

i n i n
+ + = + + +( ) =

+( ) +( )
+ + + =

+( ) +( ) + + +( )
= + +( ) + + + = … = +( ) +( ) +( )

… + …
1 1

1 2 1

6
2 1

1 2 1 6 2 1

6
2 3 1 6 12 6 1 2 2 3

1

2 2 2 2

2

2 2

:

2. Prove that +
i=1…n

i 3 =
n 2 n + 1( )2

4
,n ∈�

+ .

n = =
+( )

= ⋅ =1 1
1 1 1

4
1 2

4
13

2 2
2

:

    

n i i n
n n

n n

n n n n n n n n n n n n n n

n n

n i n
+ + = + + +( ) =

+( )
+ +( ) +( )

=
+ +( ) + +( ) + +( )

= + + + + + + + +

= + +

… + …
1 1

1

4
1 1

2 1 4 1 2 1

4
2 4 8 4 4 8 4

4

6 13

1 1

3 3 3
2 2

2

2 2 2
4 3 2 3 2 2

4 3

:

nn n n n2
2 2

12 4
4

1 2

4
+ + = … =

+( ) +( )

3. Prove that 
    

+ −( ) =
= …i n

i n
1

22 1 .

    n = =1 1 12:

    
n i i n n n n

i n i i n
+ + −( ) = + −( ) + +( ) − = + + = +( )

= … + = …
1 2 1 2 1 2 1 1 2 1 1

1 1

2 2
:

4. Prove that +
i=1…n

1
i i + 1( ) =

n
n + 1

,n ∈ �
+ .

    

n =
+( ) = =

+
=1

1

1 1 1

1
1 1

1
2

1
2

:

    

n
i i i i n n

n
n n n

n n

n n

n n

n n

n

n n

i n i n
+ +

+( ) = +
+( ) +

+( ) +( ) =
+

+
+( ) +( )

=
+( ) +

+( ) +( ) = + +
+( ) +( ) =

+( )
+( ) +( ) =

= … + = …
1

1

1

1

1

1

1 2 1
1

1 2

2 1

1 2

2 1

1 2

1

1 2

1 1 1

2
2

:

nn
n

+
+

1
2

5. Prove that ∀a,r ∈�, r ≠ 1, n ∈ �
+ : +

i=0

n

ar i =
a 1 − r n + 1( )

1 − r
.

    
n a ar

a r

r

a r r

r
a r= + =

−( )
−

=
−( ) +( )

−
= −( )1

1

1

1 1

1
1

2

:

n ar ar ar
a r

r
ar

a r r ar

r

a
r r r

r
a

r r r
r

a r

i

n
i

i

n
i n

n

n

n n

n n n n n
n

+ + = + + =
−( )
−

+ =
−( ) + −( )

−

=
− + −( )

−
= − + −

−
=

−
=

+

=

+
+

+
+ +

+ + + + + +

1
1

1

1 1

1

1 1

1
1

1

1

0

1

0

1

1

1

1 1

1 1 1 1 2
2

:

(( )
−1 r

6. max is only defined on �
+ , so max( , )i j− −1 1  is undefined.

7. the concept ‘interesting property’ is not well defined

§0.4 Complex and Matrix Algebra
1. 2 3 4 5 6 2+( ) + +( ) = +i i i .

2.     i i i+ − = −5 3 5 2 .
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3.
    
5 7 3 2 2 5+( ) − −( ) = +i i i .

4.
    
1 3 4 2 5 5−( ) − − +( ) = −i i i .

5.     i ii i3 2= = − .

6.     i i i4 2 2 1 1 1= ⋅ = − ⋅ − = + .

7.     i i i i i i i23 20 3 4 5 3 5 31= = ⋅ = ⋅ = −( ) .

8.
    

−( ) = − = −( ) = − ⋅ −( ) =i i i i i i
35 35 32 3 1 .

9.
    
4 5 3 20 12 5 3 23 72−( ) +( ) = + − − = +i i i i i i .

10.
    
8 2 3 24 6 8 2 26 22+( ) −( ) = + − − = −i i i i i i .

11.
    
2 3 4 6 5 8 2 12 3 6 5 17 152−( ) +( ) + −( ) = + − − + − = −i i i i i i i i .

12.
    
1 1 1 1 1 2 1 2 2 2 2 2

3 2 2 2+( ) = +( ) +( ) = +( ) + +( ) = +( ) = + = − +i i i i i i i i i i i .

14.

    

7 5
1 6

7 5 1 6

1 6 1 6

7 42 5 30
1 36

23 47
2

1
35

−
+

=
−( ) −( )
+( ) −( ) = − − +

−
= − −( )i

i

i i

i i

i i i
i .

15.

    

1
1

1

1 1 1

1
2

2

2+
=

−( )
+( ) −( ) = −

−
= +

i

i i

i i

i i

i

i
.

16.
1 1

1
2

2− =
−( )

= − −( ) = − −i
i

i i

i
i i i .

17.

    

i i

i

i i i

i i

i i

i
i i i i

3

2 4
1
2

3 1 2

1 2 1 2

3 1 1 2

1 4
1 3 2 6 71

2 2 2
1

10
2 1

10

+( )
−

= ⋅
+( ) +( )

−( ) +( ) =
−( ) +( )

−
= − + − +( ) = − +( ) .

18.

    

3 7

1 2 3

3 7 1 2 3

1 1 2 3 2 3

3 3 7 7 2 3

1 4 9

10 4 2 3

2 13

5 2 2 3

2

2 2

+
+( ) −( ) =

+( ) −( ) +( )
+( ) −( ) −( ) +( ) =

− + −( ) +( )
−( ) −( )

=
+( ) +( )

⋅
=

+( ) +( )

i

i i

i i i

i i i i

i i i i

i i

i i i i

1313
10 15 4 6

13
4 19

13

2

= + + + = +i i i i

.

19.
1 2

1 2 1

1 2 1 2

1 2 1 2 1 1

1 2 2 4 2

1 4 1

2 5
5 2 1

1

2 2 2

2 2

2−( ) +( )
−( ) +( ) =

−( ) +( ) +( )
−( ) +( ) +( ) −( ) =

− +( ) + + +( )
−( ) −( ) = − ⋅

⋅
= − =

i i

i i

i i i

i i i i

i i i i i

i i

i i i
.

20. 3 4 5− =i .

21.
    
6 4 23 2 2 9 4 2 13+ = + = + =i i .

22. 3 4 5 3 4 5 3
5

4
5

− = ⇒ − = −( )i i i .

23.
    
− + = ⇒ − + = − +









 = − +



1 2 1 2

1

2

1

2
2 2 21

2
1
2

i i i i .

24.
    
12 5 144 25 169 13 12 5 13 12

13
5

13
+ = + = = ⇒ + = +( )i i i .

25. − + = + = = ⇒ − + = − +( )3 5 9 25 36 6 3 5 6 1
2

5
6

i i i .

26.
    
z r e z r e z z z z r e r e

r
r

ei i i i i
1 1 2 2 1 2 1 2

1
1 2

1
1

2

1 2 1 2 1 2= = ⇒ = = ⋅ ( ) =−
− −( )θ θ θ θ θ θ

, .  So   z z1 2  is the point in the complex 

point at the end of a line from the origin with length     r r1 2  and angle   θ θ1 2−  from the positive x-axis.
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27.
    
z re e r r z i ii i4

4
0

21 1 1 4 0 1 0 1 11
2

= ⇒ ( ) = ⇒ = = ⇒ = = ⇒ ∈ − −{ }θ
π πθ θ, , , , , .

28.

    

z re e r i r

z i i i i

i i4
4

4
2

1
4

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1 1 1 4 1

2 2 2 2 2 2 2 2

1
2

= − ⇒ ( ) = ⇒ = = ⇒ = =

⇒ ∈ + − + − − −{ }
θ π

π πθ π θ π, ,

, , ,

.

§1.1 Binary Operations
1.

    
b d e c c b a c e a c e a a a a∗ = ∗ = ∗( ) ∗( ) ∗ = ∗( ) ∗ = ∗ =, , .

2.
a b c b c a

a b c a a a

∗( ) ∗ = ∗ =

∗ ∗( ) = ∗ =
, so * could be, but is not necessarily, associative.

3.

  

b d c e c a

b d c b b c

∗( ) ∗ = ∗ =

∗ ∗( ) = ∗ =
, so * is not associative.

4. no, because e b b e∗ ≠ ∗ .

5.

* a b c d
a a b c d
b b d a c
c c a d b
d d c b a

6.

* a b c d
a a b c d
b b a c d
c c d c d
d d c c d

d a c b a c b a c b d∗ = ∗( ) ∗ = ∗ ∗( ) = ∗ = ,

  
d b c b b c b b c a c∗ = ∗( ) ∗ = ∗ ∗( ) = ∗ = ,

  
d c c b c c b c c c c∗ = ∗( ) ∗ = ∗ ∗( ) = ∗ = ,

  
d d c b d c b d c d d∗ = ∗( ) ∗ = ∗ ∗( ) = ∗ = .

7.   1 0 1 0 1 0 1 0 1 1∗ = − = ∗ = − = −, , 
  
a b c a b c a b c∗( ) ∗ = −( ) − = − − , 

 
a b c a b c a b c∗ ∗( ) = − −( ) = − + , so * is neither 

commutative nor associative.

8. Let ∀a,b ∈� : a ∗ b = ab + 1 = ba + 1 = b ∗ a , 0 0 1 0 0 1 1 1 2∗( ) ∗ = ⋅ +( ) ⋅ + = , 0 0 1 0 0 1 1 1 1∗ ∗( ) = ⋅ ⋅ +( ) + = , so * 

is commutative, but not associative.

9. ∀a,b ∈� : a ∗ b = 1
2 ab = 1

2ba = b ∗ a , ∀a,b ,c ∈� : a ∗ b( ) ∗ c = 1
2

1
2 ab( )c = 1

2 a 1
2bc( ) = a ∗ b ∗ c( ) , so * is 

commutative and associative.

10. Let ∀a,b ∈�
+ : a ∗ b = 2ab = 2ba = b ∗ a , then 

  
0 0 1 2 2 10 2 001

∗ ∗( ) = = =⋅ ⋅
 and 

  
0 0 1 2 2 22 1 10 0

∗( ) ∗ = = =
⋅ ⋅ , so * is 

commutative, but not associative.

11.   1 2 1 1 2 1 2 22 1∗ = = ∗ = =;  and 
  
2 3 2 2 2 2 3 2 2 2

3 9 3
2

6
2

∗ ∗( ) = = ∗( ) ∗ = ( ) =( ) ; , so * is neither commutative nor 

associative.

12. 1 2 2 16 3 3 196832 4 3 92 3
; ; ;= = = = nnn

; the table defining * has n2  entries, each having n possible values.

13. 1 2 2 2 3 3 27
1
2

1
2

1
2

2 2 1 1 3 3 1 3 1
; ; ;

⋅ −( ) ⋅ −( ) −( )= = = = n
n n

; the table defining commutative * has 1
2

1n n −( )  entries, each 

having n possible values.
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14. A binary operation on a set S is commutative if and only if for all   a b S a b b a, :∈ ∗ = ∗ .
15. well defined
16. Correct the last part to read “    a b H, ∈ ”.

17. C1 good;   1 2 1 2 1∗ = − = − ∈ +Z , so C2 is ill defined.
18. C1, C2 good.
19. C1, C2 good.
20. C1, C2 good.
21. C1 is not well defined, C2 is good.

22. C1 good; 1 ∗ 1 = 0 ∉ �
+ , so C2 is ill defined.

23.
    
∀ =

−
−









 =

−
−









 ∉M

a b
b a

N
c d
d c

H, :

a. 
a b
b a

c d
d c

a c b d
b d a c

H
−

−








 +

−
−









 =

+ − −
− − +









 ∈

b. 
a b
b a

c d
d c

a c b d a d b c
b c a d b d a c

ac bd ad bc
ad bc ac bd

H
−

−








 ⋅

−
−









 =

⋅ − ⋅ − ⋅ − − ⋅
− ⋅ + ⋅ − − ⋅ − + ⋅









 =

+ − −
− − +









 ∈

24. a. false; b. true; c. false; d. false; e. false; f. true; g. true; h. true; i. true; j. false.
25. Let * be addition and *' subtraction on the set of colors {K, R, G, B, C, M, Y, W} (black, red, green, blue, cyan, 

magenta, yellow, and white).
+ K R G B C M Y W
K K
R R R
G G Y G
B B M C B
C C W C C C
M M M W M W M
Y Y Y Y W W W Y
W W W W W W W W W  

- K R G B C M Y W
K K K K K K K K K
R R K R R R K K K
G G G K G K G K K
B B G B K K K B K
C C C B G K G B K
M M B M R R K B K
Y Y Y R Y R G K K
W W W W W W W W W

26.
  
a b c d c d a b d c a b d c a b∗( ) ∗ ∗( ) = ∗( ) ∗ ∗( ) = ∗( ) ∗ ∗( ) = ∗( ) ∗( ) ∗

27. Let S be a set with single element s.
A binary operation * on S always maps its operands to s, so * must be associative and commutative.

28. Let * be the binary operation defined by the table.  Then

b a a a a b∗( ) ∗ = ∗ =  and b a a b b a∗ ∗( ) = ∗ = , so * is not associative.

* a b
a b a
b a a

29. Let f g h F, , ∈ .  Then ∀x ∈ �:

  

f g h x f g x h x f x g x h x

f x g h x f g h x

+( ) +( )( ) = +( )( ) + ( ) = ( ) + ( ) + ( )
= ( ) + +( )( ) = + +( )( )( )

, so + is associative on F.

30. Let f : �→ �: x a 0, g : � → � : x a 1 , then

f g f g

g f g f

−( )( ) = ( ) − ( ) = − = −

−( )( ) = ( ) − ( ) = − =

0 0 0 0 1 1

0 0 0 1 0 1

so – is not commutative on F.
31. Let f : �→ �: x a 1, then
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f f f f f f f f f

f f f f f f f f f

−( ) −( )( ) = −( )( ) − ( ) = ( ) − ( )( ) − ( ) = −( ) − = −

− −( )( )( ) = ( ) − −( )( ) = ( ) − ( ) − ( )( ) = − −( ) =

0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 1 1 1 1

so – is not associative on F.

32.
      
∀ ∈ ∈ ( )( ) = ( ) ⋅ ( ) = ( ) ⋅ ( ) = ( )( )f g F x fg x f x g x g x f x gf x, , � : , so multiplication is commutative on F.

33. For       ∀ ∈ ∈f g F x, , �,

  
fg h x fg x h x f x g x h x f x g x h x f x gh x f gh x( )( )( ) = ( )( ) ⋅ ( ) = ( ) ⋅ ( )( ) ⋅ ( ) = ( ) ⋅ ( ) ⋅ ( )( ) = ( ) ⋅ ( )( ) = ( )( )( ),

so multiplication is associative on F.

34. Let f : �→ �: x a x + 1, g : � → � : x a x 2 , then

      

f g f g f

g f g f g

o

o

( )( ) = ( )( ) = ( ) =

( )( ) = ( )( ) = ( ) =

1 1 1 2

1 1 2 4

so concatenation is not commutative on F.
35. Let ∗ = +, ′ ∗ = ⋅, S = �.  Then

1 0 3 1 0 3 1 0 1

1 0 1 3 1 0 1 3 1 4 4

∗ ′∗( ) = + ⋅( ) = + =

∗( ) ′∗ ∗( ) = +( ) ⋅ +( ) = ⋅ =

so the property does not hold.
36. For     ∀ ′ ∈h h H, :

    
h h x h h x h x h x h h h h x

h

∗ ′( ) ∗ = ∗ ′ ∗( ) = ′ ∗( ) ∗ = ∗ ′( ) ∗ = ′ ∗ ∗( )
∗ ∗ ∗ associative  commutative  associative  associative

37. For ∀ ∈a b H, :

  

a b a b a b b a a b b a a b b a

a b a b a a b a a b a a b

∗( ) ∗ ∗( ) = ∗( ) ∗ ∗( ) = ∗( ) ∗( ) ∗ = ∗ ∗( )( ) ∗

= ∗( ) ∗ = ∗( ) ∗ = ∗ ∗( ) = ∗ = ∗

so   a b H∗ ∈ .
38. (deposit deposit) talk (deposit press press) = (deposit deposit deposit press) talk (press)
39. “(” doesn't affect whatever symbol is next on input.
40.

s0

s1

s2

a,c

b

a,c

b

ba,c

41.

s0 s1 s2

a,b

c

a,b

c

a,b,c

42.

s2 s3 s4

a,b

c

a,b

c

a,b,c
s0 s1

a,b

c

a,b

c
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43.

s0

s2

0
1

s1
0

1

0
1

44.

0 1
s0 s0 s1
s1 s0 s2
s2 s0 s2

45.

a b c
s0 s0 s0 s1
s1 s1 s1 s2
s2 s2 s2 s2

§1.2 Isomorphic Binary Structures
1. • φ is a surjection and injection (bijection)

• 
    
∀ ∈ ∗( ) = ∗s t S s t s t, : φ φ φ .

2. ∀m ∈ � : ∃n ∈� : n = −m ⇒ φn = −n = − −m( ) = m  (surjection)

∀ ∈ = ⇒ − = − ⇒ =n n n n n n n n1 2 1 2 1 2 1 2, :� φ φ  (injection)

∀ +( ) = − +( ) = −( ) + −( ) = +n n n n n n n n n n1 2 1 2 1 2 1 2 1 2, : φ φ φ

3. 1 ∈ Z, / ∃ n ∈ � : φn = 2n = 1 , so φ is not surjective.
4. For ∀n1 ,n 2 ∈ � ,

    

φ

φ φ

n n n n n n

n n n n n n

1 2 1 2 1 2

1 2 1 2 1 2

1 1

1 1 2

+( ) = +( ) + = + +

+ = +( ) + +( ) = + +

so φ is not an isomorphism.

5. ∀y ∈ � : ∃x ∈� : x = 2y ⇒ φx = 1
2 x = 1

2 ⋅ 2y = y  (surjection)

∀x1 ,x 2 ∈ � : φx 1 = φx 2 ⇒ 1
2 x 1 = 1

2 x 2 ⇒ x 1 = x 2  (injection)

∀x1 ,x 2 ∈ � : φ x 1 + x 2( ) = 1
2 x 1 + x 2( ) = 1

2 x 1 + 1
2 x 2 = φx 1 + φx 2 .

6. −1 ∈ �, / ∃ x ∈ � : x 2 = −1, so φ is not surjective.

7. ∀y ∈ �: ∃x ∈� : x = y3 ⇒ φx = x 3 = y3( )3
= y

∀x1 ,x 2 ∈ �: φx 1 = φx 2 ⇒ x 1
3 = x 2

3 ⇒ x 1 = x 2

∀x1 ,x 2 ∈ �: φ x 1 ⋅ x 2( ) = x 1x 2( )3
= x 1

3 ⋅ x 2
3 = φx 1 ⋅ φx 2

8.
0 0
0 0

0
0 0
1 0

0= =, , so φ is not injective.

9. ∀y ∈ �: ∃X ∈M1�: X = y[ ]  (surjective)
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∀X1 ,X2 ∈M1�: φX 1 = φX2 ⇒ X 1 = X 2 ⇒ x 1 = x 2 ⇒ x 1[ ] = x 2[ ] ⇒ X 1 = X2  (injective)

∀X1 ,X2 ∈M1�: φ X1 ⋅ X 2( ) = X1X2 = x 1[ ] ⋅ x 2[ ] = x 1x 2[ ] = x 1x 2 = x 1 ⋅ x 2 = φX1 ⋅ φX 2 .

10. ∀y ∈ �
+ : ∃x ∈� : x =−2ln y ⇒ φx = 0.5x = 0.5−2 ln y = 2

2 ln y = y  (surjective)

∀x1 ,x 2 ∈ �: φx 1 = φx 2 ⇒ 0.5x 1 = 0.5x 2 ⇒ x 1 = x 2  (injective)

∀x1 ,x 2 ∈ �: φ x 1 + x 2( ) = 0.5x 1 + x2 = 0.5x 1 ⋅ 0.5x 2 = φx 1 ⋅ φx2 .

11.

    

∀ ∈ ∃ ∈ ( ) = ( ) ⇒ ( )( ) = ′( )( ) = ( )





′
( ) = ( )∫ ∫g F f F f x g t t f x f x g t t x g x

x

: : d d
0

x

0

φ

∀f 1 , f 2 ∈F : φf 1 = φf 2 ⇒ ∀x ∈� : f 1
′ x( ) = f 2

′ x( ) ⇒ f 1 0( ) = f 2 0( ) = 0( ) f 1 x( ) = f 2 x( ) ⇒ f 1 = f 2

∀ ∈ +( ) = +( )′ = ′ + ′ = +f f F f f f f f f f f1 2 1 2 1 2 1 2 1 2, : φ φ φ

12.
      
f F x x f F x x f x f x1

2
2

3
1 2

20 2 0 0 0 3 0 0∈ ∈ ′( ) = ( )( ) = ′ ( ) = ( )( ) =: , : : ,a a , so φ is not injective.

13. ∀ ∈ ∃ ∈ = ′g F f F f g: :

∀f 1 , f 2 ∈F : φf 1 = φf 2 ⇒ ∀x ∈� : φf( ) x( ) = φf 2( ) x( ) ⇒ ∀x ∈ �: f 1 t( ) dt
0

x

∫ = f 2 t( ) dt
0

x

∫ ⇒ f 1 = f 2

∀ ∈ +( )( ) = +( )( ) = ( ) + ( ) = +∫ ∫ ∫f f F f f x f f t t f t t f t t f f
x x x

1 2 1 2 1 2
0

1
0

2
0

1 2, : φ φ φd d d

14.     
φf x

x
f t t f x

x( )( ) = ( ) = ( )∫d
d

d
0

15. ∀f 1 , f 2 ∈F : ∀x ∈� : φ f 1 ⋅ f 2( ) x( ) = x ⋅ f 1 ⋅ f 2( ) x( ) = x ⋅ f 1 x( ) ⋅ f 2 x( )
φf 1 ⋅ φf 2( ) x( ) = φf 1( ) x( ) ⋅ φf 2( ) x( ) = x ⋅ f 1 x( ) ⋅ x ⋅ f 2 x( )

, so φ is not an isomorphism.

16. a. ∀ni ∈� : ∃mi ∈� : φmi = ni ⇒ mi = ni − 1

n1 ∗ n 2 = φm1 ∗ φm2 = φ m1m2( ) = m1m2 + 1 = n 1 − 1( ) n 2 − 1( ) + 1

b. ∀m1, 2 ∈� : φ m1 ∗ m2( ) = φm1 + φm2 ⇒ m1 ∗ m2( ) + 1 = m1 + 1 + m2 + 1 ⇒ m1 ∗ m2 = m1 + m2 + 1

17. a. ∀ni ∈� : ∃mi ∈� : φmi = ni ⇒ mi + 1 = ni ⇒ mi = ni − 1

n1 ∗ n 2 = φm1 ∗ φm2 = φ m1 ⋅ m2( ) = m1m2 + 1 = n 1 − 1( ) n 2 − 1( ) + 1

b. ∀m1, 2 ∈� :φ m1 ∗ m2( ) = φm1 ⋅ φm2 ⇒ m1 ∗ m2( ) + 1 = m1 + 1( ) m2 + 1( ) ⇒ m1 ∗ m2 = m1 + 1( ) m2 + 1( ) − 1 .

18. a. ∀y i ∈� : ∃xi ∈� : φx i = y i ⇒ 3x i − 1 = y i ⇒ 3x i = y i + 1

y 1 ∗ y 2 = φx 1 ∗ φx2 = φ x 1 + x 2( ) = 3 x 1 + x 2( ) − 1 = y 1 + 1( ) + y 2 + 1( ) − 1 = y 1 + y 2 + 1

b.
∀x1 ,x 2 ∈ � : φ x 1 ∗ x 2( ) = φx 1 + φx2 ⇒ 3 x 1 ∗ x 2( ) − 1 = 3x 1 − 1( ) + 3x 2 − 1( ) ⇒

3 x 1 ∗ x 2( ) = 3x 1 + 3x 2 − 1 ⇒ x 1 ∗ x 2 = x 1 + x 2 + 1
3

19. a. ∀y i ∈� : ∃xi ∈� : φx i = y i ⇒ 3x i − 1 = y i ⇒ 3x i = y i + 1

y 1 ∗ y 2 = φx 1 ∗ φx2 = φ x 1x 2( ) = 3x 1x 2 − 1 = y 1 + 1( ) y 2 + 1( ) − 1

b. ∀x1 ,x 2 ∈ � : φ x 1 ∗ x 2( ) = φx 1 ∗ φx 2 ⇒ 3 x 1 ∗ x 2( ) − 1 = 3x 1 − 1( ) 3x 2 − 1( ) ⇒

3 x 1 ∗ x 2( ) = 3x 1 − 1( ) 3x 2 − 1( ) + 1 ⇒ x 1 ∗ x 2 = x 1 − 1
3( ) x 2 − 1

3( ) + 1
3

20. The result of the operands after * then φ must be equal to that after φ then *.

21. A function φ:S S→ ′  is an isomorphism between binary structures S,∗( )  and ′ ′∗( )S ,  if and only if 

∀ ∈ ∗( ) = ′∗a b S a b a b, : φ φ φ .

22. Exchange the phrases “is an identity for *” and “for all s S∈ ”.

23. An element     e eL R,  is a left, right identity of a binary structure 
  
S,∗( )  if and only if   ∀ ∈ ∗ = ∗ =s S e s s s e sL R: , .  Let 
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* be defined by the table.  Then a and b are both such that     ∀ ∈ ∗ = ∗ =s S a s s b s s: , , so left, right identites are not 
unique.  The proof of uniqueness of identity breaks down when applied to left, right identities at the point of the 
‘role reversal’ of the two identities.
* a b
a a b
b a b

24. Let     e eL R,  be a left, right identity of a binary structure S,∗( ) .  Then

    

∀ ∈ ∗ = ⇒ ∗ =
∀ ∈ ∗ = ⇒ ∗ =





⇒ =
s S e s s e e e
s S s e s e e e

e eL L R R

R L R L
L R

:
:

25.

    

∀ ′ ′ ∈ ′
′ ′ ∗ ′ ′





= ′ ′ ∗ ′ ′ = ′ ∗ ′

′ ′ ∗ ′





= ′ ′ ′ ∗ ′ ′





= ′ ′ ∗ ′ ′













s s S
s s s s s s

s s s s s s
1 2

1 2 1 2 1 2

1 2 1 2 1 2

, :
φ φ φ φφ φφ

φ φ φ φ φ φ φ

φ φ

φ

 isomorphism  invertible

 invertible
, so ′φ  is an isomorphism.

26.
      
∀ ∈ ( ) ∗( ) = ∗( )( ) = ′∗( ) = ( ) ′′∗ ( ) = ( ) ′′∗ ( )s s S s s s s s s s s s s1 2 1 2 1 2 1 2 1 2 1 2, : ψ φ ψ φ ψ φ φ ψ φ ψ φ ψ φ ψ φ

φ ψ

o o o
 isomorph  isomorph

27. reflexive: 
    
S S, ,∗( ) ≅ ∗( )  by I S S s s: :→ a .

symmetric: S S, ,∗( ) ≅ ′ ′∗( )  by φ:S S→ ′ .  Then, by Exercise 25 ′ ′∗( ) ≅ ∗( )S S, ,  by φ inv .

transitive: If 
    
S S S S, , , , ,∗( ) ≅ ′ ′∗( ) ′ ′∗( ) ≅ ′′ ′′∗( )

φ ψ

, then by Exercise 26, 
      
S S, ,∗( ) ≅ ′′ ′′∗( )

ψ φo

.

28. Let ∗ be commutative on S, and let φ be an isomorphism S S, ,∗( ) ≅ ′ ′∗( )
φ

.  So, 

∀ ′ ∈ ′ ∃ ∈ = ′ ′∗ = ∗( ) = ∗( ) = ∗
∗

s S s S s s s s s s s s s si i i i: : :φ φ φ φ φ φ φ
φ φ

1 2 1 2 2 1 2 1

 isomorphism  commutative  isomorphism

, ′∗  is 

commutative on   ′S .

29. Let ∗ be associative on S, and φ: , ,S S∗( ) ≅ ′ ′∗( ) , and ∀ ′ ∈ ′ ∃ ∈ = ′s S s S s si i i i: : φ .  Then

    

s s s s s s s s s s s s

s s s s s s s s s

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

′ ′∗ ′ ′∗ ′





= ′∗ ′∗( ) = ′∗ ∗( ) = ∗ ∗( )( )
= ∗( ) ∗( ) = ∗( ) ′∗ = ′∗( ) ′∗

φ φ φ φ φ φ

φ φ φ φ φ φ

φ φ

φ φ

 isomorph  isomorph

 isomorph  isomorph

== ′ ∗ ′





∗ ′s s s1 2 3

.

30.     ∀ ′ ∈ ′ ∃ ∈ = ′c S c S c c: : φ , 
    
∃ ∈ ∗ = ⇒ ′ = = ∗( ) = ∗x S x x c c c x x x x: φ φ φ φ , so  ′ ∗ ′ = ′x x c  has a solution 

  ′ = ∈x x Sφ .

31. Let     b S b b S∈ ∗ ∈: .  Then 
    
∃ ′ = ∈ ′ ′ = = ∗( ) = ∗ = ′ ∗ ′b b S b b b b b b b bφ φ φ φ φ: .

32? Let φ : �→ H : a + bi , a,b ∈R : a
a −b
b a

 

 
 

 

 
 , and let v,w ∈�; v = ′ v + i ′ ′ v , w = ′ w + i ′ ′ w , ′ v , ′ ′ v , ′ w , ′ ′ w ∈ �.

a.

  

φ φ φv w v iv w iw v w i v w
v w v w

v w v w

v v
v v

w w
w w

+( ) = ′ + ′′( ) + ′ + ′′( )( ) = ′ + ′( ) + ′′ + ′′( )( ) =
′ + ′ − ′′ + ′′( )
′′ + ′′ ′ + ′













=
′ − ′′
′ ′′









 +

′ − ′′
′′ ′











= ′ + ′′( ) + ′ + ′′( ) = +φ φ φ φv iv w iw v w

b. φ φ φv w v iv w iw v w v w i v w v w

v w v w v w v w

v w v w v w v w

⋅( ) = ′ + ′′( ) ⋅ ′ + ′′( )( ) = ′ ′ − ′′ ′′ + ′ ′′ + ′′ ′( )( )
=

′ ′ − ′′ ′′ − ′ ′′ + ′′ ′( )
′ ′′ + ′′ ′ ′ ′ − ′′ ′′













=
′vv w v w v w v w

v w v w v w v w
v v
v v

w w
w w

v iv w iw v w

′ − ′′ ′′ ′ ′′ − ′′ ′
′′ ′ + ′′ ′ − ′′ ′′ + ′ ′









 =

′ − ′′
′′ ′









 ⋅

′ − ′′
′′ ′











= ′ + ′′( ) + ′ + ′′( ) = ⋅φ φ φ φ

14



33. The two isomorphisms possible are the identity and
      
φ: , ,a b b a( ) ( )a , so the equivalence classes have either one or 

two elements.  Calculate the number of equivalence classes with one element— these are the ones where φ coincides 
with the identity:

    

C F F C
E D D E

C F
D E

= ′ = ′
= ′ = ′





⇒
= ′
= ′





,
,

, which corresponds to the four tables where 
    
C D a a a b b a b b, , , , , , , ,( ) ∈ ( ) ( ) ( ) ( ){ } .  So 

there are 
  
4

16 4
2

4 6 10+ − = + =  equivalence classes.

a b
a C D
b E F   

b a
b C' D'
a E' F'   

b a
a E' F'
b C' D'   

a b
a F' E'
b D' C'

§1.3 Groups
1. � is closed under ∗.

G1. ∀a,b ,c ∈� : a ∗ b( ) ∗ c = ab( ) ∗ c = ab( )c = a bc( ) = a ∗ bc( ) = a ∗ b ∗ c( ).
G2. ∀a ∈ � : 1 ∗ a = 1 ⋅ a = a, a ∗ 1 = a ⋅ 1 = a .

G3. ∀a ∈ � : / ∃ ′ a ∈� : a ∗ ′ a = a ′ a = 1 ⇒ ′ a =
1
a

.

2. ∀a,b ∈2� : ∃m,n ∈� : a = 2m, b = 2n ⇒ a ∗ b = a + b = 2m + 2n = 2 m + n( ),m + n ∈� , so 2� is closed 
under ∗.

G1. ∀a,b ,c ∈2� : a ∗ b( ) ∗ c = a + b( ) + c = a + b + c( ) = a ∗ b ∗ c( ) .

G2. ∀a ∈ 2� : a + 0 = 0 + a = a .

G3. ∀a ∈ 2� : ∃n ∈ � : a = 2n .  Let 
  
′ = − = −( ) = −( ) ∈a a n n2 2 2Z, so 

  
′ ∗ = −( ) + = ∗ ′ = + −( ) =a a a a a a a a0 0, .

3. ∀a,b ∈�
+ : a ∗ b = ab ∈ �

+ , so �+ is closed under ∗.

G1. ∀a,b ,c ∈�
+ : a ∗ b( ) ∗ c = ab( ) ∗ c = c ab = abc 24

a ∗ b ∗ c( ) = a ∗ bc( ) = a bc = a2bc4

.

4. ∀a,b ∈� : a ∗ b = ab ∈ � , so � is closed under ∗.

G1. ∀a,b ,c ∈� : a ∗ b( ) ∗ c = ab( ) ∗ c = ab( )c = a bc( ) = a ∗ bc( ) = a ∗ b ∗ c( ).
G2. ∀a ∈ � : 1 ∗ a = 1 ⋅ a = a, a ∗ 1 = a ⋅ 1 = a .
G3. ∀a ∈ � : / ∃ ′ a ∈� : 0 ⋅ ′ a = 1

5. ∀a,b ∈�
+ : a ∗ b = a b ∈ �

+ , so �+ is closed under ∗.

G1. ∀a,b ,c ∈�
+ : a ∗ b( ) ∗ c = a b( ) c = a bc( )

a ∗ b ∗ c( ) = a b c( ) = ac b

.

6. ∀a,b ∈� : a ∗ b = ab ∈�, so � is closed under ∗.

G1. ∀a,b ,c ∈� : a ∗ b ∗ c( ) = a ∗ bc = a ⋅ bc = abc

a ∗ b( ) ∗ c = ab ∗ c = ab ⋅ c = abc

.

G2. ∀a ∈ �: / ∃ e ∈� : i ∗ e = ie = i .

7.
    
∀ ∈ …{ } ∗ = +( ) ∈ …{ }a b a b a b, , , : mod , ,0 999 1000 0 999 , so the set is closed under ∗.

G1.
∀ ∈ …{ } ∗( ) ∗ = +( ) +( ) = + +( )

∗ ∗( ) = + +( )( ) = + +( )
a b c a b c a b c a b c

a b c a b c a b c

, , , , : mod mod mod

mod mod mod

0 999 1000 1000 1000

1000 1000 1000
.
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G2.

    

∀ ∈ …{ } ∗ = +( ) = =

∗ = +( ) = =

a a a a a

a a a a

0 999 0 0 1000 1000

0 0 1000 1000

, , : mod mod

mod mod
.

G3.

    

∀ ∈ …{ } ∃ ′ = −( )
∗ ′ = + −( )( ) = =

′ ∗ = −( ) +( ) = =






a a a

a a a a

a a a a
0 999 1000

1000 0 1000 0

1000 0 1000 0
, , : mod :

mod mod

mod mod
.

8. U = e iθ{ }
θ ∈�

∀x , y ∈U : ∃θ ,ψ ∈ �: x = e iθ , y = e iψ ⇒ x ⋅ y = e iθ e iψ = e
i θ +ψ( ) ∈U , so U is closed under multiplication.

G1. ∀x , y ,z ∈U : ∃θ ,ψ ,φ ∈ �: x = e iθ , y = e iψ ,z = e iφ

a ⋅ b( ) ⋅ c = e iθ ⋅ e iψ( ) ⋅ e iφ = e iθ ⋅ e iψ ⋅ e iφ( ) = a ⋅ b ⋅ c( )
.

G2. e e U x U e x x x e xi= = ∈ ∀ ∈ ⋅ = ⋅ =1 0 : : , .

G3. ∀x ∈U : ∃θ ∈� : x = e iθ ⇒ ′ x = e −iθ ∈U : x ⋅ ′ x = e iθ e −iθ = e 0 = 1 = e

′ x ⋅ x = e −iθ e iθ = e 0 = 1 = e
.

9. ∀x ∈U : ∃θ ∈� : x = e θi ⇒ ∃y , ′ y ∈U : y = e
1
2 θi

, ′ y = e
1
2 θ + π( )i

, y ≠ ′ y  where   y y e xi⋅ = =θ  and 

′ ⋅ ′ = = =+( )y y e e x
i iθ π θ2

.  So U , ⋅( ) has two distinct ‘halves’ of each of its elements— this is an algebraic property of 

the group.  Now
∀x ∈ �: ∃y ∈� : y + y = x ⇒ y = 1

2 x

∀x ∈ �
∗,x < 0 : y ⋅ y = x ⇒ y = x ⇒ y ∉ �

∗

so �,+( )  has just exactly one ‘half’ for each element, and �,∗( )  has elements with none.  So neither of the three 
groups are isomorphic.

10. a. ∀a,b ∈ n�,+( ) : ∃l,m ∈ �
+ : a = ln, b = mn ⇒ a + b = l + m( )n ∈ n�,+( ) , so the operation is closed.

G1. + is associative.
G2. 0 ∈ n�,+( ) : ∀a ∈ n�,+( ) : 0 + a = a, a + 0 = a .

G3. ∀a ∈ n�,+( ) : ∃m ∈ � : a = mn ⇒ ′ a = −m( )n ∈ n�,+( ) ⇒ a + ′ a = mn + −m( )n = 0, ′ a + a = −m( )n + mn = 0 .

b. Define isomorphisms by ∀n ∈� : φ : n�,+( ) → �,+( ) : nm a m .  Then

∀m ∈ � : nm ∈n� ⇒ φ nm( ) = m  (surjective)

∀m,p ∈� : ∃mn ,p n ∈� :n = mnn ,p = p nn :φm = φp ⇒ φ mnn( ) = φ p nn( ) ⇒ mn = p n ⇒ m = p  (injective)

∀m,p ∈� : φ nm + np( ) = φ n m + p( )( ) = m + p = φ nm( ) + φ np( )
11. The operation is closed, associative, with identity 0, and inverse –A.

12. Write these matrices as 
    
ai i

n[ ] =

=

0

1
, then the operation is closed by 

  
A B a bi i i

n
⋅ = [ ] =

−

0

1
.  Also

G1.
  
A B C a b c a b c a b c A B Ci i i i i i i i i i i i i i

⋅( ) ⋅ = [ ] ⋅[ ] = [ ] = [ ] ⋅[ ] = ⋅ ⋅( ) .

G2. A a a A A Ai i i i i
+ = [ ] + [ ] = [ ] = + = … =0 0 0, .

G3.
    
∀ = [ ] ∃ ′ = − = −[ ] + ′ = [ ] + −[ ] = [ ] = ′ + = … =A a A A a A A a a A Ai i i i i i i i i

: : ,0 0 0.

13. By the calculations in Exercise 12, the operation is closed, associative, with identity 0, and inverse –A.
14. As Exercise 13.

15. In our notation, 

    

A B a b
k

n

ik kj

i j

n

⋅ = +










=

−

=

−

0

1

0

1

,

.  The elements of A and B under the diagonal     a bi j j i j j> >= =, , 0 are zero, 

so the elements of AB under the diagonal are:
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AB a b a b b a a
i j j k

n

ik kj
k

j

k j

i

k i

n

ik kj
k j i

kj
j k i

ik
j i k

ik[ ] = + = + + +








 = + ⋅ + ⋅ + ⋅ =

> =

−

= = + = +

−

≤ < < ≤ < <, 0

1

0 1 1

1

0 0 0 0

so the operation is closed.

G1.

  

A B C a b c a b c a b c
k

n

ik kj

i j

n

ij i j

n

i

n

k

n

ik kl lj

i j
k l

n

il lk kj

i j

n

⋅( ) ⋅ = +












⋅[ ] = + +






















= +










=

−

=

−

=

−

=

−

=

−

=

−

=

−

0

1

0

1

0

1

0

1

0

1

0

1

0,
,

,
,

,

11

 and

    

A B C a b c a b c a b cij i j

n

k

n

ik kj

i j

n

l

n

il
k

n

lk kj
k l

n

il lk kj

i j

n

⋅ ⋅( ) = [ ] +












= + +






















= +










=

−

=

−

=

−

=

−

=

−

=

−

=

−

,
,

,
,

0

1

0

1

0

1

0

1

0

1

0

1

0

1

.

G2.  A I I A A⋅ = ⋅ = .

G3.
  
A a

i

n

ii= +
=

−

0

1

, so A is not invertible if     A = 0.

16. The operation is closed, associative, with identity 0, and inverse –A.

17. The operation is closed, associative, and identity by Exercise 15G2.  Since 
    
A = 1, an inverse exists: 

′ = ⇒ = =− − −A A A A AA I1 1 1 .  Is the inverse in the group?  Suppose that A−1 is not upper-triangular, then by the 

calculation in Exercise 15, neither is   A A I− =1 , which is a contradiction.

18. ∀ = ⋅A B AB A B, : , so the operation is closed.  It is associative, with identity I, and the regular matrix inverse.

19. a. ∀a,b ∈� \ −1{ } : a ∗ b = a + b + ab ∈�; a + b + ab = −1 ⇒ b + 1( )a = − b + 1( ) ⇒ b = −1 ∨ a = −
b + 1
b + 1

= −1, 

so a ∗ b ∈ � \ −1{ } .

b.G1. ∀a,b ,c ∈� \ −1{ } : a ∗ b( ) ∗ c = a + b + ab( ) ∗ c = a + b + ab( ) + c + a + b + ab( )c = a + b + c + ab + ac + db + abc ,

∀a,b ,c ∈� \ −1{ } : a ∗ b ∗ c( ) = a ∗ b + c + bc( ) = a + b + c + bc( ) + a b + c + bc( ) = a + b + c + ab + ac + bc + abc .

G2. ∀a ∈ � \ −1{ } : a ∗ e = a ⇒ a + e + ae = a ⇒ ae = −e ⇒ e = 0 ∨ a = −1⇒ e = 0 .  Conversely, 
0 0 0∗ = + + =a a a a , so 0 is the identity.

G3. ∀a ∈ � \ −1{ } : ′ a ∗ a = 0 ⇒ ′ a + a + ′ a a = 0 ⇒ 1 + a( ) ′ a = −a ⇒ a ≠ −1 ⇒ 1 + a ≠ 0( ) ′ a = −
a

a + 1
.  

Conversely, a a a
a

a
a

a

a a

a
a a
a

∗ ′ = −
+

−
+

=
+( )

+
− −

+
=

1 1

1

1 1
0

2 2

, so ′a  is the inverse.

c.
  
2 3 7 2 2 3 7 2 2 3 2 2 3 7 12 4 1

3
∗ ∗ = ⇒ + +( ) ∗ = ⇒ + +( ) + + + +( ) = ⇒ … ⇒ = − ⇒ = −x x x x x x x x x .

20.

a b c d
a e a b c
b a e c b
c b c e a
d c b a e   

a b c d
a e a b c
b a e c b
c b c a e
d c b e a   

a b c d
a e a b c
b a b c e
c b c e a
d c e a b   

∗ 1 i -1 -i
1 1

i -1
-1 1
-i -1

The groups represented by the second and third tables are isomorphic by 
      
φ: , , , , , ,e a b c e b a c( ) ( )a .

a. commutative
b. See fourth table— it is isomorphic to the group represented by the second and third tables.
c. Since the group has four elements, n must equal two.  The four elements are thus represented by 

  

1
1

1
1

1
1

1
1











−










−









−
−









, , , .  Each of these squared equals the identity matrix, so this group must be 

isomorphic to that represented by the first table.
21. A two-element group must be isomorphic to the one represented by Table 1.3.18.  A three-element group must be 

isomorphic to the one represented by Table 1.3.19.
22. The definition of an inverse depends on that of identity, so G2 must precede G3.  So the logically possible orders 

are G1-G2-G3, G2-G1-G3, and G2-G3-G1.
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23. a. ‘associativity’ might be defined;  the statement “x = identity” is false;  the operation “⋅” is not defined
b. a group is a set with an operation;  ‘associativity’ might be defined;  ‘identity’ should be defined;  ‘inverse’ should 

be defined
c. the statement “the binary operation is defined” is redundant;  associativity axiom is omitted;  ‘identity’ should be 

defined;  ‘inverse’ should be defined, after ‘identity’
d. “a set is called a group” is incorrect, rather a set with an operation;  ‘associativity’ might be defined;  the statement 

“an operation is associative under addition” is meaningless, an operation is either associative or not;  define what ‘a’ 
is;  “{e}” is a set, many groups do not have a set as an identity element;  define a' as the inverse;  define a and a' as 
elements of the group

24. Name this group S.
S e a b
e e a b
a a e e
b b e e

    ∀ ∈ ∈ ∗ = ∗ =x S e S x e e x x: :  (G2)

    ∀ ∈ ∗ =x S x x e:  (G3)

e a e a e a

e a a e e e

∗( ) ∗ = ∗ =

∗ ∗( ) = ∗ =
, so G1 is not satisfied.

25. a. false;  b. true;  c. true;  d. false;  e. false;  f. true, assuming the text is correct;  g. by Table 18 and 19, true;  h. true 
(see calculation);  i. false, no identity element;  j.true.

′ ∗ ∗ ∗( ) = ′ ∗ ⇒ ′ ∗( ) ∗ ∗ = ′ ∗ ⇒ ∗ ∗ = ′ ∗ ⇒ ∗ = ′ ∗ ⇒

∗( ) = ′ ∗ ⇒ ∗( ) ∗ ′ = ′ ∗( ) ∗ ′ ⇒ ∗ ∗ ′( ) = ′ ∗ ∗ ′ ⇒ ∗ = ′ ∗ ∗ ′ ⇒

= ′ ∗

a a x b a c a a x b a c e x b a c x b a c

x b a c x b b a c b x b b a c b x e a c b

x a c ∗∗ ′b
26. ∀ ∈ ∃ ′ ∈ ∗ ′ =a A a A a a e: :

  
φ φ φ φ φ φ φ φ φ φ φe a a a a a e a a a a a= ∗ ′( ) = ∗ ′( ) ⇒ ( )′ ∗ = ( )′ ∗ ∗ ′( ) ⇒ ( )′ = ′( )

27. By contradiction.  Since G is finite, there are an odd number of elements in G besides e.  Reduce by pairs until there 
is just one element left.

Take any a G a e∈ ≠, .  If a a e∗ = , we stop; otherwise, a a b G b e b b a a a a∗ = ∈ ≠ ⇒ ′ = ( )′ = ∗( )′ = ′ ∗ ′,
( )17

.  If 

  ′ =b e , then   ′ ∗ ′ =a a e  and we can stop; otherwise,   ′ ≠b e .  If  ′ =a a  then   e a a a a= ∗ ′ = ∗ , which is a 
contradiction, so   ′ ≠a a , that is, a and a' are distinct elements that do not square to identity.
Continue this process until an appropriate element is found, or there is just one element left;  call this element c.  
Suppose   c c d e c c d∗ = ≠ ⇒ ′ ∗ ′ = ′ .  If  ′ =d d , then  e d d= ∗  and we can stop.  If   ′ =d e , then   ′ ∗ ′ =c c e , and we 
can stop.  Otherwise   ′ ∗ ′ =c c b  for some b we considered in the reduction process, so   c c d b∗ = = ′ , which is 
impossible because we already removed b'.
So we must have stopped at some point previous and found an appropriate element.

28. a. For ∀a,b ,c ∈�
∗ :

  

a b c a b c a b c ab c

a b c a b c a b c ab c

∗( ) ∗ = ( ) ∗ = =

∗ ∗( ) = ∗ ( ) = ⋅ =

b. 1 ∈ �
∗ : ∀a ∈�

∗ : 1 ∗ a = 1 ⋅ a = a

∀a ∈ �
∗ :

1
a

∈ �
∗ : a ∗

1
a

= a ⋅
1
a

= 1

c. −1 ∈ �
∗ : / ∃ a ∈� : a ∗ −1 = a ⋅ −1 = − a = 1 , so it is not a group.

d. The group axioms with left identity and inverse, or with right identity and inverse, both define groups;  the group 
axioms with left identity and right inverse do not.

29.   x x x x x x x x x e∗ = ⇒ ′ ∗ ∗ = ′ ∗ ⇒ = , and the identity is unique.
30. For ∀ ∈a b G, ,
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a b a b a b a b e a b a b b e b a b a e b a b a b

a b a a b a a b e b a a b b a

∗( ) ∗ ∗( ) = ∗( ) ∗( ) ∗ = ⇒ ∗( ) ∗( ) ∗ ∗ = ∗ ⇒ ∗( ) ∗( ) ∗ = ⇒ ∗( ) ∗ = ⇒

∗( ) ∗ ∗ = ∗ ⇒ ∗( ) ∗ = ∗ ⇒ ∗ = ∗
so G is commutative.

31. ∀n ∈�
+ , let 

    
U zn i= ∈{ }C

i=0

n-1
 be the roots of     z n = 1.  Then 

    
∀ ∈ ⋅( ) = ⋅ = ⋅ =z U z z z zi j n i j

n
i
n

j
n

, : 1 1 1, so 

  z z Ui j n⋅ ∈  and the set is closed under multiplication.

G1. multiplication is associative
G2.   1 1 1∈ ∀ ∈ ⋅ = ⋅ =U z U z z zn i n i i i: : .

G3.   ∀ ∈ ∈ ⋅ = =
− −

z U z z z zi n i i i i: :
1 1 0

1C , and 
    

z z zi

n

i
n

i
n− −

−
−



 = = 



 = =

1
1

11 1, so     z Ui n
−

∈
1

.

32.
    
∀ ∈ ∗( ) = ∗( ) = ( ) ∗ ( ) = ( ) ∗ ( )a b G a b a b a b a b, :

1 1 1

a b a a

a b a b a b a b a b a b a b a a b b a b

n n b

n n n n n
n

n n n n

∗( ) = ( ) ∗ ( ) ⇒

∗( ) = ∗( ) ∗ ∗( ) = ∗( ) ∗ ∗ = ( ) ∗ ( ) ∗ ∗ = ( ) ∗ ∗ ( ) ∗ = ( ) ∗ ( )+ + +1 1 1
 times abelian .

33. Let 
  
m G= , and consider the     m + 1 elements a am0, ,… .  Since G has only m elements,     ∃ =i j a ai j, : .  Assume 

without loss of generality that i j≤ , so a a a a a a a a a e ai j i j i i i i i j i j i= = ∗ ⇒ ′( ) ∗ = ′( ) ∗ ∗ ⇒ =− − − .

34. a b a b a b a b a a b b a a b a b a a a a b b b b a a b∗( ) = ∗ ⇒ ∗( ) ∗ ∗( ) = ∗ ∗ ∗ ⇒ ′ ∗ ∗ ∗ ∗ ∗ ′ = ′ ∗ ∗ ∗ ∗ ∗ ′ ⇒ ∗ = ∗
2 2 2 .

35.
  
a b a b a b a b a b a b e a b a b b a b a b a a b∗( )′ = ′ ∗ ′ ⇔ ∗ ∗ ∗( )′ = ∗ ∗ ′ ∗ ′( ) ⇔ = ∗ ∗ ∗ ′ ⇔ = ∗ ∗ ′ ⇔ ∗ = ∗ .

36.   a b c e b c a b c a e∗ ∗ = ⇒ ∗ = ′ ⇒ ∗ ∗ = .

37. Suppose x x e∗ ′ ≠ , then   x x x e x x e x x x e x x e e e e e∗ ′ ∗ ≠ ∗ ⇒ ∗ ≠ ⇒ ′ ∗ ∗ ≠ ′ ∗ ⇒ ∗ ≠ ⇒ ≠ .
Suppose   x e x∗ ≠ , then   ′ ∗ ∗ ≠ ′ ∗ ⇒ ∗ ≠ ⇒ ≠x x e x x e e e e e .

38. Define e by   e a a∗ =  for some   a G∈ .  Then
∀ ∈ ∃ ∈ ∗ = ⇒ ∗ = ⇒ ∗ ∗ = ∗ ⇒ ∗ =b G y G a y b e a a e a y a y e b b: : ,
so e is a left identity.  Also,
∀ ∈ ∃ ′ ∈ ′ ∗ =a G a G a a e: : ,
so a' is a left inverse for a.  By Exercise 37, G is a group.

39. Let φ: , , :G G a a∗( ) → ⋅( ) ′a .  Then

    
∀ ∈ ⋅( ) ∃ ′ ∈ ⋅( ) ′( ) = ′( )′ =a G a G a a a, : , : φ  because 

  
′( )′ ⋅ ′ = ⇒ ′( )′ ⋅ ′ ⋅ = ⇒ ′( )′ =a a e a a a a a a , so φ is surjective.

∀ ∈ ∗( ) = ⇒ ′ = ′ ⇒ ′ ⋅ = ′ ⋅ ⇒ = ′ ⋅ ⇒ ⋅ = ⋅ ′ ⋅ ⇒ =a b G a b a b a a b a e b a b e b b a b a, , : φ φ , so φ is injective.

    
∀ ∈ ∗( ) ∗( ) = ∗( )′ = ⋅( )′ = ′ ⋅ ′ = ⋅a b G a b a b b a a b a b, , : φ φ φ , so 

  
G G, ,∗( ) ≅ ⋅( ) .

40.       ∀ ∈ → ′g G i G G x gxgg: : : a .  Then

∀ ∈ ∃ ′ ∈ ′( ) = ′ ′ =x G g xg G i g xg gg xg g xg: :  (surjective)

    ∀ ∈ = ⇒ ′ = ′ ⇒ ′ ′ = ′ ′ ⇒ =x y G i x i y gxg gyg g gxg g g gyg g x yg g, :  (injective)

    
∀ ∈ ( ) = ′ = ′ = ′ ′ = ⋅x y G i xy gxyg gxeyg gxg gyg i x i yg g g, : ,

so 
  
G Gi g

≅ .

41. a. monoid
b. semigroup (ε is the identity element)

§1.4 Subgroups
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1. ∀x , y ∈� : x + y ∈ � (closed),     e eR C= = 0  (identity), ∀x ∈ �: − x ∈� (inverse).

2. 1 ∈ �
+ : − 1 ∉�

+  (inverse), so not a subgroup.

3. ∀x , y ∈7� : ∃x7 , y 7 ∈ � : x = 7x 7 , y = 7y 7 ⇒ x + y = 7 x 7 + y 7( ) ∈7�  (closed), e 7� = e � = 0  (identity), 

∀x ∈ 7� : ∃x 7 ∈ � : − x = −7( )x 7 ⇒ − x ∈ 7� (inverse).

4. ∀x , y ∈i� : ∃x i, y i ∈� : x = ix i , y = iy i ⇒ x + y = i x i + y i( ) ∈i� (closed), e i� = e � = 0  (identity), 

∀x ∈i�: ∃x i ∈ �: x = ix i ⇒ − x = i −x i( ) ∈i� (inverse).

5. ∀x , y ∈π� : ∃x π , y π ∈� : x = πxπ , y = πy π ⇒ x + y = π x π + y π( ) ∈π�  (closed), e π� = e � = 0  (identity), 

∀x ∈π� : ∃x π ∈ � : x = πx π ⇒ − x = π −x π( ) ∈π�  (inverse).

6. π 2 ∈ π n{ }
n ∈�

, π 2 + π 2 ∉ π n{ }
n ∈�

 (not closed), so not a subgroup.

7. 1. 0 ∉ �
∗ ⇒ � / ⊆ �∗

2. ∀x , y ∈�
+ : x ⋅ y ∈ �

+  (closed), e �+ = e � = 1  (identity), ∀x ∈ �
+ : x −1 ∈�

+  (inverse)

3. e � = 1 ∉7�  (identity not in subset), so not a subgroup.
4. i ∈i�, i ⋅ i = −1 ∈i� (not closed), so not a subgroup.
5. e � = 1 ⇒ / ∃ q ∈ � : qπ = 1  (identity), so not a subgroup.

6. ∀x , y ∈ π i{ }
i∈�

: ∃x π , y π ∈ � : x = π x π , y = π y π ⇒ x ⋅ y = π x π ⋅y π ∈ π i{ }
i∈�

 (closed), e � = 1 = π 0 ∈ π i{ }
i∈�

 

(identity), ∀x ∈ π i{ }
i∈�

: ∃xπ ∈� : x = π x π ⇒ x −1 = π −x π ∈ π i{ }
i∈�

 (inverse).

8. Let 
    
A B n A B A B, , :∈ ( ) = = ⇒ ∗ =GL R 2 4, so multiplication is not closed on that set.

9. By §1.3.12, the set is closed.  The identity is in the set.  For all A a A aii ii ii
ii

= [ ] ⇒ = 





− −1 1
 is in the set also.

10. By §1.3.15, the set is closed.  The identity is in the set.  By 
  

1 1
1

1
1 1

1 1
1









 ⋅









 = … =









  we see that the inverse of at 

least one element of the set is itself not in the set.
11. By the argument of Exercise 8, multiplication is not closed on that set.
12. By the argument of Exercise 8, multiplication is closed on that set.  The identity has a determinant of one, and so is 

in the set.  Since A A− =1 1 , the inverse is also in the set.

13. Let A, B be orthogonal matrices, then 
    
AB AB B A AB B B I( ) ( ) = = =

T T T T , so AB is orthogonal.  Also,     I I IT =  so the 

identity is orthogonal also.  Since the transpose of an orthogonal matrix is its inverse, the inverse is also orthogonal.
14. a. +1 ∈ ˜ F : �→ �: x a 1, − 1 ∈ ˜ F : � → � : x a −1 ⇒ +1( ) + −1( ) = 0 ∉ ˜ F , so the set is not closed under 

addition.
b. The question of whether     ̃F  is a subgroup of itself is answered by whether   ̃F  is a group.

15. a. ∀f , g ∈G : f + g : �→ �: f + g( )1 = f 1 + g1 = 0 ⇒ f + g ∈G  (closed)

0 ∈ �→ �: ∀f ∈G : f + 0 ∈ �→ �: x a f + 0( )x = fx + 0 x( ) = fx ⇒ f + 0 = f  (identity)

      
∀ ∈ ′ ∈ → − ⇒ ∀ ∈ + ′( ) = + ′ = − = ⇒ + ′ = ∈f G f x fx x f f x fx f x fx fx f f G: : :R R Ra 0 0  (inverse)

b.
    
∀ ∈ ( ) = ⇒ ∉f G f f F: ˜1 0 , so the set is not a subset of   ̃F .

16. a. Let f ∈ �→ �: x a
x = 1 : 1
x ≠ 1 : − 1

 
 
 

⇒ f ∈G , then 
  
1 0 1 0 0 1 1 0 1+( ) = ( ) + = + −( ) = ⇒ + ∉f f f F̃ , so the set is 

not closed under addition.

b. ∀f , g ∈G : ∀x ∈ �:
fg( )x = fx ⋅ gx ≠ 0 ⇒ fg ∈ ˜ F 

fg( )1 = f 1 ⋅ g1 = 1 ⋅ 1 = 1

 
 
 

  
⇒ fg ∈G  (closed)

1 ∈G : ∀f ∈G : ∀x ∈ �: 1 f( )x = 1 x( ) ⋅ fx = 1 ⋅ fx = fx ⇒ 1 f = f  (identity)
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∀f ∈G : ∃ ′ f ∈� → � : x a fx( )−1 : ∀x ∈� : f ′ f ( )x = fx ⋅ ′ f x = fx ⋅ fx( )−1 = 1 ⇒ f ′ f = 1

∀x ∈� : ′ f x = fx( )−1
≠ 0 ⇒ ′ f ∈ ˜ F 

′ f 1 = f 1( )−1
= 1−1 = 1 ⇒ ′ f ∈G

 (inverse).

17. a.
  
1 1 0 1 1 1 0 1 0 1 0 1 1 2 1 1∈ ⇒ ( ) = ⇒ +( ) = ( ) + ( ) = + = ⇒ + ∉˜ ˜F F , so the set is not closed.

b.
∀f , g ∈ ˜ F : ∀x ∈� : fg( )x = fx ⋅ gx ≠ 0 ⇒ fg ∈ ˜ F 

fg( )0 = f 0( ) ⋅ g 0( ) = 1 ⋅ 1 = 1
 (closed)

1 ∈ ˜ F ⇒ 1 0( ) = 1 : ∀f ∈ ˜ F : ∀x ∈� : f 1( )x = fx ⋅ 1 x( ) = fx ⇒ f 1 = f  (identity)

∀f ∈ ˜ F : ∃ ′ f ∈� → � : x a fx( )−1 : ∀x ∈� : f ′ f ( )x = fx ⋅ ′ f x = fx ⋅ fx( )−1 = 1 ⇒ f ′ f = 1

f 0 = 1 ⇒ ′ f 0 = f 0( )−1 = 1
 (inverse)

18. a.
  
− ∈ ⇒ −( ) = − ⇒ − + −( ) = −( ) + −( ) = − + − = −1 1 0 1 1 1 0 1 0 1 0 1 1 2F̃ , so the set is not closed under addition.

b.
  
∀ ∈ ( ) = ⋅ = − ⋅ − =f g F fg f g, :̃ 0 0 0 1 1 1, so the set is not closed under multiplication.

19. a. Let ∀a ∈ �: f a ∈� → a{ } .  Then

∀a,b ∈� : ∀x ∈ �: f a + f b( )x = f ax + f bx = a + b ⇒ f a + f b = f a + b  (closed)

∀a ∈ �: ∀x ∈� : f a + f 0( )x = f ax + f 0x = a + 0 = a ⇒ f a + f 0 = f a  (identity)

∀a ∈ �: ′ f a = f −a ⇒ ∀x ∈� : f a + ′ f a( )x = f a + f −a( )x = f ax + f −ax = a + −a( ) = 0 ⇒ f a + ′ f a = 0  (inverse)

b.   f F0 ∉ ˜.
20. See table.
21. a. –50, –25, 0, 25, 50

b. 4 2 1 1
2

1
4

, , , ,

c.
1 1

1
2

2

π π
π π, , , , .

22.
  

0 1
1 0

0 0 1 1 0 1 1 0
1 0 0 1 1 1 0 0

1 0
0 1

2
−

−








 =

⋅ − ⋅ − ⋅ − − ⋅
− ⋅ + ⋅ − − ⋅ − + ⋅









 =









 and 

  

0 1
1 0

1 0 0 1 1 1 0 0
0 0 1 1 0 1 1 0

0 1
1 0

3
−

−








 =

⋅ + ⋅ − ⋅ − + ⋅
⋅ + ⋅ − ⋅ − + ⋅









 =

−
−









 , so 

0 1
1 0

1 0
0 1

0 1
1 0

−
−









 =











−
−






















, .

23.
    

1 1
0 1

1 0
0 1

1
0 1

0

0









 =









 =











=

n

n

,

    

1 1
0 1

1 1
0 1

1 1
0 1

1
0 1

1 1
0 1

1 1 0 1 1 1
0 1 1 0 0 1 1 1

1 1
0 1

1







 =



















 =


















 =

⋅ + ⋅ ⋅ + ⋅
⋅ − ⋅ ⋅ + ⋅









 =

+









+n n
n n n n

,

    

1 1
0 1

1
1

1 1
0 1

1
0 1

1

1









 =

−







 =











−

=−

n

n

,

1 1
0 1

1 1
0 1

1 1
0 1

1
0 1

1 1
1

1 1 0 1 1 1
0 1 1 0 0 1 1 1

1 1
0 1

1 1







 =



















 =











−
−









 =

⋅ + ⋅ ⋅ − + ⋅
⋅ + ⋅ ⋅ − + ⋅









 =

−









− −n n
n n n n

,

so by induction 
1 1
0 1

 

 
 

 

 
 =

1 n
0 1

 

 
 

 

 
 

 
 
 

 
 
 n ∈�

.

24.
    

3 0
0 2

1 0
0 1

3 0
0 2

0

0









 =









 =











 =

n

n
n

,
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3 0
0 2

3 0
0 2

3 0
0 2

3 0
0 2

3 0
0 2

3 3 0 0 3 0 0 2
0 3 2 0 0 0 2 2

3 0
0 2

1 1

1









 =



















 =





















 = ⋅ + ⋅ ⋅ + ⋅

⋅ + ⋅ ⋅ + ⋅













=






+ +

+

n n n

n

n n

n n

n

n



,

    

3 0
0 2

1
6

2 0
0 3

3 0
0 2

3 0
0 2

1 1

1
1









 =









 =













=












− −

−
=−

n

n
n

,

    

3 0
0 2

3 0
0 2

3 0
0 2

3 0
0 2

3 0
0 2

3 3 0 0 3 0 0 2
3 0 2 0 0 0 2 2

1 1 1

1

1 1

1









 =



















 =

























= ⋅ + ⋅ ⋅ + ⋅
⋅ + ⋅ ⋅ + ⋅













=
− − −

−

− −

−

n n n

n

n n

n n n
33 0

0 2

1

1

n

n

−

−












,

so by induction 
3 0
0 2

 

 
 

 

 
 =

3n 0
0 2n

 

 
 

 

 
 

 
 
 

  

 
 
 

  
n ∈�

.

25.
  

0 2
2 0

2
0 1
1 0

0 2
2 0

2
1 0
0 1

0 1
1 0

−
−









 =

−
−









 ⇒

−
−









 = ⋅











−
−























Exercise 22

, .

26. G1 = �,+ = 1 ,

G2 = �,+  is not cyclic,

G3 = �
+ ,⋅  is not cyclic, because ∀q ≥ 1 : ∀p ∈�

+ ,p > q ,p prime : p ∉ q , and the same argument can be 

made for numbers of the form     1 q  when     q ≤ 1.
G4 = 6�,+ = 6 ,

G5 = 6n{ }
n ∈�

= 6 ,

G6 = a + b 2{ }
a, b∈�

 is not cyclic, because ∀a,b ∈� : a + b 2 = na + nb 2{ }
n ∈�

, so 

∀n ∈ � : na + n + 1( )b 2 ∉ a + b 2 .

27. 30 = 0, 31 = 3, 32 = 2, 33 = 1, 34 = 0 ⇒ 3 = �4 = 4 .

28. c e c c c e c0 1 2 2= = = ⇒ =, , .

29.
    
U e eji

i

ji

i
6

2 6

0

5

0

51
3= { } = 






= =

π π
, so e e e e e e e e

i i i i i i i
2
3

2
3

2
3

4
3

2
3

6
3

0 1 2 3
2 01 1

π π π π π π π





= 











= 





= = = = ⇒, , ,  

e
i2

3 3
π = .

30.
    
U e ij

j
5

2 5

0

4
= { }

=

π , so 
    

e e e e e e e e e e
i i i i i i i i i i4

5
4
5

4
5

8
5

4
5

12
5

2
5

4
5

16
5

6
5

0 1 2 3 4

1
π π π π π π π π π π





= 











= 





= = 





= = ⇒, , , ,  

e U
i4

5
5 5

π = = .

31.
    
U e eij

i

ij

i
8

2 8

0

7

0

71
4= { } = 






= =

π π
, so e e e e e e e e

i i i i i i i3
2

3
2

3
2

3
2

2
2

3
2

1
2

0
0

1 2 3
π π π π π π π





= 





= 





= 





=, , , , e e
i3

2

4
0π





= ⇒  

e
i3

2 4
π = .

32. e e e e e e
i i i i i5

4
5
4

5
4

5
4

2
4

0
0

1 2
π π π π π





= 





= 





=, , , e e
i i5

4
7
4

3
π π





= , e e
i i5

4
4
4

4
π π





= , e e
i i5

4
1
4

5
π π





= , e e
i i5

4
6
4

6
π π





= , 

    
e e

i i5
4

3
4

7
π π





= ⇒ 
    

e U
i5

4
8 8

π = = .
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33.

  

1
1

1
1

1
1

1
1

1
1

1
1

2







































=





















, , so 
 

…[ ] = 2.

34.

  

1
1

1
1

1
1

1
1

1
1

1
1





























































, , , so …[ ] = 3.

35.

  

1
1

1
1

1
1

1
1

1
1

1
1





























































, , , so 
  

…[ ] = 2.

36. a. See table.

b. 0 0= { }
1 = 0,1,2,3,4,5{ } = �6 ,

2 = 0,2,4{ } ≅ �3 ,

3 = 0,3{ } ≅ �2 ,

4 = 0,4,2{ } ≅ �3 ,

5 = 0,5,4,3,2,1{ } = �6 .

c. 1 and 5.
d. <1>, <5>

<2>, <4> <3>

<0>
37. Replace “is a subset H of G” with “is a group on the subset of elements H of G, with the induced operation from 

G.”
38. Ok.
39. a. true (G1);  b. false;  c. true;  d. false (the group itself is the only improper subgroup of itself);  e. false;  f. false;  

g. false;  h. false;  i. true (under addition);  j. false.

40. In �+ ⋅, , 
    
e = = −( ) =1 1 1 1 12 2

, , .

41. φH G⊆ ′ (subset)

    
∀ ′ ′ ∈ ∃ ∈ = ′ = ′ ⇒ ′ ′∗ ′ = ′∗ = ∗( ) ∈h h H h h H h h h h h h h h h h H1 2 1 2 1 1 2 2 1 2 1 2 1 2, : , : ,φ φ φ φ φ φ φ  (closed)

    e e e HG G

H G

H′

⊆

= = ∈
(1.2.14) ( )

φ φ φ  (identity)

    
∀ ′ ∈ ∃ ∈ ∗ = ⇒ ∗( ) = ⇒ ′∗ = ⇒ ′∗ ′ =− − − − −

′h H h H h h e h h e h h e h h eH Hφ φ φ φ φ φ φ: :1 1 1 1 1 , so ′( ) =
− −h h
1 1φ  

(inverse)

42. If G is cyclic, then ∃g0 ∈G : G = g 0 ⇒ ∀g ∈G : ∃m ∈ � : g = g 0
m .  

∀ ′ g ∈ ′ G : ∃g ∈G : φg = ′ g : ∃m ∈� : g = g0
m ⇒ ′ g = φg0

m = φg0( )m
, so ′ =G gφ 0 .

43. Write 
    
HK hk

h H k K
= { } ∈ ∈,

, then
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∀ ∈ ( )( ) = ( )( ) ∈

∈ ∈

h k h k HK h k h k h h k k HK
h h H k k K

1 1 2 2 1 1 2 2 1 2 1 2

1 2 1 2

, :
,abelian

 (closed)

    e e e e e HKG G G

H K G

H K= ⋅ = ⋅ ∈
⊆,

 (identity)

    
∀ ∈ ∃ ∈ ∈ ∈ ⇒ ( ) ⋅ ( ) = ( )( ) = =− − − − − − − −hk HK h H k K h k HK h k hk h h k k e e eH K HK: , :1 1 1 1 1 1 1 1

abelian

, so 

hk h k( ) =
− − −1 1 1 (inverse).

44.
    
a H a G a G a H

H G

∈ ∗ ⇒ ∈ ∗ ⇒ ∈ ∗ ⇒ ∈ ∗
⊆

− =, , , ,1 1
G3

    

a a H

a a e
e HG

G G

G
∗ ∈ ∗

∗ =






⇒ ∈ ∗

−

−

1

1

G1

, , , which proves G2?!

45.
    
⇒( ) ⊆ ⇒ ∀ ∈ ∈ ⇒ ∈− −H G a b H b H ab H, : 1 1

G3 G1

⇐( ) ∀ ∈ ∈ ⇒

∀ ∈ = ∈

∀ ∈ = ∈

∀ ∈ ∃ ∈ = ⇒ = ( ) = ∈













−

−

− −

− − −
−

a b H ab H

a H aa e H

b H eb b H

a b H c H c b ac a b ab H

G

, :

:

:

, : :

1

1

1 1

1 1 1
1

 (G2)

 (G3)

 (G1)

.

46. Let G g= 0 , so ∀g ∈G : ∃m ∈� : g = g0
m ⇒ g = g0

−1 
 

 
 

−m

, and so a cyclic group must have at least g0  

and its inverse as a generator.  If a cyclic group has only one generator, then g g0 0
1

=
−

 and 

g e g g g g g g g e0
0

0
1

0 0
2

0 0 0 0
1

= = = = =
−

, , , so 
    

g0 2≤ .

47.
    
∀ ∈ ( ) = = ⋅ =h h H h h h h e e e1 2 1 2

2
1

2
2

2
, :

commutative

 (closed)

    e e e H2 = ⇒ ∈  (identity)

    
∀ ∈ ( ) ⋅ = ( ) = = ( ) = ( ) ⋅ = ( ) = ( ) = ⇒ ( ) ∈− − − − − − −h H h h h h e e h h e h h h h e h H: ;1

2
2 1

2
2 1

2
1

2
1

2
2 1

2
1

2commut. commut.

 

(inverse).

48. Let 
    
H x Gn x en∈ =

+ = ∈{ }N .  Then

    
∀ ∈ ( ) = = ⋅ =h h H h h h h e e en

n n n
1 2 1 2 1 2, :

commut.

 (closed)

e e e Hn
n= ⇒ ∈  (identity)

∀ ∈ ( ) ⋅ = ( ) = = ( ) = ( ) ⋅ = ( ) = ( ) = = ⇒ ( ) ∈− − − − − − −h H h h h h e e h h e h h h h e e h Hn

n
n

n
n

n n n
n

n
n

n

n: ;1 1 1 1 1 1 1
commut. commut.

 

(inverse).
49. See Exercise 1.3.33.

50. Since   H ≠ ∅ , ∃ ∈h H .  Since H is closed under the operation of G, ∀m ∈� : h m ∈H .  Since H ∈� , 

∃m,n ∈� : h m = h n .  Suppose without loss of generality that m n< , so h h hm m n m= ⋅ − .  Since this is an 

expression in G also, and since the identity of G is unique,  e h HG
n m= ∈− .  Also,     h h h en m n m⋅ = =− − −1 , so 

h h Hn m− − −= ∈1 1 .  So H is a subgroup of G.

51.
    
∀ ∈ = = ⇒ ( ) = = ( ) ⇒ ∈x y H xa ax ya ay xy a xay a xy xy Ha a, : ,  (closed)

  ea a ae e Ha= = ⇒ ∈  (identity)

∀ ∈ = = = = = ⇒ ∈− − − − − − − − −x H x a x ae x axx x xax eax ax x Ha a: 1 1 1 1 1 1 1 1 1  (inverse).

52. a. ∀ ∈ ∀ ∈ = = ⇒ ( ) = = ( ) ⇒ ∈x y H s S xs sx ys sy xy s xsy s xy xy Hs s, : : ,  (closed)
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    ∀ ∈ = = ⇒ ∈s S es s se e Hs:  (identity)

    ∀ ∈ ∀ ∈ = = = = = ⇒ ∈− − − − − − − − −x H s S x s x se x sxx x xsx esx sx x Hs s: : 1 1 1 1 1 1 1 1 1  (inverse).
b. By definition.

53.     ∀ ∈ = = ∈ ⇒−a G aa e e H a aG H: ~1

    
∀ ∈ ⇒ ∈ ⇒ ( ) = ∈ ⇒− − −a b G a b ab H ab ba H b a, : ~ ~1 1 1

    ∀ ∈ ∧ ⇒ ∈ ⇒ = ∈ ⇒− − − − −a b c G a b b c ab bc H ab bc ac H a c, , : ~ ~ , ~1 1 1 1 1 .
54.     ∀ ∈ ∩ ∈ ∈ ∈ ∈ ⇒ ∈ ∧ ∈ ⇒ ∈ ∩q r H K q H q K r H r K qr H qr K qr H K, : , , ,  (closed)

  

H G e e H
K G e e K

e H KH G

K G
G

⊆ ⇒ = ∈
⊆ ⇒ = ∈





⇒ ∈ ∩  (identity)

    ∀ ∈ ∩ ∈ ∧ ∈ ⇒ ∈ ∩− − −q H K q H q K q H K: 1 1 1  (inverse).

55.
    
∀ ∈ ∃ ∈ = = ⇒ = = = =

+ +
g g g m m g g g g g g g g g g g g

m m m m m m m m
1 2 0 1 2 1 0 2 0 1 2 0 0 0 0 2 1

1 2 1 2 2 1 2 1, : , : ,Z .

56. This is the case if G is commutative:

∀ ∈ = ( ) ∈g h G g h gh Gn n
n

n n n
n, :

commutative

 (closed)

  e e Gn
n= ∈  (identity)

    
∀ ∈ ( ) ⋅ = ( ) = = ( ) ∈− − −g G g g g g e e g Gn

n

n
n

n
n

n

n: ,1 1 1
commutative

 (inverse).

57. By contradiction:  suppose G is not cyclic.  If     /∃ ∈ ≠g G g e, , then 
 
G E e= = , which is a contradiction.  So 

∃ ∈ ≠g G g e,  and by (17), the the nontrivial cyclic group g G⊆ .  But G is not cyclic, so ∃ ′ ∈ ′ ∉g G g g: , so 

g  is proper.

§1.5 Cyclic Groups and Generators
1.   42 4 9 6= ⋅ +
2. − = − ⋅ +42 5 9 3
3. − = − ⋅ +50 7 8 6
4.   50 6 8 2= ⋅ +

5.
  
gcd , gcd ,32 24 2 2 3 2 85 3 3( ) = ⋅( ) = = .

6. gcd , gcd ,48 88 2 3 2 11 2 84 3 3( ) = ⋅ ⋅( ) = = .

7. gcd , gcd ,360 420 2 3 5 2 3 5 7 2 3 5 603 2 2 2( ) = ⋅ ⋅ ⋅ ⋅ ⋅( ) = ⋅ ⋅ = .

8.   13 8 21 17 417+ = =mod .

9.   21 19 40 30 1030+ = =mod .

10. 26 16 42 42 042+ = =mod .

11.   39 17 56 54 254+ = =mod .
12. 1, 2, 3, 4: 4 (by relative primes).
13. 1, 3, 5, 7: 4.
14. 1, 5, 7, 11: 4.
15. 1, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 57, 59: 16.
16. The image of a generator under an isomorphism must be another generator.  By Exercise 52, an isomorphism is 

defined completely by its action on a generator.  Therefore, there is one automorphism for each generator that one 
specific generator could be mapped onto— that is, the number of automorphisms on a cyclic group is the number 
of generators of that group.
1: 1.

17. 1, 5: 2.
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18. 1, 3, 5, 7: 4.
19. –1, 1: 2.
20. 1, 5, 7, 11: 4.

21.
  
30 25 30 30 5 6gcd ,( ) = = .

22.
  
42 30 42 42 6 7gcd ,( ) = = .

23.
    

i i i i i, , ,2 3 41 1= − = − ={ }: 4.

24. 1 2 8
1
4

1
4+( ) = =i e e

i iπ π
, .

25.
    
1 2

1
4

1
4

0+ = ⋅ =ℵi e e
i iπ π
, .

26.

  
2

  
3

  
22

  
2 3⋅

  
1

  
2 32 ⋅

  27. 

3

 
1

2

22 2 3⋅ 32

 
2 32 ⋅

  
2 32⋅

  
2 32 2⋅

  28. 
 
1

 
2

22

23

29.   6 2 3= ⋅ , so the cyclic subgroups are the ones generated by   2 3 1 2 3 2 2 3 3 2 3 60 0 1 0 0 1 1 1⋅ = ⋅ = ⋅ = ⋅ =, , , .

30.   8 2 2 2 2 2 2 4 2 83 0 1 2 3= ⇒ = = = =, , , .

31.   12 2 3 2 3 1 2 3 2 2 3 3 2 3 4 2 3 6 2 3 122 0 0 1 0 0 1 2 0 1 1 2 1= ⋅ ⇒ ⋅ = ⋅ = ⋅ = ⋅ = ⋅ = ⋅ =, , , , , .

32.   20 2 5 2 5 1 2 5 2 2 5 4 2 5 5 2 5 10 2 5 202 0 0 1 0 2 0 0 1 1 1 2 1= ⋅ ⇒ ⋅ = ⋅ = ⋅ = ⋅ = ⋅ = ⋅ =, , , , , .

33. 17 17 17 1 17 171 0 1= ⇒ = =, .

34.
  

2 3 1,{ } = .

35.
  

4 6 2 2 3 22, ,{ } = ⋅{ } = .

36. 8 10 2 2 5 23, ,{ } = ⋅{ } = .

37.
  

12 30 2 3 2 3 5 2 3 62, ,{ } = ⋅ ⋅ ⋅{ } = ⋅ = .

38.
  

12 42 2 3 2 3 7 2 3 62, ,{ } = ⋅ ⋅ ⋅{ } = ⋅ = .

39. 18 24 39 2 3 2 3 3 13 32 3, , , ,{ } = ⋅ ⋅ ⋅{ } = .

40. Insert the phrase “[if and only if] n is the smallest nonnegative integer such that [  a en = ].”
41. Ok.
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42. a. true;  b. false;  c. true;  d. false;  e. true;  f. false (the group of order 3 with the operation that takes the right 
element);  g. true;  h. false (G and G' don't even have to be defined on the same set);  i. true;  j. true.

43. �2 ,+( ) × �2,+( ) = 0,0( ), 0,1( ), 1,0( ), 1,1( ){ },+( ) .

44. �,+( ) .

45. E.
46. Every infinite cyclic group is isomorphic to �, which has two generators.
47. �5 has generators 1, 2, 3, 4.

48. U4 ≅ �4  which has generators 1, 3, so 

  

e e e
j

i

j

i i4
2

1 3

1
2

3
2

π π π











= 








= ,

, .

49. U6 ≅ �6 : e
j
6

2πi 
 
 

  

 
 
 

  
j =1, 5

= e
1
3 πi

,e
5
3 πi   

   .

50. U8 ≅ �8 : e
j
8

2πi 
 
 

  

 
 
 

  
j =1, 3, 5, 7

= e
1
4 πi

,e
3
4 πi

,e
5
4 πi

,e
7
4 πi   

   .

51. U12 ≅ �12 : e
j
12

2πi 
 
 

  

 
 
 

  
j =1, 5, 7, 11

= e
1
6 πi

,e
5
6 πi

,e
7
6 πi

,e
11
12 πi   

   .

52. ∀x ∈G : ∃n ∈� : x = an ⇒ φx = φan =
φ isomorphism

φa( )n
.

53. ∀p ,q ∈S : ∃pn ,p m ,qn ,q m ∈ � : p = p nn + p mm,q = q nn + qmm ⇒
p + q = p n + q n( )n + p m + qm( )m, p n + q n ,p m + q m ∈ �  (closed).
0 0 0= + ∈n m S  (identity)
∀p ∈ S : ∃p n ,p m ∈� : p = p nn + p mm⇒ − p = − p nn + p mm( ) = −pn( )n + −p m( )m ∈ S  (inverse).

54. ab e ab ab ab a ba b e ba b a ba ba e ba e
n n n n n n( ) = ⇒ ( ) = ( ) = ⇒ ( ) = ⇒ ( ) = ⇒ ( ) =

− − − − −2 1 1 1 1
.  Similarly, 

  
ba e ab e

n n( ) = ⇒ ( ) =
′ ′

, so ba ab= .

55. a. The least common multiple of r, s ∈�
+  is the generator of the group �r ∩ �s  (which exists by Theorem 24).  This 

agrees with the intuitive notion because elements of the intersection must be multiples of both r and s.
b. When �r ∩ �s = �rs .
c.

56. Show that an infinite group has an infinite number of subgroups.  If there is a generator a of the group, then it is 
isomorphic to � and thus has an infinite number of subgroups.  If it does not have a generator, then …

57. The group 
    

0 1 1, , ,i i+{ }  under modulo addition is not cyclic, but all its proper subgroups 
    
0 1 1, , ,i i+  are.

58. �n  is closed under   +n .  For ∀r, s ,t ∈�n , 

    

r s t r s n t n r s t n

r s t n r s t n n r s t

n n

n n

+( ) + = +( )( ) +( ) = +( ) +( )
= + +( )( ) = + +( )( ) = + +( )

mod mod mod

mod mod mod
 

(associative)
∀r ∈ �n : r + 0 = r  (identity)

∀r ∈ �n : ′ r =
r = 0 : 0
r ≠ 0 : n − r

 
 
 

⇒ r +n ′ r =
r = 0 : 0 +n 0 = 0

r ≠ 0 : r +n n − r( ) = n modn = 0

 
 
 

 (inverse)

59.
    
∀ ∈ = = = = = = ( ) ⇒ = ⇒ =− − − − − − −x G a e xx xa x xaax xax xax xax a xax ax xa: 2 1 2 1 1 1 1 1

2
1 .

60. �pq is generated by all relative primes to pq, that is, to p and q, less than pq.  There are   p − 1 divisors by q of pq, and 
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    q − 1divisors by p of pq, so there are 
    

pq q p−( ) − −( ) − −( )1 1 1  generators when  p q≠  and 
    

pq p−( ) − −( )1 1  

generators when   p q= .

61. This again amounts to finding the relative primes to   p
r , of which there are   p

r − −1 1.
62.

63.
    
n n mgcd ,( )

64. All the proper subgroups of �p  are 
    
1s s= , where s p s p p s p= ( ) < ⇒ ( ) >gcd , gcd , 1, and p has no 

denominator common with s except 1 if it is prime.
65.
66. Every permutation of edges leads to the same vertex.

67. Not commutative, because     a b b a e a b ab a e3 1 3 1 2⋅ = ⋅ = ≠− −, .
68. Not obvious: one would need to find a path which generates the group.
69. No, because it does not include the identity element.
70. 0

1

2

3

4

5

  71. 0

1

2

3

4

5

6

7

72. a. A relation is represented by a closed path from the identity element to itself.

b.     b e abab e a e a ba b e2 4 2 2= = = =, , , .

73. a.
    
a b a a b2 3 3( ) = ;  b. 

    
ab a b a( )( ) =3 2;  c. 

  
b a b a2 2( ) = .

74.

e a b c
a e c b
b c e a
c b a e

See table, where   c ab= .

75.

e a b c d f
a e c b f d
b d e f a c
c f a d e b
d b f e c a
f c d a b e

See table, where     c ab d ba f aba= = =, , .

76.

e a b c d f
a c f e d b
b d e f a c
c e d a f b
d f c b e a
f b a d c e
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See table, where     c a d ba f ba= = =− −1 1, , .
77.

0

1

2

3

  Z4

e a

b c

  V   78. 
…

…

(nonabelian)

§2.1 Groups of Permutations
1.

  
τσ = ( )1 2 3 6 5 4

2.
  
τ σ2 2 4156 3= ( )

3. µσ 2 3 416 2 5= ( )
4.

  
σ τ− = ( )2 516 2 4 3

5.
  
σ τσ− = ( )1 2 615 4 3

6. σ 0 1 2 3 4 56= ( ) , σ 1 31 4 56 2= ( ), σ 2 4 3 56 21= ( ), σ 3 5 4 6 213= ( ) , σ 4 6 5 213 4= ( ), σ 5 2 613 4 5= ( ), 
  
σ σ6 01 2 3 4 56= ( ) = , so σ = 6.

7.
  
τ 2

0
1 2 3 4 56( ) = ( ), 

  
τ 2

1
4 3 2156( ) = ( ) , 

 
τ τ2

2
2

0
1 2 3 4 56( ) = ( ) = ( ) , so τ 2 2= .

8. σ σ σ σ σ100 6 16 4 6
16

4 4 6 5 213 4= = ( ) = = ( )⋅ + .

9.
  
µ0 1 2 3 4 56= ( ) , 

  
µ1 5 2 4 316= ( ),  

µ2 1 2 3 4 56= ( ), so µ µ µ100 2 50 2
50

50= = ( ) = =⋅ e e .

10.

  
Z, +  

Z6, +

 
Z2, + S6  

17Z, +

  
Q, +

  
3Z, +

  
R, +

S2

  
R*, ⋅

  
R + ⋅,

  
Q*, ⋅

  
C*, ⋅

  
π , ⋅

3 5 41 2( )

  ℵ0
62 6!173 ℵ

cyclic cyclic acyclic

11. O1 1 3 4 5 6 2, , , , , ,σ = { }.

12. O1 1 2 4 3, , , ,τ = { }.

13. O1 1 5, ,µ = { }.

14.   ε ρ ρ ρ ρ µ φ µ ρφ µ ρ φ, , , , ,1 2
2

1 2 3
2= = = = = .
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15.
  
ρ ρ φ µ= = ( ) = = ( )1 12 3 41 21 4 3, ,   ε ρ= 0,   ρ ρ1

1= , 
 
ρ ρ ρ2

2 2 3 41 3 41 2= = ( ) = ( ), 
  
ρ ρ ρ3

3 3 41 2 41 2 3= = ( ) = ( ),   φ µ= 1, 
  
φρ φ δ= ( ) = ( ) =2 3 41 1 4 3 2 2, 

  
φρ φ µ2

23 41 2 4 3 21= ( ) = ( ) = , 

  
φρ φ δ3

141 2 3 3 21 4= ( ) = ( ) = .

16.
    
S S S S4 3 3 3 4 3 3 3 3 6

σ σ= =
≅ ⇒ = = =! .

17. S S S S5 2 5 4 5 2 5 4 4 24
σ σ= =

≅ ⇒ = = =! .

18. a.
  
ρ ρ ρ ρ ρ ε ρ ρ1

0
1
1

1
2

1
3

1 1 21 2 3 2 31 31 2 1 2 3= ( ) = ( ) = ( ) = ( ) ⇒ = { }, , , , , ,

  
ρ ρ ρ ρ ρ ε ρ ρ2

0
2

1
2

2
2

3
2 2 11 2 3 31 2 2 31 1 2 3= ( ) = ( ) = ( ) = ( ) ⇒ = { }, , , , , ,

  
µ ε µ µ µ µ ε µ ε µ1

0
1
1

1 1
2

1 1 121 4 3 1 2 3 4= = = ( ) = ( ) = ⇒ = { }, , , .

b.
  

µ ε µ2 2= { }, , 
  

µ ε µ3 3= { }, , 
  
ρ µi j i j

D,
, ; , ,= =

=
1 2 1 2 3 3, 

 
ρ µ ρ µ1 1 1 313 2 213= ( ) = ( ) = , 

  
ρ µ ρ µ1

2
1 1 2213 3 21= ( ) = ( ) = .

    D3

  
µ1   

µ2   
µ3   

ρ ρ1 2=

ε

19. ρ ε ρ ρ ρ ρ1
0

1
1

1 1
2

23 41 2= = = ( ) =, , , ρ ρ ρ1
3

1 33 41 2 41 2 3= ( ) = ( ) = , ρ ρ ε1
4

1 41 2 3 1 2 3 4= ( ) = ( ) = , 

  
ρ ε ρ ρ ρ1 1 2 3= { }, , , ;

  
ρ ε ρ ρ ρ ρ ε ρ ε ρ2

0
2

1
2 2

2
2 2 23 41 2 1 2 3 4= = = ( ) = ( ) = ⇒ = { }, , , ;

ρ ε ρ ρ ρ ρ ρ3
0

3
1

3 3
2

3 241 2 3 3 41 2= = = ( ) = ( ) =, , , ρ ρ ρ3
3

3 13 41 2 2 3 41= ( ) = ( ) = , 

  
ρ ρ ε3

4
3 2 3 41 1 2 3 4= ( ) = ( ) = ⇒ 

  
ρ ε ρ ρ ρ3 1 2 3= { }, , , ;

µ ε µ µ µ µ ε µ ε µ1
0

1
1

1 1
2

1 1 121 4 3 1 2 3 4= = = ( ) = ( ) = ⇒ = { }, , , ;

  
µ ε µ2 2= … = { }, ;

  
δ ε δ δ δ δ ε δ ε δ1

0
1
1

1 1
2

1 1 13 21 4 1 2 3 4= = = ( ) = ( ) = ⇒ = { }, , , ;

δ ε δ2 2= … = { },

20. •
  
ρ ρ ρ ρ0 1 2 31 2 3 4 5 2 4 513 413 2 5 1 2 5 4 3= ( ) = ( ) = ( ) = ( ), , , , 

  
ρ4 2 4 315= ( ),   ρ5 415 2 3= ( ), 

ρ ρ6 01 2 3 4 5= ( ) = .

• Since 
  
213 13 2

2 2( ) = ( ) =ε ε, , there are two distinct elements that square to the identity, while ρ  has only one 

( ρ3 ), so ρ /≅ S3 .
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0 1 2 3 4 5
1 2 3 4 5 0
2 3 4 5 0 1
3 4 5 0 1 2
4 5 0 1 2 3
5 0 1 2 3 4  .

21. a.

 

1
1

1

1
2
3

1
2
3

1 2 3

































=
















⇒ …[ ] ( )~ , 

  

1
1

1

1
2
3

2
3
1

2 31

































=
















⇒ …[ ] ( )~ ,

  

1
1

1

1
2
3

3
1
2

31 2

































=
















⇒ …[ ] ( )~ , 

1
1

1

1
2
3

1
3
2

13 2

































=
















⇒ …[ ] ( )~ , 
1

1
1

1
2
3

3
2
1

3 21

































=
















⇒ …[ ] ( )~ , 
1

1
1

1
2
3

2
1
3

213

































=
















⇒ …[ ] ( )~ .  

Since 
    
A B A B⋅( ) = ( )x x , the matrices form a group isomorphic to a group of permutations.

b.   S3.

22. ε ~

1
1

1
1





















, ρ1

1
1

1
1

~





















, ρ2

1
1

1
1

~





















, ρ3

1
1

1
1

~





















, µ1

1
1

1
1

~





















, 

  

µ2

1
1

1
1

~





















, 

  

δ1

1
1

1
1

~





















, 

  

δ2

1
1

1
1

~





















.

23. S2 .

24.     S S2 2× .

25.     S4 .

26. S∞ .

27. • λ0 40 01 2 3= +( ) = ( ) , λ1 41 1 2 3 0= +( ) = ( ), λ2 42 2 3 01= +( ) = ( ) , λ3 43 3 01 2= +( ) = ( ) , the left regular 

representation is φ : �4 → S4 : x a λx .

•With S3 1 2 1 2 3= { }ε ρ ρ µ µ µ, , , , , :

  
ρ ε ρ ρ µ µ µ ε ρ ρ µ µ µ ε ε ρ ρ µ µ µε 1 2 1 2 3 1 2 1 2 3 1 2 1 2 3( ) = ( ) ⋅ = ( ) ,

  
ρ ε ρ ρ µ µ µ ε ρ ρ µ µ µ ρ ρ ρ ε µ µ µρ1 1 2 1 2 3 1 2 1 2 3 1 1 2 2 3 1( ) = ( ) ⋅ = ( ),
et cetera, reading off the columns of Table 2.1.8.  Then the right regular representation is    φ σ ρσ: :S S3 3→ a .

28. The book definition states “onto”, but this is the same as “to” when a set is mapped to itself.
29. Okay.
30. Permutation.
31. Not surjective for negative numbers.
32. Permutation.
33. Not surjective for nonpositive numbers.

34. f x x x x5
3 2 2= − − ⇒  f x x x5

23 2 2′ = − − ⇒  f x x5 6 2′′ = − .  f x x x5
1
3

0 6 2′′ = ⇒ = ⇒ = , so 

    f 5 0 6 0 2 2 0′′ = ⋅ − = − <  and     f 5 1 6 1 2 4 0′′ = ⋅ − = > , and thus     f 5 is not injective around 1
3
.

35 a. true;  b. false, must map on the same set;  c. true;  d. true? (book says false);  e. true;  f. true (by Theorem 
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1.4.17);  g. false, 
    
S10 10= !;  h. false, by Theorem 1.5.1. every cyclic subgroup is commutative, but in Example 

2.1.17     S3 is shown not to be commutative and is thus not cyclic;  i. true, any  Sn  has   S3 as a subgroup and can 
therefore be neither commutative nor cyclic;  j. true

36.     S3 is not commutative, with proper subgroups 
 
1 2( ) , 

 
13( ) , and 

  
2 3( ) , each isomorphic to     S2  and 

commutative.
37. Function composition is associative by 1.1.13.  The set has the identity function as an identity element, however the 

set does not have an inverse for each of its elements.  For example, let   a A∈ , then       f x aa : a  has no  ′f a  such that 

      f fa ao ′ = 1.  This algebraic structure is a monoid.

38. Let 
    
H S b bA= ∈ ={ }σ σ| , then     ∀ ∈ ∈ = ⇒ =− −σ τ τ τ τ, : ,H S b b b bA

1 1 , and 

    στ στ σ στ− − −∈ = = ⇒ ∈1 1 1S b b b HA , , so H is a subgroup by Exercise 1.5.45.

39. Let 
    
H S b BA= ∈ ∈{ }σ σ| .  If  B A⊂  then     ∃ ∈ ∃ ∈ = ⇒ = ⇒ ∉− −a A B H a b b a H\ : :σ σ σ σ1 1 , so H is not a 

subgroup by Theorem 1.4.14.

40. Let 
    
H S B BA= ∈ ⊆{ }σ σ| .      ∀ ∈ ⊆ ⇒ = ⇒ =−σ τ τ τ τ τ, :H B B B B B B(  bijective) 1 , so     στ − ∈1 SA , and 

    στ σ− = =1B B B  and     στ − ∈1 H .
41. By 40., also a subgroup.
42. A “copy” of an n-gon is any permutation of the vertices of the original in which neighbors of vertices remain 

neighbors.  There are n permutations that leave the orientation unchanged, and another n that reverse it (    n ≥ 3).  
The first set form a group in itself, because any product of permutations that leave the orientation unchanged itself 
leaves the orientation unchanged.

43. How many different ways can a cube be rotated?  One of its six faces can be rotated upwards, then one of four faces 
can be rotated leftward, which fixes the rotation.  So there are   6 4 24⋅ =  possible rotations.  Three subgroups of 
order four are formed by rotating the cube around its three perpendicular axes, and four subgroups of order three 
are formed by rotating it around its four diagonal axes.

44. For ∀ ( ) ( ) ∈≥S Sn n3 1 2 13: , , and 1 2 13 1 2 3 1 2 3 2 1 2 3 1( )( )( ) = ( )( ) = ( ), , , , , , , 13 1 2 1 2 3 13 2 1 3 3 1 2( )( )( ) = ( )( ) = ( ), , , , , ,  

so the group is not commutative.

45. Let σ γ σγ γσ σ γ σγ∈ ∀ ∈ = ⇒ = −S Sn n: : 1 .  Suppose σ ι σ≠ ⇒ ∃ ≠i i i: .  Since n ≥ 3, ∃ ≠j i i,σ , so define 

γ σ= ( )j i .  So 
    
γ σγ γ σ γ σ− − −( ) = ( ) = ( ) =1 1 1i i i j , but j i≠ σ , so it cannot be that σ ι≠ .

46. Suppose c O Oa b∈ , ,,σ σ , then     ∃ ∈ = =n n a c b ca b
n na b, : ,Z σ σ .  So

O a a a c b b b Oa
n

n

n n

n

n n

n

n

n

n n

n

n n

n

n

n
b

a a b b
, ,σ σσ σ σ σ σ σ σ σ σ= { } = { } = { } = { } = { } = { } = { } =

∈

+

∈ ∈ ∈ ∈

+

∈ ∈Z Z Z Z Z Z Z
.

47. Number the elements of A by   a n0 1… − .  Generate n permutations   σ i AS∈  by  σ i j j ia a
n

= + .    +n  induces n distinct 

permutations on A.  Also, ∀ ∈ − < ⇒ =−a A j i n a ai j n j i i jn, : σ .

48. •If     O Aa,σ =  then it is possible to number the elements of A by   a n0 1… −  such that     σ
n

na a0 = .  Then 

    ∀ ∈ = = =− −a A a a a ai j
j i

i
j i i j

j, : σ σ σ σ0 0 , and 
  
σ σj i− ∈ , so σ  is transitive on A.

•Conversely, let σ  be transitive on A.  Then for any given ∀ ∈ ∀ ∈ ∃ ∈ =a A a A a ai
j j

i: : :σ σ σ , so 

O Aa,σ = .

49. a. They will read every product a b c∗ =  as b a c∗ = , and every instance of the associative property of the group 

  
a b c a b c∗ ∗( ) = ∗( ) ∗  as an associative property 

  
c b a c b a∗( ) ∗ = ∗ ∗( ) of a corresponding, but different, group.  Since 

a group can be defined solely in terms of such expressions, their reversal defines a group also.

b.
  
a b c b a c c b a c b a a c b a b c′∗( ) ′∗ = ∗( ) ′∗ = ∗ ∗( ) = ∗( ) ∗ = ′∗ ∗( ) = ′∗ ′∗( ) (associativity)

e x x e e′∗ = ∗ =  (left identity)
  ′ ′∗ = ∗ ′ =a a a a e  (left inverse)

50. Show that the right regular representation φ φ: :G G g g→ ⋅∗( )a  is an isomorphism.  Obviously 
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⋅∗( ) = ⋅∗ ′( ) ⇒ = ′g g g g  because * is a group operation, so φ is an injection, and surjective on φG, so a bijection.  

      
∀ ∈ ∗( ) = ⋅∗ ∗( )( ) = ⋅∗( ) ∗ = ( ) ∗ =g h G g h g h g h g h h g, : φ φ φ φo , with Exercise 49 shows that 

      
φG ,o( ) does indeed 

form a group.
51.

ε ρ

µ

52.       T sx 0       T sx 1

a. 0     s0     s1
b. 1     s1     s0
c. 11101 s0 s1
d. 010100     s0     s1

53.       T sx 0       T sx 1    T sx 2

a. 0110 s0 s0 s0
b. 0110111     s2     s2     s2

c. 1101 s1 s1 s1
1     s1     s2     s2

e     s0     s1     s2

54.
    
n

n
+( ) +

1
1
?

55.   yx is such a string.

56.

T ε 1
ε ε 1
1 1 ε  is a group, because it is a monoid with an inverse    T Tx x

−
=

1
.

57.
    
T s s s s s sε 0 1 2 0 1 2( ) = ( ),     T s s s s s s0 0 1 2 0 0 0( ) = ( ),     T s s s s s s1 0 1 2 1 2 2( ) = ( ),     T s s s s s s01 0 1 2 1 1 1( ) = ( ), and 

    
T s s s s s s11 0 1 2 2 2 2( ) = ( ).
T ε  0  1  01  11
ε ε  0  1  01  11
 0  0  0  01  01  11
 1  1  0  11  01  11
 01  01  0  11  01  11
 11  11  0  11  01  11

is not a group, because there is no inverse for any   Tx  except  Tε .

58.

0 1

0

0

1

1
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59.

e a

b c

e

a
b c

e

a

c
b

e

bc

a

e

a

c
b

60. The state transition function for an input string 
   
g = …( )−g gn0 1  of the automaton of a finite group G is a function 

T G G x x gi
n

ig : :→ ⋅ =
−a 0

1 .  Since   ⋅ ∈=
−

i
n

ig G0
1 , T is a permutation of G.

61. isomorphic to G.

§2.2 Orbits, Cycles, and the Alternating Groups
1. 1 5 2 3 4 6, , , , ,{ } { } { }
2. 1 5 8 7 2 6 3 4, , , , , , ,{ } { } { }
3. 1 2 3 5 4 6 7 8, , , , , , ,{ } { } { }
4. �

5. 2i{ }i∈�
, 2i + 1{ }i∈�

6. 3i{ }i∈�
, 3i + 1{ }i∈�

, 3i + 2{ }i∈�

7.
  
413 58 6 2 7( )

8.
  
3 7 2 8 5 416( )

9.
  
5 4 3 7 8 6 21( )

10. 18 3 6 4 57 18 3 4 3 6 57( )( )( ) = ( )( )( )( )
11. 13 4 2 6 58 7 1 4 13 2 6 57 58( )( )( ) = ( )( )( )( )( )
12. 13 4 7 8 6 5 2 1 2 15 16 18 17 1 4 13( ) = ( )( )( )( )( )( )( )
13 a. 4

b. The order of a cycle is equal to the number of elements in its orbit.

c. σ σ σ σ σ σ σ σ σ0 1 2 3 4 5 6 04 5 2 3 7 2 7 3 4 5 2 3 7 4 5 2 7 3 6= ( ) = ( )( ) = ( ) = ( ) = ( ) = ( )( ) = ( ) = ⇒ =, , , , , , ,

τ τ τ τ τ τ τ0 1 2 3 4 01 4 3 57 8 3 7 58 1 4 3 8 7 5 4= ( ) = ( )( ) = ( )( ) = ( )( ) = ( ) = ⇒ =, , , , .

d.
  
18 3 6 4 57 3 4 6 18 57 3 6 4 18 3 4 6 57 6( )( )( ) ( ) ( )( ) ( ) ( )( )( ) ( ) ⇒ =, , , , , ,

13 4 2 6 58 7 1 4 3 57 8 2 6 13 4 58 7 1 4 3 2 6 57 8 6( )( )( ) ( )( ) ( ) ( )( ) ( )( )( ) ( ) ⇒ =, , , , , ,

  
13 4 7 8 6 5 2 1 4 8 5 3 7 6 2 1 7 53 8 2 4 6 8( ) ( )( ) ( ) … ⇒ =, , , .

e. The order of a permutation is equal to the least common multiple of the numbers of elements of the orbits in a 
decomposition into disjoint cycles.

14.
  
5 2 3 2 3 6= + ( ) =, ,lcm
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15. 6.

16.
  
7 3 4 3 4 12= + ( ) =, ,lcm

17.
  
10 5 3 2 5 3 2 30= + + ( ) =, , ,lcm

18.
  
15 3 5 7 7 5 3 105= + + ( ) =, , ,lcm

19. okay
20. [A cycle is a permutation having] at most [one] nontrivial [orbit].
21. For all positive n,   An  [is the] sub[group of all even permutations] of   Sn .
22. a. false, but every permutation is a product of disjoint cycles.

b. true
c. true, but it wouldn't have been obvious that a permutation couldn't have been both even and odd

d. false, 
    

1 2 3 4 9( ) ⊆ S  contains the odd permutation 
  
1 2 3 4 1 4 13 1 2( ) = ( )( )( ) but none of 

  
1 2 3 4 1 2 3 4 1 2 3 4 13 2 4 1 2 3 4 1 4 3 2

0 1 2 3( ) ( ) ( ) = ( )( ) ( ) = ( ), , ,  is a transposition.

e. false, 
    
A S5

1
2 5

1
2

5 60= = =! .

f. false, 
    
S1 1 1= ( ){ } = ( ) .

g. true, A3
1= { }−ε α α, ,  where α α= ( ) = ( )−1 2 3 13 21,  and the group is commutative:

ε α α′
ε α′ ε
α′ ε α

h. true
i. true
j. false, (1 2) and (3 4) are both odd permutations but (1 2)(3 4) is even.

23. ε = ( ) , ρ1 1 2 3 13 1 2= ( ) = ( )( ) , ρ2 13 2 1 2 13= ( ) = ( )( )  are even, µ µ µ1 2 32 3 13 1 2= ( ) = ( ) = ( ), ,  are odd.

ε ρ1 ρ2
ρ1 ρ2 ε
ρ2 ε ρ1

24. a. By induction.  For     n = 1, the only element of S1 1= ( ){ } can be written as a product of zero transpositions.  For 

    n > 1, for any   σ ∈Sn , the permutation 
  
σ σn n( )  does not move n so is a permutation of     Sn−1 and can be written as a 

product of at most     n − 1 transpositions.  So 
  
σ σ σ σn n n n( )( ) =  is a product of at most n transpositions.

b. If a permutation   σ ∈Sn  is not a cycle it consists of at least two cycles.  Since by (a) each cycle can be written as a 
product of at most     n − 1 transpositions, σ  can be written as a product of at most   n − 2.

c.

25. a.
 
i j b j i b i j( ) × × ×( )( ) = × × ×( )

j

b

i
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b.
  
i j j i i j( )( )( ) = ( )

ij

26. Let   H Sn⊆ .  Either   ∃ ∈σ H  where σ is odd, or all the permutations in H are even.  In the first case let  He  be the 
set of even permutations of H, and let       φ λ σλ: :H He → a .  Since λ is even and σ is odd, λσ must also be odd.  If 

    ∃ ′ ∈ = ′ ⇒ = ′λ λ σλ σλ λ λ, :He , so φ is a bijection.

§2.3  Cosets and the Theorem of Lagrange
1. 4� + 0 = … ,  − 8,  − 4,  0,  4,  8,  …{ } ,

4� + 1 = … ,  − 7,  − 3,  1,  5,  …{ } ,

4� + 2 = … ,  − 6,  − 2,  2,  6,  …{ } ,

4� + 3 = … ,  − 5,  − 1,  3,  7,  …{ } .

2. 2� = … , − 4, − 2, 0, 2, 4, …{ }
4� + 0 = … ,  − 4,  0, 4,  …{ } , 4� + 2 = … ,  − 2,  2, 6,  …{ } .

3. �w12 = 0,… , 11{ }, +12( ) , �12 ∩ 2
12

= 0, 2, 4, 6, 8,10{ }
2 0 0 2 4 6 8 10

12
+ = { },  ,  ,  ,  ,  ,

2 1 1 3 5 7 9 11
12

+ = { },  ,  ,  ,  ,  .

4. 4 0 0 4 8
12

+ = { },  ,  , 4 1 1 5 9
12

+ = { },  ,  , 4 2 2 6 10
12

+ = { },  ,  , 4 3 3 7 11
12

+ = { },  ,  .

5.
    

18
36 0 17

+{ }
∈ …{ }

i
i , ,

.

6.
  
ρ ρ µ ρ µ0 0 2 0 2⋅ { } = { }, , ,

ρ ρ µ ρ δ1 0 2 1 2⋅ { } = { }, , ,

  
µ ρ µ µ ρ1 0 2 1 2⋅ { } = { }, , ,

δ ρ µ δ ρ1 0 2 1 3⋅ { } = { }, , .

7. ρ µ ρ ρ µ0 2 0 0 2, ,{ } ⋅ = { } ,

  
ρ µ ρ ρ δ0 2 1 1 1, ,{ } ⋅ = { },

  
ρ µ µ µ ρ0 2 1 1 2, ,{ } ⋅ = { } ,

ρ µ δ δ ρ0 2 2 2 3, ,{ } ⋅ = { }.

The left and right cosets are not the same.
8. Neither the left nor the right cosets form a group.
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  ρ0   µ2   ρ1   δ1  µ1   ρ2  δ2   ρ3

  µ2

  ρ1

δ1

  µ1

  ρ2

  δ2

  ρ3

  ρ0   δ1   ρ1  ρ2   µ1  ρ3   δ2

  δ2   ρ2   µ2  δ1   ρ3  µ1   ρ0

δ2 ρ3 µ1ρ1 ρ0 ρ2µ2

  ρ2   δ2   ρ3  ρ0   µ2  ρ1   δ1

  µ1   ρ3   δ2  µ2   ρ0  δ1   ρ1

  ρ1   µ2  ρ2

  µ2

  ρ3  δ1   ρ0  µ1

  δ1   ρ0   µ1  δ2   ρ1   ρ2

  ρ0   µ2   ρ1   δ1  µ1   ρ2  δ2   ρ3

 ρ0

 µ2

 ρ1

 δ1

 µ1

 ρ2

δ2

 ρ3

 

  ρ0   µ2   ρ1   δ1   µ1   ρ2   δ2   ρ3

  µ2

  ρ1

δ1

  µ1

  ρ2

  δ2

  ρ3

  ρ0   δ1   ρ1   ρ2   µ1   ρ3   δ2

  δ2   ρ2   µ2   δ1   ρ3   µ1   ρ0

δ2ρ3 µ1 ρ1ρ0 ρ2 µ2

  ρ2   δ2   ρ3   ρ0   µ2   ρ1   δ1

  µ1   ρ3   δ2   µ2   ρ0   δ1   ρ1

  ρ1   µ2   ρ2

  µ2

  ρ3   δ1   ρ0   µ1

  δ1   ρ0   µ1   δ2   ρ1   ρ2

  ρ0   µ2   ρ1   δ1   µ1   ρ2   δ2   ρ3

 ρ0

 µ2

 ρ1

δ1

 µ1

 ρ2

 δ2

 ρ3

9.
  
ρ ρ ρ ρ ρ0 0 2 0 2⋅ { } = { }, , ,

ρ ρ ρ ρ ρ1 0 2 1 3⋅ { } = { }, , ,

  
µ ρ ρ µ µ1 0 2 1 2⋅ { } = { }, , ,

  
δ ρ ρ δ δ1 0 2 1 2⋅ { } = { }, , .

10.
  

ρ ρ ρ ρ ρ0 2 0 0 2, ,{ } ⋅ = { } ,

ρ ρ ρ ρ ρ0 2 1 1 3, ,{ } ⋅ = { },

ρ ρ µ µ µ0 2 1 1 2, ,{ } ⋅ = { } ,

  
ρ ρ δ δ δ0 2 1 1 2, ,{ } ⋅ = { } .

The left and right cosets of this subgroup are the same.
So, even a noncommutative group may (must?) have left and right coset partitions that equal, and thus a coset 
group, if the subgroup is appropriately chosen.

11. This subgroup induces a coset group isomorphic to the Klein 4-group.

  ρ0   µ2  ρ1   δ1  µ1  ρ2   δ2  ρ3

µ2

ρ1

δ1

µ1

ρ2

δ2

ρ3

ρ0 δ1ρ1ρ2 µ1ρ3 δ2

δ2ρ2 µ2δ1ρ3 µ1ρ0

δ2ρ3 µ1ρ1 ρ0 ρ2 µ2

ρ2δ2 ρ3ρ0µ2 ρ1δ1

µ1 ρ3δ2µ2 ρ0δ1 ρ1

ρ1µ2 ρ2

µ2

ρ3δ1 ρ0µ1

δ1 ρ0µ1δ2 ρ1 ρ2

  ρ0   µ2  ρ1   δ1  µ1  ρ2   δ2  ρ3

 ρ0

µ2

ρ1

δ1

µ1

ρ2

δ2

ρ3

ε

ε

ε

ρ

µ

δ

ρ

µ

δ

ρ

ρ µ δ

µ δ

ε δ µ

δ ε ρ

µ ρ ε

V

12.
  
3 0 3 21

24
= …{ }, , , ,

�24 : 3
24

= �24 3
24

= 24 8 = 3 .

13. µ ρ µ1 0 1= { }, ,

    
S S3 1 3 1 3 2 3: !µ µ= = = .
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14.
    
D D4 1 4 1 8 2 4: µ µ= = = .

15.
  
σ σ= ( )( ) = ( ) ⇒ =1 2 4 5 3 6 1 2 3 5 4 5,

    
S S5 5 5 5 24: !σ σ= = = .

16.
  
µ µ= ( )( ) ⇒ = =1 2 4 5 3 6 2 42 ,

S S6 6 6 4 180: !µ µ= = = .

17. Insert “where   a G∈ ”.
18. Amend “  H G⊆ ” (H is a subgroup of G).
19. a. true

b. true
c. true (every subgroup of prime order is cyclic (2.3.11), thus isomorphic to �n , and thus commutative)
d. false (the trivial subgroup of any infinite group obviously has left cosets)
e. true (  H H= ε )
f. false

g. true (by Theorem 2.2.20)
h. true
i. false (not necessarily if the group is noncommutative)
j. true (because cyclic groups are commutative (1.5.1) and by the remark after 2.3.14)

20. Impossible, by the boxed remark after Example 2.3.3.
21. The improper subgroup of any group G.
22. The trivial subgroup of any group of order 6 such as �6 .
23. Impossible, since a partition of a set can never produce more cells than the order of the set.
24. Impossible, since by the boxed remark before 2.3.10 the order of each cell of the partition must be equal, and thus 

equal 
  
6 4 1 1

2
= , and the order of a set must obviously be integral.

25. The relation     ~R is

•reflexive:     ∀ ∈ ⇐ = ∈−g G g g gg e HR: ~ 1 ,

•symmetric:     ∀ ′ ∈ ′ ⇒ ′ ∈−g g G g g gg HR, : ~ 1 , and because H is a group, 
    

gg g g g g H′( ) = ′( ) = ′ ∈−
−

−
−

− −1
1

1
1

1 1  so 

    ′g gR~ .

•transitive:     ∀ ′ ′′ ∈ ′ ′ ′′ ⇒g g g G g g g gR R, , : ~ , ~      gg H g g H′ ∈ ∧ ′ ′′ ∈− −1 1 , and because H is a group, 

    
gg g g gg H′( ) ⋅ ′ ′′( ) = ′′ ∈− − −1 1 1 , so     g gR~ ′′ ,

so it is an equivalence relation.
26. Let φ : :H Hg h hg→ a .  This function is

•surjective: 
    

∀ ∈ = ∈ ⇒ ⊆
∀ ∈ ⇒ ∃ ∈ = ⇒ ⊆





⇒ =
h H h hg Hg H Hg

hg Hg h H h hg Hg H
H Hg

:
:

φ φ
φ φ

φ ,

•injective:     ∀ ′ ∈ = ′ ⇒ = ′hg h g Hg hg h g h h, : ,
so it is bijective.

27. For every left coset defined by some g G∈ , ∀ ∈ ⇒ ∈gh gH h H , and then because g G− ∈1 , 

    
g h g H ghg H h H ghg h gh h g gh Hg−

−
− − −( ) ( ) ∈ ⇒ ∈ ⇒ ∃ ′ ∈ = ′ ⇒ = ′ ⇒ ∈1

1
1 1 1: , so gH Hg⊆ .  Conversely, 

  Hg gH⊆ , so   Hg gH= .

28. ∀ ∈ ∈ ∈ ⇒ ∈ ⇒ ∃ ′ ∈ = ′ ⇒ = ′ ⇒ ∈− −h H g G hg Hg hg gH h H hg gh g hg h g hg H, : : 1 1 .

♥ 27 and 28 together state that H G⊆  induces the same left and right coset partition iff   ∀ ∈ ∈ ∈−h H g G g hg H, : 1 .  
We already know from Example 7 that this is equivalent to the existence of a coset group.
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29. Counterexample: choose 
  
a e H bH H Hb bH Hb= ⇒ = ⇒ =( ) ⇒ = , which obviously does not always hold, as 

in Example 7, where     ρ ρ1 1H H≠ .

30.     ∀ ∈ = ⇒ ∀ ∈ ∃ ∈ = ⇒ = ⇒ ∈
−

a b G Ha Hb h H h H h a h b h h a b b Haa b a b b a, : : :
1

.

31.     ∀ ∈ = ⇒ ∀ ∈ ∃ ∈ = ⇒ = ⇒ = ⇒ =− − − − − −a b G aH bH h H h H ah bh h a bh h h a b h h b aa b a b a b a b a b, : : : 1 1 1 1 1 1, so 

    ∀ ∈ = ⇒ ∈ ⇒ ⊆− − − − − − −h H ha hh h b ha Hb Ha Hba b: 1 1 1 1 1 1 1.  Transposition of ‘a’ and ‘b’ gives the converse, so 

that     Ha Hb− −=1 1.

32. Counterexample: choose 
    
a e H bH H b H bH b H H bH= ⇒ = ⇒ =( ) ⇒ = ⇒ =2 2  which is false if   b H∉ .

33. The order of any proper subgroup   H G⊂  must divide the order pq of G, so 
    
H p q∈{ }1, ,  is prime,  so by (11) H is 

cyclic.

34. Let 
      
φ γ γ

γ γ
: :H H gH Hg

G G{ } → { }∈ ∈
−a 1, which is:

•surjective:

∀ ∈ ∈{ } ⇒ ( ) = ∈{ } ⇒ { }



 ⊆ { }

∀ ∈ ∈{ } ⇒ ∃ ∈ ∈{ }
⇒ ( ) = ( ) = ⇒ { }




∈
−

∈ ∈ ∈

∈
− −

∈

− −
−

∈

g G gH H gH Hg H H H

g G Hg H g G g H H

g H H g Hg H

G G G G

G G

G

:

: :

γ φ γ φ γ γ

γ γ

φ φ γ

γ γ γ γ

γ γ

γ

1

1 1

1 1
1

 ⊇ { }














⇒ { }



 = { }

∈

∈ ∈

H

H H

G

G G

γ

φ γ γ

γ

γ γ
,

•injective: ∀ ′ ∈ ′ ∈{ } ( ) = ′( ) ⇒ = ′
∈

− −g g G gH g H H gH g H Hg Hg
G

, : , :γ φ φ
γ

1 1, so 

∀ ∈ ∃ ′ ∈ = ′ ′ ⇒ ( ) = ′ ′( ) ⇒ = ′ ′ ⇒ ∈ ′ ⇒ ⊆ ′− − − − −
−

−
−

−h H h H h g h g h g h g gh g h gh g H gH g H: : 1 1 1 1 1
1

1
1

1 .  

Transposition of symbols gives the converse, so   gH g H⊆ ′ .
So the function is bijective, which shows the existence of an isomorphism between the left and right coset partition, 
and thus (for infinite sets, by definition) their equal size.

35. Suppose there were two elements c, d of order 2, then 
  
c d,  would generate a subgroup of order 4 (remebering 

that the group is commutative):

e

c

d

cd

e

c

d

cd

e c d cd

c d cd

cc = e

dc = cd

cdc = ccd = d

cd

dd = e

cdd = c

ccd = d

dcd = ddc = c

cdcd = cddc = cc = e

By Lagrange, c d, = 4 would have to divide 
    
2 4

2
n

n= , but 
  

n
2

 is not integral.

36.
    
∀ ∈ ⊆g G g G: .  Since G has no proper subgroups, 

  
g G= .  If G is of infinite order, then 

    
g g G2 ⊂ =  

which contradicts G not having a proper subgroup, so G must be of finite order.  Similarly, if 
  

g  is divisible by 

    n > 1, then g gn ⊂ , again contradicting.  So G must be of prime order.

37. We need to show that each of the elements is in fact a left coset of K in G, that every such coset is an element, and 
that the elements are distinct.  So, let ai i G H{ } ≤ <0 :

 be such that a Hi{ }  is the set of distinct left cosets of H in G, and 

    
bi i H K{ } ≤ <0 :

 such that 
  

b Ki{ } is the set of distinct left cosets of K in H.

• ∀ ⇒ ∈ ⇒a b a b G a b Ki j i j i j,  is a left coset of K in G;

• ∀ ∈g G gK:  is a left coset of K in G, since a H G a g a H h H g a hii i i iU = ⇒ ∃ ∈ ⇒ ∃ ∈ =: : , and since 
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b K H b h b K k K h b kjj j j jU = ⇒ ∃ ∈ ⇒ ∃ ∈ =: : , so  gK a b kK a b Ki j i j= = ;

•
    
∀ ′ ∈{ } ′ ∈{ } = ′ ′ ⇒ = ′ ⇒ = ′a a a b b b abK a b K a H G a a bK b Ki i i, ; , : (  are distinct in ) , so 

    (  are distinct in ) b K H b bi = ′ .

So 
      

a b K Gi ji j { } =
,U  is a distinct left coset partition of G, so 

  
G K a b G H H Ki i i i

: : := { } ⋅ { } = ⋅ .

38. Obviously H is itself one of the left cosets of H in G.  Since there is just one other left coset, and since the cosets 
form a partition of G, the other is G H\ .  The same argument holds for the right coset partition, so the left and 
right coset partitions are equal.

39.
  

a G⊆ , so 
  

a  divides 
  
G , that is 

    
∃ ∈ =m m a GN : , so   a a a e en G m a m= = = = .

40. The left cosets of � in �,+( )  are χ + �{ } χ ∈�
.  Then ∀χ ∈ �: ∀x , ′ x ∈ χ + � ∧ x , ′ x ∈ 0,1[ [ , 

⇒ x − ′ x = x − χ( ) − ′ x − χ( ) ∈
x − χ , ′ x − χ ∈�

�
+  and 

  
x x− ′ ≤ [ [ <0 1 1, , so 

    
x x x x− ′ = ⇒ = ′0 .

41. The left cosets of 
  

2π  in �,+( )  are χ + 2π{ }π ∈�
.  Then 

∀χ ∈ �: ∀x ∈ χ + 2π ⇒ ∃n ∈� : x = χ + n ⋅ 2π ⇒ sin x = sin χ + n ⋅ 2π( ) = sin χ , so it does indeed make 

sense to write the sine function as sin : χ + 2π{ } χ ∈�
→ −1,+1[ ].

42. a. The relation ~ is an equivalence relation because it is:
•reflexive:     a a h H k K a hak a a h k e~ , : ; ,⇐ ∃ ∈ ∈ = ⇐ = = ;

•symmetric: ∀ ∈ ⇒ ∃ ∈ ∈ = ⇒ = ∈ ∈ ⇒− − − −a b G a b h H k K a hbk h ak b h H k K b a, : ~ , : , , ~1 1 1 1 ;
•transitive: ∀ ⇒ ∃ ′ ∈ ′ ∈ = = ′ ′ ⇒ = ′ ′ ′ ∈ ′ ∈a b c a b b c h h H k k K a hbk b h ck a hh ck k hh H k k K, , : ~ , ~ , ; , : , , , , so 

⇒ a c~ .
b. ∃ ∈ ∈ = ⇔ ∈h H k K a hbk a HbK, : .

43. a. Prove it is a subgroup because it satisfies the requirements of Theorem 1.4.14:

•
      
∀ ′ ∈ ′( ) = =σ σ σ σ σ, :,S c c cc c o , so the subset is closed under the operation of   SA ;

•The identity permutation e of A certainly has 
 
e c c( ) = , so     e Sc c∈ , ;

• ∀ ∈ =−σ σS c cc c, : 1 , so σ − ∈1 Sc c, ;

so S Sc c A, ⊆ .

b. The identity permutation of SA  is not closed in     Sc d, , so again by Theorem 1.4.14,     S Sc d A, /⊆ .

c.     Sc d,  is one of the left cosets σ
σ

o Sc c SA
,{ } ∈

 of     Sc c, .

44.
45.     ∀ ∈ ∀ ≤ <n i i nN : : 0 , i is a generator of exactly one subgroup of �n , and conversely, any subgroup of �n  must 

be generated by i i n: 0 ≤ < , so it suffices to enumerate the generators of the subgroups.  By Exercise 44, the 
subgroups of �n  are �d{ }d| n , and by Corollary 1.5.18, �d  has φd  generators, so   n dd d n= + : | φ .

46.

§2.4  Direct Products and Finitely Generated Abelian Groups

1. �2 × �4 =
(0,0) (0,1) (0,2) (0,3)
(1,0) (1,1) (1,2) (1,3)

 
 
 

 
 
 

.  The orders are 
1 4 2 4
2 4 2 4

 
 
 

 
 
 

.  There is no element of order 

�2 × �4 = 8 , so it is not cyclic.

2. �3 × �4 =
(0,0) (0,1) (0,2) (0,3)
(1,0) (1,1) (1,2) (1,3)
(2,0) (2,1) (2,2) (2,3)

 
 
 

 
 

 
 
 

 
 

.  The orders are 
1 4 2 4
3 12 6 12
3 12 6 12

 
 
 

 
 

 
 
 

 
 

.  There are elements of order 
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�3 × �4 = 12 , so the group is cyclic.

3. lcm(2, 2) = 2 (by Theorem 9).
4. lcm(3, 5) = 15.
5. lcm(3, 9) = 9.
6. lcm(4, 6, 5) = 60.
7. lcm(4, 2, 5, 3) = 60.
8. �3 × �8 ⊂ �6 × �8, �3 × �8 = 24  (excepting the nonproper subgroup).

9. (0,1) , (1,0) , (1,1){ } ⊂ �2 × �2 .

10. (0,0,1) , (0,1,0) , (0,1,1) , (1,0,0) , (1,0,1) , (1,1,0) , (1,1,1) ,{ } ⊂ �2 × �2 × �2 .

11.

(0,0),(0,1), (0,2), (0,3){ }
(0,0),(1,1), (0,2), (1,3){ }
(0,0),(0,2), (1,0), (1,2){ }

.

12. �2 × �2 ≅ V ⇒
�2 × �2 × �1 ≅V

�2 × �2 × �2 / ≅ V

 
 
 

, so the subgroups are

(0,0,0), (0,1,0), (1,0,0), (1,1,0){ }
(0,0,0), (0,0,2), (1,0,0), (1,0,2){ }
(0,0,0), (0,0,2), (0,1,2), (0,1,2){ }

.

13. 60 = 22 ⋅ 3 ⋅ 5, so by Corollary 6
�60 ≅ �4 × �3 × �5

�12 × �5

�20 × �3

�15 × �4

.

14. a. 4 ( 0, 18, 12, 6{ } ).

b. 12 (by Corollary 6, �3 × �4 ≅ �12).
c. lcm(3, 4) = 12.
d. V ≅ �2 × �2.
e. 2 ⋅ 1 ⋅ 4 = 8.

15. {2,3} = {1} = �12 .  The left cosets are �12 + i
i∈{0}U .

16. {4,6} = {2} .  The left cosets are {2} + i
i∈{0, 1}U .

17. {8,6,10} = {2} .  The left cosets are {2} + i
i∈{0, 1}U .

18. {ρ2 ,µ 1} = {ρ0 ,ρ2 ,µ 1 ,µ 2}.  The left cosets are {ρ2 ,µ 1} ⋅ i
i∈{ρ 0 , ρ 1}U .

19. {µ 1 ,δ2} = {ρ 0 ,µ 1,δ2 ,ρ 1,ρ 3,δ1 ,µ 2,ρ 2} = D4 .  The left cosets are {µ 1 ,δ2} ⋅ i
i∈{ρ 0}U .

20. (4,2),(2,3){ } = (2,3) = (0,0), (2,3), (4,2),(0,1){ } = (2,0),(0,1){ } .  The left cosets are 

(2,0), (0,1){ } ⋅ i
i∈ (0, 0 ), (1, 0){ }U .

21. 8 = 23, giving �2 × �2 × �2, �4 × �2 , �8 .

22. 16 = 24, giving �2 × �2 × �2 × �2, �4 × �2 × �2 , �4 × �4 , �8 × �2 , �16 .

23. 32 = 25, giving 
�2 × �2 × �2 × �2 × �2, �4 × �2 × �2 × �2 , �4 × �4 × �2 , �8 × �2 × �2 , �8 × �4 , �16 × �2 , �32 .
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24. 720 = 24325, giving �2 × �2 × �2 × �2 × �3 × �3 × �5, �4 × �2 × �2 × �3 × �3 × �5, �4 × �4 × �3 × �3 × �5, 
�8 × �2 × �3 × �3 × �5, �16 × �3 × �3 × �5, �2 × �2 × �2 × �2 × �9 × �5, �4 × �2 × �2 × �9 × �5, 
�4 × �4 × �9 × �5, �8 × �2 × �9 × �5, �16 × �9 × �5.

25. 1089 = 32112, giving �3 × �3 × �11 × �11, �9 × �11 × �11 , �3 × �3 × �121 , �9 × �121 .

26. 24 = 233, giving “ 2 × 2 × 2 × 3, 4 × 2 × 3, 8 × 3”;
25 = 52, giving “5 × 5, 25 ”;
so 24 ⋅ 25 has 2 ⋅ 3 = 6.

27. Each commutative group of order m is isomorphic (by Theorem 12) to �pi
ri

i∏ , and each commutative group of 

order n to � ′ p i
′ r i

i∏  for some p i , ′ p i ,ri , ′ r i .  Then �pi
ri

i∏ × � ′ p i
′ r i

i∏  is a group of order mn.  Since p i ≠ ′ p j  

there is no rearrangement of factors between the two ‘halves’ that gives the same order, so this product is unique for 
the given ‘halves’.
Conversely, any commutative group of order nm can be written (by Theorem 12, reordering factors as required) as 

�pi
ri

i∏ × � ′ p i
′ r i

i∏ .

Thus there are exactly �pi
ri

i∏ ⋅ � ′ p i
′ r i

i∏ = rs  groups.

28. 105 = 2 ⋅ 5( )5 = 2555.  By (23) there are 7 groups of order k5, so there are 49.

29. a. For each order, the possible group factorings are:
2: 2, 11 (2)
3: 3, 21, 111 (3)
4: 4, 31, 22, 211, 1111 (5)
5: 5, 41, 32, 311, 221, 2111, 1111 (7)
6: 6, 51, 42, 411, 33, 321, 3111, 222, 2211, 21111, 111111 (11)
7: 7, 61, 52, 511, 43, 421, 4111, 331, 322, 3211, 31111, 2221 22111, 211111, 1111111 (15)
8: 8, 71, 62, 611, 53, 521, 5111, 44, 431, 422, 4211, 41111, 332, 3311, 3221, 32111, 311111, 2222, 22211, 

221111, 21111111, 11111111 (22)
b. 3 ⋅ 5 ⋅ 15 = 225; 15 ⋅ 15 = 225; 22 ⋅ 5 = 110 .

30. a. true
b. true
c. false
d. true
e. false ( �2 × �4  is not cyclic whereas �8 is)

f. false ( S8 = 8! whereas �2 × �4 = 8)

g. false?  (there is no element of S4  of order 8 that generates the subgroup isomorphic to �8)

h. false ( ε = 1)

i. true
j. true

31. Z2 = 0, 1{ } .

32. a. 1, because every proper subgroup has fewer elements than the group.

b. ∞, because ∀n ∈�
* : n� ≅ �.

33. S3 = 3!= 6 .

34. a. true (Corollary 3.11)

b. false (the Klein 4-group V is not cyclic, and V = 4 = 22)

c. false (1 ∉ 4, 6{ } = 2 )

d. true ( 4,5, 6{ } = 1 = �8)
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e. true
f. false ( �2 / ≅ �3 both have Betti number 0)

g. true (by Theorem 16 G ≅ �5i × K, and �5i  is cyclic)

h. false (it could be that G ≅ �2 × �2; but there exist G for which it is true)

i. false (by Theorem 16, there is no isomorphic factorization containing   �6)
j. true

35. It is equal.  For each commutative group of order p r  the factorization of Theorem 16 gives the structure of a 
corresponding group of order q r .

36. 72 = 2332, so G must be isomorphic to one of �2 × �2 × �2 × … , �4 × �2… , �8 × ….
a. In each of the three cases, G has one subgroup of order 8.
b. In the first case, G has three subgroups of order 4; in the second case, two ( �4  and �2 × �2 ⊂ �4 × �2);  in the 

third case, one.

37. By Theorem 12, 
    
G i p

m

i
ri≅ × ×� � .  Then 

    
H Ei p

m

i
ri= × ×� , since � has no other elements of finite order, and 

Zpi
ri  are finite so each of its elements are.

38. The torsion subgroup of �4 × � × �3 is �4 × E × �3, which has 4 ⋅ 3 = 12 elements;  that of �12 × Z × �12 is 
�12 × E × �12, which has 12 ⋅ 12 = 144 elements.

39. The only elements of finite order in �* form its torsion subgroup −1,+1{ } .

40. The only elements of finite order in �* form its torsion subgroup 1, j , –1,–j{ } .

41. By Theorem 12, every finitely generated commutative group is isomorphic to H i p
m

i
ri= × ×� � .  E n× � is 

obviously torsion-free, and 
    
×i pi

ri�  is its torsion subgroup.

42. c. Let 
      
G i j q qi j n p ij i ji i

qij= × × ∀ ≥< +� , , : , 1, then T j pi j ni i
qij= ×

⋅ <
�

:
.  For each prime pi ,  qij  are its powers in the 

factorization.  Note that I reverse the order of the torsion coefficients because it simplifies the expressions.
a.    G = ×� �2 32 2 , so     i n n p p q q= = = = = = =0 1 1 1 2 3 2 20 1 0 1 00 10, ; , ; , ; , .  Then    T = =⋅� �2 3 362 2 .

b.    G = × ×� � �2 3 2 3 2 51 1 2 1 2 1 , so       T = × × = × ×⋅ ⋅ ⋅� � � � � �2 3 5 2 3 2 60 12 22 1 1 2 1 1  from 

    i p p p n n n q q q q q q= = = = = = = = = = = = =0 1 2 2 3 5 3 2 1 2 2 1 1 1 10 1 2 0 1 2 00 01 02 10 11 20, , ; , , ; , , ; , , , , , .
43. ∀(g ,h), ( ′ g , ′ h ) ∈ G × H : (g ,h) ⋅ ( ′ g , ′ h ) = (g ⋅ ′ g ,h ⋅ ′ h ) = ( ′ g ⋅ g , ′ h ⋅ h) = ( ′ g , ′ h ) ⋅ (g ,h) , so G × H  is 

commutative.

44. H = h ∈ G | h = 2{ }∪ E ⇒ ∀h ∈ H : h = e ,h{ } .

• e ∈ H  (identity)

• ∀h ∈ H : h −1 = h = e ,h{ } ⇒ h −1 = 2 ⇒ h −1 ∈ H  (inverse)

• ∀h, ′ h ∈ H \ E : h ′ h = h −1 ⋅ ′ h −1 = ′ h −1 ⋅ h −1 = (h ′ h ) −1 ⇒ h ′ h = e ,h ⋅ ′ h { } ⇒ h ′ h = 2  (closure)

so H ⊆ G .

45. a. H = h ∈ G | h = 3{ }∪ E ⇒ ∀h ∈ H : h = e ,h ,h 2{ } .

• e ∈ H  (identity)

• ∀h ∈ H : h −1 = h 2 = e ,h 2 ,h 4{ } = e ,h 2 ,h{ } ⇒ h −1 = 3 ⇒ h −1 ∈ H  (inverse)

• ∀h, ′ h ∈ H \ E :

′ h ∉ h : h ′ h = e ,h ′ h ,(h ′ h ) 2{ }
′ h = h : h ′ h = h 2 = h −1

′ h = h 2 : h ′ h = e

 

 
 
 

 
 
 

⇒ h ′ h ∈ H ∪ E  (closure).
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so H ⊆ G .

b. H = h ∈ G | h = 4{ }∪ E ⇒ ∀h ∈ H : h = e ,h ,h 2 ,h 3{ } .  Then hh = e ,h 2{ } ⇒ hh ≠ 4 ⇒ H / ⊆ G .

c. For any n, the identity and inverse exist in the subgroup.  Suppose n is divisible by m, then 

∀h ∈ H : h m( )n/ m
= h n = e ⇒ h m = n

m < n ⇒ h m ∉ H , so n must be prime.

47. a. By Definition 1.

b.
hk = (h,e ) × (e,k) = (he ,ek) = (h,k)
kh = (e ,k) × (h,e ) = (eh,ke ) = (h,k)

 
 
 

⇒ hk = kh .

c. ∀h ∈ H, k ∈ K , h = k : (h,e ) = (e,k) ⇒ h = e ∧ k = e ⇒ H ∩ K = E .
48. ∀h, ′ h ∈ H , k, ′ k ∈ K : hk = ′ h ′ k ⇒ (h,e ) ⋅ (e ,k) = ( ′ h ,e ) ⋅ (e, ′ k ) ⇒ (he ,ek) = ( ′ h e ,e ′ k ) ⇒ h = ′ h ∧ k = ′ k .  Also, 

H × K ≅ H × K .
49. Consider the factorization of any finite commutative group by Theorem 12.  If it contains a factor of the form 

�p × �p , the group is not cyclic because that subgroup has no generator.  Since the group is finite, it contains no � 

factors.  Any factors �p × �q where p ≠ q have (1,1) as generator, but factors �p × �p m ⊇ �p × �p  have no 

generator.

50. By Theorem 12, any such group is isomorphic to G = �pi
ri

i∏ .  For each factor, p i
ri  is divisible only by a power 

of p, so the order of any element of �pi
ri  is a power of p.  So the order of any element of G is (Theorem 9) the least 

common multiple of powers of p, which is itself a power of p.
Is there a counterexample for noncommutative groups?

51. From the isomorphism,
∃φ : G × K → H × K : ∀(g ,k),( ′ g , ′ k ) ∈ G × K :φ (g ,k)( )⋅ φ ( ′ g , ′ k )( ) = φ (g ,k) ⋅ ( ′ g , ′ k )( ) = φ (g ′ g ,k ′ k )( ), so then 

ψ : G → H : g a φ1 g ,e( ) is an isomorphism between G and H.

52. It is easily verified that ∀r < n − 1 : 1 23 Kn( )n −r
1 2( )1 23 Kn( )r

= r + 1 r + 2( ).  Then ∀a,b : a < b , 
(a b) = (a a + 1)(a + 1 a + 2)K(b − 2 b − 1)(b − 1 b)(b − 2 b − 1)K(a + 1 a + 2)(a a + 1).  By Corollary 
2.12, every g ∈ Sn  is a product of such transpositions, so the given set indeed generates Sn .

53.
. (0,1)

. (1,0)

54. a. G will be commutative when the inner and outer n-gons have the same orientation.
b.       � �2 × n .

c. If n is odd, n = 2m + 1 : �2 × �n = �2 × �2m + 1 / ⊇ �2 × �2  it is (49) cyclic.
d. The dihedral group.

55. fx = sin 2πx .
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56. fx = sin
2π
3

x .

57. f (x , y ) = sin 2πx ⋅ sin 2πy .

58. f (x , y ) = sin
2π
3

x ⋅ sin
2

5
y .

59. f (x , y ) = sin 2x + cos3y = sin
2

2π
2πx + cos

3
2π

2πy

τ 1(x , y ) = x +
2π
2

, y
 

 
 

 

 
 ; τ 2(x , y ) = x , y +

2π
3

 

 
 

 

 
 

60. f (x , y ) = sin 12 arctan
y
x

 
 
 

 
 
 .

61. f (x , y ) = sin 12 arctan
y + 5

x − 3

 

 
 

 

 
 .

62. •the rotation over zero degrees is the identity isometry (identity)

•if rotα ∈ H ⇒ rotα
−1 ∈ G ⇒ rotα

−1 = rot −α ∈ H  (inverse)

•if rotα , rotβ ∈ H ⇒ rotα o rotβ ∈ G ⇒ rotα o rotβ = rotα+β ∈ H  (closure)

so H ⊆ G .  An isometry is either orientation-preserving or not, and isometry preservation is isomorphic to �2 (e.g., 
the composition of a preserving with a non-preserving function is non-preserving, 0 + 1 = 1).  The isometries in H 
are all the orientation-preserving ones.  If there is at least one orientation non-preserving isometry in G, then 

      
G H G H≅ × ⇒ =�2 2 .  Otherwise, G = H.

63.
rotation h-reflection v-reflection glide isomorphism

64. N N N N Z
65. N N Y N D∞

66. N Y N N Z × Z2

67. Y N N N D∞

68. Y Y Y N D∞ × Z2

69. N N N Y Z
70. Y N Y Y Z × D∞?

71. a. θ ∈ 0° ,90° ,180° ,270°{ } ;  b. yes;  c. no.  (see left figure)

72. a. θ ∈ 0° ,180 °{ } ;  b. yes;  c. yes.  (see center figure)

73. a. no;  b. no;  c. no.
74. a. no;  b. yes;  c. no.

75. a. θ ∈ 0° ,180 °{ } ;  b. yes;  c. no.

76. a. θ ∈ 0° ,120 ° ,240°{ } ;  b. yes;  c. no.  (see right figure)

77. a. θ ∈ 0° ,120 ° ,240°{ } ;  b. yes;  c. yes (? book says no).

78. a. no;  b. no;  c. yes;  d. (1,0) and (0,1).

79. a. θ ∈ 0° ,90° ,180° ,270°{ } ;  b. yes;  c. no;  d. (2,0) and (0,2) (why does the book say “(1,1)” and not just 
“(1,0)”?).

80. a. θ ∈ 0° ,120 ° ,240°{ } ;  b. no;  c. yes;  d. (1,0) and (0,2)

81. a. θ ∈ 0° ,120 ° ,240°{ } ;  b. yes;  c. no;  d. (0,1) and (1, 3) .

82. Space rotation of a cube is a permutation of its four diagonal axes, so G ⊆ S4 .  How many ways are there of 
permuting them?  Fix one arbitrary axis— there are 2 ⋅ 4 = 8 ways of doing this.  Then there remain three 120° 
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rotations along that axis, giving a total of 8 ⋅ 3 = 24 permutations.  So G = S4 .

§2.5  Binary Linear Codes

1. 0B007F7F2500257F39 (hexadecimal).
2. “GONE_HOME”.
3. x 4 = x 1 + x 2; x 5 = x 1 + x 3; x 6 = x 2 + x 3 .
4. 000000, 001011, 010101, 011110, 100110, 101101, 110011, 111000.
5. An error in one bit generates an error in two parity bits; an error in two bits also generates an error in two parity 

bits; an error in three bits is never detected.
6. One- and two-bit errors both generate errors in two parity bits, so only one type can be reliably corrected.

7. C + {000111} = 000111 , 001100 , 010010 , 011001 , 100001 ,101010 , 110100 , 111111{ } .

8. a. 110;  b. 001;  c. 110;  d. 001, 100, 111;  e. 101.

9. H =
1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1

 

 

 
 
 

 

 

 
 
 
.

10. a. H ⋅ 110111[ ]T
= 100[ ]T

⇒ 110 .

b. H ⋅ 001011[ ]T
= 000[ ]T

⇒ 001 .

c. H ⋅ 111011[ ]T
= 011[ ]T

⇒ 110 .

d. H ⋅ 101010[ ]T
= 111[ ]T

⇒ not decodable.

e. H ⋅ 100101[ ]T
= 011[ ]T

⇒ 101 .

11. 000000 000
000001 001
000010 010
000100 100
001000 011
010000 101
100000 110
Hw corrected code
100 110011 110
000 001011 001
011 110011 110
111 incorrigible
011 101101 101

12. a. wt(u) = 7 ;  b. wt(v) = 6 ;  c. u + v = 1010011001 ;  d. 5.

13.       ∀ ∈ ∈ + = ⇒ ∀ = ⇒ =− − − −v v v v i v v v vn n
i i� �: : :1 1 1 10 , so u − v = u + v−1 = u + v.

14. Because it has a “1” bit in each position where a transmission error occurred.
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15. Because u − v has a “1” bit in each position where u differs from v.
16. a. d(u ,v) = 0 ⇔  u and v agree in each bit position ⇔ u = v .

b. In every bit position where u differs from v, v differs from u.
c. If u differs from w in some bit position, then u differs from v or w differs from v in that position, so 

d(u ,v) + d(w,v) ≥ d(u,w) .
d. If ui = vi  for some bit position i, then also ui + 0 = vi + 0, ui + 1 = vi + 1 , so u + w = v + w .

17. �
n = �2( )n

.

18. • 0000000 = e ∈ �
n ; 0000000 ∈C ⇒ e ∈C  (identity)

• ∀x ∈ C : x = x 1x 2x 3x 4x 5x 6x 7( )
= x 1x 2x 3x 4( ) x 1 + x 2 + x 3( ) x 1 + x 2 + x 3( ) x 1 + x 2 + x 3( )
= x 1x 2x 3x 4( ) x 1 + x 2 + x 3( ) x 1 + x 3 + x 4( ) x 2 + x 3 + x 4( ) ∈ C

 (inverse)

• ∀x , y ∈ C : x + y =
x 1x 2x 3x 4x 5x 6x 7( ) + y 1y 2y 3y 4y 5y 6y 7( ) =

x 1 + y 1 x 2 + y 2 x 3 + y 3 x 4 + y 4 x 5 + y 5 x 6 + y 6 x 7 + y 7( ) =

x 1 + y 1 x 2 + y 2 x 3 + y 3 x 4 + y 4(
(x 1 + x 2 + x 3) + (y 1 + y 2 + y 3)

(x 1 + x 3 + x 4) + (y 1 + y 3 + y 4)

(x 2 + x 3 + x 4) + (y 2 + y 3 + y 4) ) =

x 1 + y 1 x 2 + y 2 x 3 + y 3 x 4 + y 4(
(x 1 + y 1) + (x 2 + y 2) + (x 3 + y 3)

(x 1 + y 1) + (x 3 + y 3) + (x 4 + y 4)

(x 2 + y 2) + (x 3 + y 3) + (x 4 + y 4) ) =

(x + y ) 1 (x + y ) 2 (x + y ) 3 (x + y) 4 (x + y ) 5 (x + y) 6 (x + y ) 7( ) ∈ C

so C ⊆ �
7.

19. ∀c,d ∈ C : c ≠ d : d(c,d) =
16d

d(c − d,d − d) = d(c − d,0) =
15

wt (c − d) − 0( ) = wt(c − d) , where c − d is some element of 
C.

20. m

d

d = m + 1

21. m

d

d = 2m + 1

22. From Exercise 19, the minimum nonzero weight of code words is the minimum distance between code words.  
Then we can detect 2t + 1 = m + 1 ⇒ m = 2t  and correct 2t + 1 = 2m + 1 ⇒ m = t  errors.

23. For there to be a minimum distance of 3 between code words, changing one bit in each of two code words may 
map those two code words into the same coset.  The number of cosets is thus the number of ways of changing 0 or 
1 bits in a code word, so 2n −k ≥ 1 + n .

24. Similarly, the number of cosets is the number of ways of changing 0, 1, or 2 bits in a code word, so 
2n −k ≥ 1 + n + 1

2n n − 1( ).
25. Simply try the formula with increasing value of n:
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k m n – k
a. 2 3 3
b. 4 3 3
c. 8 3 4
d. 2 5 5
e. 4 5 6
f.8 5 7

26. G =

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1

 

 

 
 
 
 
 
 

 

 

 
 
 
 
 
 

.  By Exercise 24, n − k ≥ 4.

27. G =

1 1 1
1 1 1

1 1 1
1 1 1 1

1 1 1 1
1 1 1

1 1 1
1 1 1

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 

.  By Exercise 24, n − k ≥ 4.

28. a. wt(0) = 0 ⇒ 0 ∈ H  (identity).  ∀h ∈ H : h −1 =
13

h ⇒ wt(h−1) = wt(h) ⇒ x −1 ∈ H  (inverse).  Finally, see that 
wt(x + y ) = wt(x) + wt(y ) − 2a , where a is the number of positions where x i = y i = 1  (closure).

b. A word is either even or odd.  Let x ∈ G  be odd, then ∀h ∈ H :xh is odd, and because G is a group, xH is a coset 
of G so G = H ∪ xH .

29.

3.1  Homomorphisms
1. ∀a,b ∈� :φ a +� b( ) = φa +� φb .

2. φ 1
2 +�

1
2( ) = φ1 = 1, φ 1

2 + �φ 1
2 = 0 +� 0 = 0 .

3. ∀a,b ∈�
* :φ ab( ) = ab = a ⋅ b = φa ⋅ φb .

4. ∀a,b ∈�6 : a = 2a2 + a0 , b = 2b2 + b 0

φ a +�6
b( ) = φ 2 a2 + b2( ) +�6

a0 + b 0( )( ) = a0 + b 0( ) mod 2 =

a0 +�2
b 0 = φ 2a2 + a0( ) +�2

φ 2b 2 + b0( ) = φa +�2
φb

.

5. φ 8 +�9
1( ) = φ 0 = 0; φ8 +�2

φ1 = 0 +�2
1 = 1 .  φ is an ‘even-odd’ calculator, but in �

9
, 8 and 8 + 1 are both even.

6. ∀a,b ∈� :φ a +� b( ) = 2a + b = 2a ⋅ 2b = φa ⋅ φb .

7. ∀gi , ′ g i ∈Gi :φ i g i ⋅ ′ g i( ) = e 1,K , g i ⋅ ′ g i ,K ,e r( ) =
def.

e 1 ,K , g i ,K ,e r( ) ⋅ e 1,K , ′ g i ,K ,e r( ) = φ i g i ⋅ φ i ′ g i .

8. If G is commutative, ∀g, ′ g ∈G : φ g ′ g ( ) = g ′ g ( )−1
= ′ g −1g −1 = g −1 ′ g −1 = φg ⋅ φ ′ g .  If G is not commutative, f is 

not generally an isomorphism.

9. ∀f , g ∈F :φ f + g( ) =
d2 f + g( )

d x 2 =
d2 f

d x 2 +
d2 g

d x 2 = φf + φg .

10. ∀f , g ∈F :φ f + g( ) = f + g dx
0

4

∫ = f dx
0

4

∫ + g dx
0

4

∫ = φf ⋅ φg .
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11. ∀f , g ∈F :φ f + g( ) = 3 f + g( ) = 3 f + 3 g = φf + φg .

12. φ
1 0
0 0

 

 
 

 

 
 +

0 0
0 1

 

 
 

 

 
 

 

 
 

 

 
 = φ

1 0
0 1

 

 
 

 

 
 =

1 0
0 1

= 1; φ
1 0
0 0

 

 
 

 

 
 +φ

0 0
0 1

 

 
 

 

 
 =

1 0
0 0

+
0 0
0 1

= 0 + 0 = 0 .

13. ∀A,B ∈Mn : φ A + B( ) = tr A + B( ) = ai + b ii∑ = aii∑ + b ii∑ = trA + trB .

14. Since GL n ,R( ) ⊆ Mn , the proof of Exercise 13 holds.

15. f (x ) = x ⇒ φ f + f( ) = f ⋅ f( )(x ) d x
0

1

∫ = x 2 d x
0

1

∫ = 1
3 x 3

φ f( ) = f (x) d x
0

1

∫ = x d x
0

1

∫ = 1
2

x 2 ⇒ φ f( ) + φ f( ) = x 2

16. Kerφ = A3.

17. φ4 : � → � : n a 4n  is a homomorphism by Example 7, and γ 7 : � → �7 : n a n mod 7  is by Example 10, so 
φ = γ 7 o φ4 , φ1 = 4 ⋅ 1mod 7 = 4mod 7 = 4  is a homomorphism.  Then 

Kerφ = Kerγ 7 o φ4 = γ 7 o φ4( ) inv
0 = φ4

inv 7� = 7
4 � ∩ � = 7�; φ25 = γ 7 o φ4( )25 = γ 7100 = 2 .

18. Let φ = γ 10 o φ6 ; φ1 = 6 .  Then 

Kerφ = φ inv0 = γ 10 o φ6( ) inv
0 = φ6

inv10� = 10
6 � ∩ � = 5

3 � ∩ � = 5�; φ18 = γ 10 o φ6( )18 = γ 10108 = 8 .

19. First, note that (1  4  2  6)(2  5  7) = (1  4  2  5  7  6) .  Let φ : � → S8 :n a (1 4  2  5  7  6)n , then 

Kerφ = φ inv() = 6�; φ 20 = (1 4 2 5 7 6) 2 = (1  2  7)(4  5  6) .

20. Let φ : �10 → �20 : n a 8 ⋅Z 20
n; φ1 = 8 , then Kerφ = φ inv0 = 20

8 � ∩ �10 = 10� + 5; φ3 = 8 ⋅�20
3 = 4 .

21. Let φ : �24 → S8 :n a (2  5)(1 4  6  7)( )n
; φ1 = (2  5)(1 4  6  7) , then 

Kerφ = φ inv0 = 4� ∩ �24 = 0,4,8,12,16,20{ }; φ14 = (2  5)(1 4  6  7)( )2
= (1 6)(4  7) .

22. Let φ : � × � → � : (x , y ) a 3x − 5y ; φ(1,0) = (2,−3),φ(0,1) = (−1,5) , then 
Kerφ = φ inv0 = (x , y) ∈� × � |3x − 5y = 0{ }; φ −3,2( ) = 3 ⋅ −3 − 5 ⋅ 2 = −9 − 10 = −19 .

23. Let φ : � × � → � × � : x , y( ) a 2x − y ,−3x + 5y( ); φ(1,0) = (2,−3),φ(0,1) = (−1,5) , then 

Kerφ = φ inv0 = (x , y) ∈� × � | 2x − y = 0 ∧ −3x + 5y = 0{ } = (0,0){ } , because 

2x − y = 0
−3x + 5y = 0

 
 
 

⇒
y = 2x
−3x + 10x = 7x = 0

 
 
 

⇒
y = 0
x = 0

 
 
 

, and φ(4,6) = 2 ⋅ 4 − 6, − 3 ⋅ 4 + 5 ⋅ 6( ) = (2,18) .

24. φ : � × � → S10 : (x , y) a (3 5)(2 4)( )x
(1  7)(6  10  8  9)( )y

; φ(1,0) = (3 5)(2  4),φ(0,1) = (1 7)(6  10  8  9) , 

then Kerφ = φ inv0 = 2� × 4�; φ(3,10) = (3  5)(2  4)( )1
(1 7)(6 10  8  9)( )2

= (3 5)(2  4)(6  8)(10  9) .

25. There are two: φ1 : � → � : i a i; φ−1 : � → � : i a −i .

26. ∀n ∈ N : φn : � → � :m a nm .

27. There are two: φ1 : � → �2 : i a i mod 2; φ0 : � → �2 : i a 0 .

28. ∀x , y ∈G :φ g(xy ) = φ gx ⋅ φ gy ⇒ g xy( ) = gx ⋅ gy ⇒ xy = xgy ⇒ y = gy ⇒ g = e .

29. ∀x , y ∈G :φ g xy( ) = φ gx ⋅ φ gy ⇒ g(xy) g −1 = gxg −1 ⋅ gyg −1 = gxyg −1 ⇒ g ∈G .

30. A group homomorphism of a group G into a group G' is a map φ : G → ′ G  such that for all x , y ∈G  …
31. OK
32. a. true (odd times even equals even times odd)

b. true (the trivial homomorphism)
c. false (the trivial homomorphism)
d. true (Corollary 18)
e. false (there are 4 cosets in G, but 4 does not divide 6)
f. false (φ is a function, so φG ≤ G )
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g. true (the trivial homomorphism)
h. true (the trivial homomorphism)
i. false (φe ⋅ φe = φe ⇒ φe = e ⇒ e ∈ Kerφ )
j. false (φ : �2 → � × �2 : i a (0,i) )

33. No, there must be 5 cosets in G, but 5 does not divide 12.
34. φ : �12 → �4 : i a i mod 4.

35. φ : �2 × �4 → �2 × �5 : (i , j ) a (i,0) .
36. No.

37. φ : �3 → S3 : i a 1  2  3( )i
.

38. φ : � → S3 : i a 1  2  3( )i
.

39. φ : � × � → 2� : (x , y ) a 2x .

40. φ : 2� → � × � : i a i ,0( ) .

41. φ : D4 → S 3 :
ρ 0 ,ρ 1,ρ 2 ,ρ3 a (1 2) 0

µ 1,µ 2,δ 1 ,δ 2 a (1 2)1

 
 
 

  
.

42. φ : S3 → S 4 : s a s .

43. φ : S4 → S 3 :
s even a (1 2)0

s odd a (1 2)1

 
 
 

  
.

44. φ partitions G into |φG| cosets (Theorem 15), so |φG| divides |G|.  Also, since φ is a function 
φG < G ⇒ G < ∞ ⇒ φG < ∞ .

45. φG ⊆ ′ G ⇒ φG < ′ G < ∞ .  Also, φG ⊆ ′ G ⇒ φG  divides ′ G .

46. ∀g ∈G : g = ⋅iak i
⇒ φg = φ ⋅i aki

= ⋅iφaki
= ⋅i µaki

= µ ⋅i aki
= µg ⇒ φ = µ .

47. By Exercise 44, φG  divides G ,  so φG = 1 (trivial homomorphism) ∨ φG = G  (injective map) .

48. Obvious.  Kerφ = An .

49. ∀g, ′ g ∈G :γφ g ′ g ( ) = γ φg ⋅ φ ′ g ( ) = γφg ⋅ γφ ′ g .

50. φG commutative ⇔ ∀h, ′ h ∈φG ⊆ H : h ′ h = ′ h h ⇔ h = ′ h h ′ h −1 ⇔ ′ h h ′ h −1h −1 = e

⇔ ∀g, ′ g ∈G :φ ′ g g ′ g −1g −1( ) =
Theorem 12.2

φ ′ g ⋅ φg ⋅ φ ′ g ( )−1
⋅ φg( )−1

= e

⇔ ∀g, ′ g ∈G : ′ g g ′ g −1g −1 ∈Kerφ

.

51. ∀n,m ∈� :φ nm( ) = anm = anam = φn ⋅ φm .  φ� = a , Kerφ = � a  (where �∞ ≡ E) .

52.
53. ∀m,n ∈� × � :φ mn( ) = φm ⋅ φn ⇔

φ (m1,m2) ⋅ (n 1 ,n 2)( ) = φ (m1,m2)( ) ⋅ φ (n1 ,n 2)( ) ⇔

φ m1n1 ,m2n2( ) = φ m1,m2( ) ⋅ φ n 1 ,n 2( ) ⇔

h m1n 1 km2n 2 = h m1 km2 h n1 kn 2 ⇔

kh = hk,  so h ,k{ }  is commutative

.

54. ∀h,k ∈G : hk = kh ⇔ G is commutative .

55. ∀i, j ∈�n :φ ij( ) = φi ⋅ φj ⇔ h
i + Zn j

= h ih j ⇐
h = e

h = n

 
 
 

  
⇔ h n = e .

3.2  Factor Groups
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1. �6 3 = �6 3 = 6/ 2 = 3 .

2. �4 × �12 2 × 2 = �4 2 ⋅ �12 2 = 2 ⋅ 2 = 4 .

3. �4 × �2 (2,1) = 8 2 = 4 .

4. �3 × �5 {0} × �5 = �3 {0} ⋅ �5 �5 = 3 ⋅ 1 = 3 .

5. �2 × �4 (1,1) = �2 × �4 (1,1) = 8 4 = 2 .

6. �12 × �18 (4,3) = �12 × �18 (4,3) = 216 6 = 36 .

7. �2 × S3 (1,ρ1) = �2 × S3 (1,ρ1) = 12 6 = 2 .

8. �11 × �15 (1,1) = �11 × �15 (1,1) = 161 161 = 1 .

9. 5 + 4
�12 4

= 1 + 4
�12 4

= 1,2,3,4 = 0{ } + 4 = 4 .

10. 26 + 12
�60 12

= 2 + 12
�60 12

= 2,4,6,8,10,12 = 0{ } + 12 = 6 .

11. (2,1) + (1,1)
�3 ×�6 (1, 1)

= (1,0) + (1,1)
�3 ×�6 (1, 1)

= (1,0), (2,0),(3 = 0,0){ } + (1,1) = 3.

12. (3,1) + (1,1)
�4 ×�4 (1, 1)

= (2,0) + (1,1)
�4 ×�4 (1, 1)

= (2,0), (4 = 0,0){ } + (1,1) = 2 .

13. (3,1) + (0,2)
�4 ×�8 (0, 2)

= (3,1),(6 = 2,2 = 0), (5 = 1,1), (4 = 0,2 = 0){ } + (0,2) = 4 .

14. (3,3) + (1,2)
�4 ×�8 (1, 2)

= (4 = 0,5) + (1,2)
�4 ×�8 (1, 2)

= (0,5), (0,10 = 2 = 0){ } + (1,2) = 2 .

15. (2,0) + (4,4)
�6 ×�8 (4, 4)

= (−2 = 4,−4 = 4) + (4,4)
�6 ×�8 (4 , 4 )

= (0,0) + (4,4)
�6 ×�8 (4, 4 )

= 1 .

16. i ρ1
: S 3 → S3 :σ a ρ 1σρ1

−1 : i ρ 1
ρ0 ,µ 1{ } = ρ1ρ 0ρ1

−1 = ρ0 , ρ1µ1ρ 1
−1 = µ2{ } .

17. Replace “for all h ∈H ” with “for all g ∈G ”.

18. The book definition says “ ghg −1 ∈H ”, but this definition is equivalent.
19. Replace “into” with “onto”.  This makes the homomorphism an isomorphism, which is what an automorphism is 

supposed to be.
20. A normal subgroup can be used to form a factor group.
21. a. This doesn't necessarily have to be nonsense, but apparently students that write a ∈G H  don't realize that 

a g H g Ga a= ∈, .  Since they don't realize that elements of G/H are sets (cosets of H), the proofs make no sense.
b. “Let aH and bH be two elements of G/H.”

c. ∀aH,bH ∈G H : (aH)(bH) = a(Hb)H =
H normal

a(bH)H =
G commutative

(ba)HH =
H normal

b(Ha)H = (bH)(aH) .
22. a. See Exercise 21a.

b. See Exercise 21b.

c. ∀gH ∈G H : ∃n ∈N : g n = e ⇒ gH( )n
=

Theorem 4

g nH = eH = H , which is the identity element of G/H.

23. a. true (if N is not normal, the factor group does not exist— Definition 6)
b. true (Example 8)

c. true ( i g :G → G : x a gxg −1 =
commutative

xgg −1 = x )

d. true (G cannot have more cosets than elements)
e. true (Exercise 22)
f. false ( � 2� = 2)

g. true (Exercise 21)
h. false (G/G is commutative)
i. true (Example 7)
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j. false (n� = �⇒ � n� = E )

24. All permutations of A are even, and those of S\A are all odd.  A,S \ A{ }  are the cosets of A in S.  If σ ∈ Sn  is even, 
so are σA = Aσ ; similarly if σ is odd.

σevenA

σoddA

σevenA

σevenA

σoddA

σevenA

σoddA

σevenA
⇔ 0

1

0

0

1

1

1

0

Z2

The group is isomorphic to �2.

25.
26. G is commutative, so the subgroup T is normal in G.  

∃gT ∈G T : ∃n ∈N * : gT( )n
= T ⇒ g nT = T ⇒ g n ∈T , so G /T  is indeed torsion-free.

27. • ∀H ⊆ G : i e H( ) = H  (reflexive)

• ∀H,K ⊆ G :H ~ K ⇒ ∃g ∈G : i gH = K ⇒ ∀k ∈K : ∃h ∈H : i gh = k ⇒

i g−1 k = i g−1i gh = i g−1 ghg −1( ) = g −1( ) ghg −1( ) g −1( )−1
= h ⇒ i g−1K = H ⇒ K ~ H

(symmetric)

• ∀H,K ,L ⊆ H : H ~ K,K ~ L ⇒ ∃g, ′ g ∈G : K = i gH ,L = i ′ g K ⇒

∀h ∈H : i ′ g gh = ′ g g( )h ′ g g( )−1
= ′ g ghg −1 ′ g −1 = ′ g ghg −1( ) ′ g −1 = ′ g i gh( ) ′ g −1 = i ′ g i gh = i ′ g i gh ⇒

i ′ g gH = L ⇒ H ~ L

 (transitive)

28. If H is normal to G, then by the discussion after Definition 9, the image of H under all the inner automorphisms is 
H itself.  So H is normal iff its cell of the partition under conjugacy contains only itself.

29. i ρ2
= i µ 3

, i ρ0
= i µ 2

, i ρ1
= i µ 1{ } = ρ0 ,µ1{ }, ρ0 ,µ2{ }, ρ0 ,µ3{ }{ } .

30.
31. Let H,K ⊆ G  be normal. ∀g ∈G : g H ∩ K( ) ⊆ Hg ∧ g H ∩ K( ) ⊆ Kg ⇒ g H ∩ K( ) ⊆ Hg ∩ Kg = H ∩ K( ) g .  

From the converse, g H ∩ K( ) = H ∩ K( ) g .

32. Suppose there were two distinct ‘smallest’ normal subgroups containing S, then their intersection would be smaller, 
contain S, and be (Exercise 31) normal.

33.
34. If G has one subgroup H of order |H|, then H must be invariant under all inner automorphisms, so (by the 

discussion after Definition 9) H is normal.
35. H ∩ N ⊆ H  by Exercise 1.5.54.  ∀h ∈H : h H ∩ K( ) ∈H ∩ K ⇒ h H ∩ K( ) = H ∩ K , and by the converse, 

H ∩ K( )k = H ∩ K , so h H ∩ K( ) = H ∩ K( )h .

36.

37. a. ∀g ∈G : ie o i g : ∀x ∈G : i e o i g( )x = iei gx = i gx ⇒ ie o i g = ie  (identity)

∀g ∈G : i g−1 o i g : ∀x ∈G : i g−1 o i g( )x = i g−1 gxg −1( ) = g −1 gxg −1( ) g = x ⇒ i g−1 o i g = i e  (inverse)

∀g,h ,k ∈G : i g o i h( ) o ik = i g o i h o ik( )  because function composition is associative (associative)

b.
38.

39. Let φ * : G H → ′ G ′ H : gH a φg( ) ′ H .  This is a homomorphism if ∀gH, ′ g H ∈G H , 

φ * gH ⋅ ′ g H( ) = φ * gH ⋅ φ * ′ g H ⇐ φ * (g ′ g )H( ) = φ * gH ⋅ φ * ′ g H ⇐

φ g ′ g ( ) ′ H = φg ⋅ ′ H ( ) ⋅ φ ′ g ⋅ ′ H ( ) = φg ⋅ φ ′ g ( ) ⋅ ′ H ⇐ φ g ′ g ( ) = φg ⋅ φ ′ g 
which holds because φ is an isomorphism.

40. a. H = M ∈GL n ,R( ) | det M = 1{ }  is normal in G because 

∀g ∈G,h ∈H : ghg −1 ∈H ⇐ det ghg −1 = det g ⋅ det h ⋅ det g −1 = det g ⋅ det h ⋅ det g( )−1
= det h = 1 .
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b. H = M ∈GL n ,R( ) | det M = ±1{ }  is normal in G because of a similar argument.

41. a. ∀A,B,C ⊆ G : AB( )C = ab | a ∈A,b ∈B{ }C = ab( )c | a ∈A,b ∈B,c ∈C{ } = a bc( ) | K{ } = A bc | K{ } = A BC( )  

(associativity).  E ⊆ G ⇒ ∀H ⊆ G :EH = eh | e ∈E ,h ∈H{ } = h | h ∈H{ } = H  (identity).  Suppose G has an 

inverse G' in its power set, then G ′ G = E ⇒ g ′ g | g ∈G , ′ g ∈ ′ G { } = e{ } , but g ′ g | K{ } ≥ G ≥ E .

b.
c. Let M = m ⊆ G |m is a coset of N{ } = gN | g ∈G{ } .  The operation is associative, as shown in (a).  

∀gN ∈M : gN( )N = g{ }NN = g{ }N ∈N , so N is an identity in M.  Finally, because N is normal in G, 

∀gN ∈M : g −1N( ) ⋅ gN( ) = g −1{ }N( ) ⋅ g{ }N( ) = g −1{ }N g{ }N = g −1{ } g{ }( )NN = e{ }N = N  (inverse).

§3.3  Factor-Group Computations and Simple Groups
1. �2 × �4 (0,1) ≅ �2 × 0{ } ≅ �2 .

2. �2 × �4 (0,2) ≅ �2 × �2 .

3. �2 × �4 (1,2) ≅ �4 .

4. �4 × �8 (1,2) ≅ �8 .

5. �4 × �4 × �8 (1,2,4) = �4 × �8 .

6. � × � (0,1) = � .

7. � × � (1,2) = � .

8. � × � × � (1,1,1) = � × � .

9. � × � × �4 (3,0,0) = �3 × � × �4 .

10. � × � × �8 (0,4,0) = � × �4 × �8 .

11. � × � (2,2) = �2 × � .

12. � × � × � (3,3,3) = �3 × � × � .

13. ZD4 = ρ0 ,ρ2{ } .  Is the center a natural choice for a minimal normal subgroup?  In any case, 

D4 Z = ρ0Z , ρ1Z , µ1Z ,δ 1Z{ }  is commutative, by manual verification, so by Theorem 20 Z ⊆ C .  But 
D4 E ≅ D4  is not commutative, so E / ⊆ C ⇒ C = Z .

14. First, note that for any commutative group ∀a,b ∈G : aba−1b−1 = ab ba( )−1
= ab( ) ab( )−1

= e , so CG = E .  Then, 
Z �3 = �3, and by Example 19 Z S3 = E .  Further, C �3 = E , and by Example 21 C S3 = A3.  So 
Z �3 × S 3( ) = �3 × E , C �3 × S3( ) = E × A3.

15. Z S 3 × D4( ) = Z S3 × ZD4 =  (Example 19,  Exercise 13) E × ρ0 ,ρ2{ }
C S 3 × D4( ) = C S3 × CD4 =  (Example 21,  Exercise 13) A3 × ρ0 ,ρ 2{ }

16. Subgroups of �4 × �4  with one generator (cyclic):

<…> {<…>} |…| �4 × �4 < … >
(0,0) (0,0) 1 �4 × �4

(0,1) (0,0) (0,1) (0,2) (0,3) 4 �4 × �1

(0,2) (0,0) (0,2) 2 �4 × �2

(0,3) ~ (0,1)
(1,0) (0,0) (1,0) (2,0) (3,0) 4 �1 × �4

(1,1) (0,0) (1,1) (2,2) (3,3) 4 �4

(1,2) (0,0) (1,2) (2,0) (3,2) 4 �4  (figure left)

(1,3) (0,0) (1,3) (2,2) (3,1) 4 �4  (figure center)
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(2,0) (0,0) (2,0) 2 �2 × �4

(2,1) (0,0) (2,1) (0,2) (2,3) 4 �4

(2,2) (0,0) (2,2) 2 �2 × �4

(2,3) ~ (2,1)
(3,n) ~ (1,n)
Subgroups with two generators (not cyclic), with order less than or equal to 4:
(0,2) (2,0) (0,0) (0,2) (2,0) (2,2) 4 V (figure right)
(0,2) (2,2) ~ (0,2) (2,0)
(2,0) (2,2) ~ (2,0) (0,2)
There are no subgroups with more than two generators with order less than or equal to 4.

♥ ♠ ♥ ♠
♣ ♦ ♣ ♦
♠ ♥ ♠ ♥
♦ ♣ ♦ ♣

♥
♠

♥
♠

♣
♦

♣

♦

♠
♥

♠
♥

♦

♣
♦

♣

♥
♠

♥
♠

♣
♦

♣

♦

♠
♥

♠

♥

♦

♣
♦

♣

17. “The center of a group G is a set containing all…”

18. The book uses “ aba−1b−1”, but this definition is equivalent.
19. a. true (Theorem 9)

b. false (by Exercise 16, G G ≅ E )

c. false ( 1
2 � �

+ 1
2 � �

= 0� � )

d. true ( 1
n � �

)

e. false (1 1
2 � �

= 1
2 � �

).

f. true (Exercise 14)
g. false (not C ⊆ H  but H ⊆ C )
h. false (when G is simple and commutative)
i. true (By Theorem 20, the commutator subgroup is normal to G, so if G is simple then C is trivial or nonproper.  

But if C were trivial, then G E ≅ G  would be commutative.  So C is nonproper.)
j. false (by Theorem 15, A5 is nontrivial, finite, simple, and of 5! nonprime order)

20. f ∈F | f 0 = 0{ } ⊆ F .

21. f ∈F * | f 0 = 1{ } ⊆ F * .

22. The cosets each represent a specific additive discontinuity, of the form a ⋅θ x − b( ) , where θ is the step function.  An 
element of order two would represent a discontinuity that is its own inverse, which under addition could only be the 
identity discontinuity, which has order one.

23. See Exercise 22.  Each discontinuity with a < 0 is its own inverse under multiplication, and has order two.
24. z0U =U ⇒ U z0U ≅ E .

25. −1
U

= −1,+1{ }; U −1 ≅ U .

26. z n ≅ �; U z n ≅ U .

27. � � ≅ 0,1[ [ ≅ U .

28. � has � 2� ≅ �2 .

29. Let G = �2 × �4 , then �1 × �2 ≅ �2 × �1 but �2 × �4 �2 × �1 = �2 × �2 / ≅ �2 × �4 �2 × �1 = �1 × �4 .
30. a. The center of every commutative group consists of all the elements of that same group.

b. Suppose ∃z ∈ ZG : ∀g ∈G : zg = gz ⇒ ∀z n ∈ z , n ∈� : z n g = gz n , so z  is normal to G and, since G is 

simple, wither trivial or nonproper.  Since z  is commutative but G is not, z ≅ E , so Z = E .
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31. a. If G is commutative, then G ≅ G E  is too, so by Theorem 20 C ⊆ E ⇒ C = E .
b. Since G is not commutative, by the same argument C / ⊆ E ⇒ C ≠ E .  Since G is simple, C must then be 

nonproper.
simple group G not commutative commutative

center ZG E G
commutator CG G E

32. If H ⊆ G  such that G H  exists, then H is normal to G.  Since G : H > 1 ⇒ H ⊂ G , and since H is nontrivial 
H ⊃ E .  So H is a proper nontrivial normal subgroup of G, so G is not simple.

33. ∀ ′ g ∈ ′ G : ′ g ⋅ φN = φN ⋅ ′ g ⇐ φφ inv ′ g ⋅ φN = φN ⋅ φφ inv ′ g ⇐ φ φ inv ′ g ⋅N( ) = φ N ⋅ φ inv ′ g ( ) ⇐

φ inv ′ g ⋅N = N ⋅ φ inv ′ g ⇐ ∀g ∈φ inv ′ g : gN =Ng ⇐ N is normal.
34.
35. Suppose G ZG  is cyclic, then ∃g * ZG ∈G ZG : g * ZG = G ZG , and 

∀g ∈G : ∃n ∈� : g ∈ g * ZG( )n
= g *n ZG ⇒ ∃z ∈ ZG : g = g *n z .  Then 

∀g, ′ g ∈G : ∃z , ′ z ∈ZG ,n , ′ n ∈� : g ′ g = g *n z( ) g * ′ n ′ z ( ) = zg *n g * ′ n ′ z = z g *( )n + ′ n 
′ z = zg *n g * ′ n ′ z =

g * ′ n z ′ z g *n = g * ′ n ′ z zg *n = g * ′ n ′ z ( ) g *n z( ) = ′ g g
 

so G is commutative.  So if G is not commutative, G ZG  is not cyclic.

36. Since G = pq , the order of any subgroup of G must (Lagrange) have order pq, p, q, or 1, and the resultant factor 
group must therefore have order 1, q, p, or pq.  By Exercise 35, the factor group G ZG  is not cyclic.  Since all 
groups of prime order are cyclic, the factor group must have order pq, so ZG = 1 ⇒ ZG = E .

37. a. i j k( ) = i j( ) j k( ) , so every 3-cycle is the even product of transpositions and is therefore in An .  Obviously An  
only contains 3-cycles if n ≥ 3.

b. An  consists of all products of even transpositions.  Every type of even transposition

a b( ) a b( ) = a b c( )0
; a b( ) a d( ) = a d b( ); a b( ) c d( ) = a c b( ) a c d( )

can be formed from 3-cycles, An  is generated by the 3-cycles.

c. For any r, s: r s i( )2
r s k( ) r s j( )2

r s i( ) = r i s( ) r s k( ) r j s( ) r s i( ) = i j k( ) , so i r s i( ){ }  generates every 3-cycle in 
An  and therefore An  itself.

d. Let N be normal to An  and ∃ r s i( ) ∈N , then ∀j : r s( ) i j( )( ) r s i( )2
r s( ) i j( )( )−1

= r s j( ) ∈N , so 

i r s i( ){ } ⊆N ⇒ N = An .

e. First, ‘canonicalize’ the elements of N into products of disjoint cycles.  Then, one of the following cases must hold:
1• N contains a 3-cycle, so by (d.) N = An .

2• N contains a product in which at least one of the cycles has length greater than 3, σ = µ a1 a2 a3 … ar( ) .  Then

σ −1 a1 a2 a3( )σ a1 a2 a3( )−1
=

σ ∈N

h ∈N( ) σ −1h ∈
σ −1 ∈N

N, and

σ −1 a1 a2 a3( )σ a1 a2 a3( )−1
= µ a1 a2 a3 … ar( )( )−1

a1 a2 a3( )σ a1 a2 a3( )−1
=

a1 a2 a3 …  ar( )−1µ −1 a1 a2 a3( )µ a1 a2 a3 … ar( ) a1 a2 a3( )−1 =
disjoint

a1 a2 a3 … ar( )−1 a1 a2 a3( ) a1 a2 a3 … ar( ) a1 a2 a3( )−1 =

a1 a3 ar( ) a2( ) 3<k<r ak( ) = a1 a3 ar( )
so Case 1• applied.

3• N contains no single 3-cycle or products with cycles of length greater than 3, but contains a product of at least two 
3-cycles, σ = µ a1 a2 a3( ) a4 a5 a6( ).  Then

σ −1 a1 a2 a4( )σ a1 a2 a4( )−1
=

σ ∈N

h ∈N( ) σ −1h ∈
σ −1 ∈N

N, and
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σ −1 a1 a2 a4( )σ a1 a2 a4( )−1 =
disjoint

a4 a5 a6( )−1 a1 a2 a3( )−1 a1 a2 a4( ) a1 a2 a3( ) a4 a5 a6( ) a1 a2 a4( )−1 =

a1 a4 a2 a3 a6( ) a5( )
so Case 2• applied.

4• N contains no products with cycles of length greater than 3, no products with more than one 3-cycle, and no 3-
cycles, but contains a product with one 3-cycle, σ = µ a1 a2 a3( ) , where µ is an even product of 2-cycles.  Then 

σ 2 ∈
σ ∈N

N, and σ 2 =
disjoint

µ 2 a1 a2 a3( )2
=

µ are
transpositions

a1 a2 a3( )2
= a1 a3 a2( ) , so Case •1 applied.

5• N contains no products containing cycles of length greater than or equal to 3.  Since N is nontrivial and consists 
solely of products of even transpositions, it must contain an element σ = µ a1 a2( ) a3 a4( ) .  Then 

σ −1 a1 a2 a3( )σ a1 a2 a3( )−1
=

σ ∈N

(h ∈N) σ −1h ∈
σ −1 ∈N

N, and 

σ −1 a1 a2 a3( )σ a1 a2 a3( )−1
=

disjoint

a3 a4( )−1
a1 a2( )−1

a1 a2 a3( ) a1 a2( ) a3 a4( ) a1 a2 a3( )−1
= a1 a3( ) a2 a4( ) .

Call this product α.  Since n ≥ 5, there is an a5, and let β = a3 a1 a5( ) .  Then 

β −1αβα = β −1( )α β −1( )−1
α =

α ∈N

(γ ∈N) γα ∈N , and

β −1αβα = a3 a1 a5( )−1
a1 a3( ) a2 a4( ) a3 a1 a5( ) a1 a3( ) a2 a4( ) = a1 a5 a3( ) a2( ) a4( ) = a1 a5 a3( ) ,

so Case 1• applied.
So, Case 1• always applies, so N = A5.

38. •(closure) ∀hn, ′ h ′ n ∈HN : hn( ) ′ h ′ n ( ) = hn ′ h ′ n =
N normal

′ ′ n ∈N , ′ ′ h ∈H( ) hn ′ ′ n ′ ′ h = h n ′ ′ n ( ) ′ ′ h =

′ ′ ′ n ∈N , ′ ′ ′ h ∈H( ) h ′ ′ ′ h ′ ′ ′ n = h ′ ′ ′ h ( ) ′ ′ ′ n ∈HN

•(identity) ∀hn ∈HN : ee( ) hn( ) = eehn = ehn = hn .

•(inverse) ∀hn ∈HN : hn( )−1
hn( ) = n −1h −1hn = n −1n = e .

So HN ⊆ G .  A subgroup containing both N and H must contain at least 
N ∪ H = i n i{ } ∪ i hi{ } ⊇ ij n ihj{ } = HN , so HN must be the smallest subgroup that does.

39. M is normal to G ⇒ M ⊆ G ⇒ NM ⊆ G .  Then

∀nm ∈NM, g ∈G : g nm( ) g −1 = gng −1gmg −1 =
N, M normal

′ n ∈N , ′ m ∈M( ) ′ n ′ m ∈NM , so NM is normal in G.

40. ∀h ∈H,k ∈K : hkh −1k−1 =
hkh −1( )k−1 =

K normal

′ k ∈K( ) ′ k k−1 ∈K

h kh −1k−1( ) =
H normal

′ h ∈H( ) h ′ h ∈H

 

 
  

 
 
 

= e , so C = E ,

so E ⊆ C ⇒ H ∪ K E ≅ H ∪ K  is commutative.

§3.4  Series of Groups
1. The two series

0{ } ⊂ 10� ⊂ � � 10� ≅ �, 10� 0{ } ≅ �10( )
0{ } ⊂ 25� ⊂ � � 25� ≅ �, 25� 0{ } ≅ �25( )

have isomorphic refinements
0{ } ⊂ 250� ⊂ 10� ⊂ �

0{ } ⊂ 250� ⊂ 25� ⊂ �

2. The two series
0{ } ⊂ 60� ⊂ 20� ⊂ � �,�3 ,�20( )
0{ } ⊂ 245� ⊂ 49� ⊂ � �,�5 ,�49( )
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have isomorphic refinements
0{ } ⊂ 14700 � ⊂ 300� ⊂ 60� ⊂ 20� ⊂ �

0{ } ⊂ 14700 � ⊂ 735� ⊂ 245� ⊂ 49� ⊂ �

3. The two series
0{ } ⊂ 3 ⊂ �24 �8,�3( )
0{ } ⊂ 8 ⊂ �24 �3 ,�8( )

are already isomorphic.
4. The two series

0{ } ⊂ 18 ⊂ 3 ⊂ �72 �4 ,�6 ,�3( )
0{ } ⊂ 24 ⊂ 12 ⊂ �72 �3 ,�2 ,�12( )

have isomorphic refinements
0{ } ⊂ 36 ⊂ 18 ⊂ 9 ⊂ 3 ⊂ �72

0{ } ⊂ 24 ⊂ 12 ⊂ 6 ⊂ 2 ⊂ �72

5. The two series
0,0( ){ } ⊂ 60� × � ⊂ 10� × � ⊂ � × � � × �, �6 × E , �10 × E( )
0,0( ){ } ⊂ � × 80� ⊂ � × 20� ⊂ � × � � × �,E × �4 ,E × �20( )

have isomorphic refinements
0,0( ){ } ⊂ 60� × 80� ⊂ 60� × 20� ⊂ 60� × � ⊂ 10� × � ⊂ � × �

0,0( ){ } ⊂ 60� × 80� ⊂ 10� × 80� ⊂ � × 80� ⊂ � × 20� ⊂ � × �

(this is not the answer the book gives, but seems okay)
6. Because 60 = 2 ⋅ 2 ⋅ 3 ⋅ 5, the composition series are of the form

�60 ⊃ 2
�60

⊃ 2 ⋅ 2 = 4
�60

⊃ 2 ⋅ 2 ⋅ 3 = 12
�60

⊃ 2 ⋅ 2 ⋅ 3 ⋅ 5 = 60
�60

= E

where the series of generators are formed from the following 12 permutations of the factorization of 60:
2 2 3 5
2 2 5 3
2 3 2 5
2 3 5 2
2 5 2 3
2 5 3 2

3 2 2 5
3 2 5 2
3 5 2 2
5 2 2 3
5 2 3 2
5 3 2 2

The series that are thus constructed are obviously isomorphic.
7. As in Exercise 6, the series of generators are formed from the following 5 permutations of the factorization of 

48 = 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 3:
2 2 2 2 3
2 2 2 3 2
2 2 3 2 2
2 3 2 2 2
3 2 2 2 2

8. �5 × �3 ⊃ E × �3 ⊃ E × E = E

�5 × �3 ⊃ �5 × E ⊃ E × E = E

9. S3 × �2 ⊃ A3 × �2 ⊃ E × �2 ⊃ E × E = E

S3 × �2 ⊃ S 3 × E ⊃ A3 × E ⊃ E × E = E
Isn't the following a composition series too?
S3 × �2 ⊃ A3 × �2 ⊃ A3 × E ⊃ E × E = E
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10. �2 × �5 × �7 ⊂ E × �5 × �7 ⊂ E × E × �7 ⊂ E × E × E = E

�2 × �5 × �7 ⊂ E × �5 × �7 ⊂ E × �5 × E ⊂ E × E × E = E
�2 × �5 × �7 ⊂ �2 × E × �7 ⊂ E × E × �7 ⊂ E × E × E = E

�2 × �5 × �7 ⊂ �2 × E × �7 ⊂ �2 × E × E ⊂ E × E × E = E
�2 × �5 × �7 ⊂ �2 × �5 × E ⊂ E × �5 × E ⊂ E × E × E = E

�2 × �5 × �7 ⊂ �2 × �5 × E ⊂ �2 × E × E ⊂ E × E × E = E

11. Z S 3 × �4( ) = Z S 3 × Z �4 = E × �4 .

12. Z S 3 × D4( ) = Z S3 × ZD4 = E × ρ0 ,ρ2{ } .

13. E × E, E × �4 ,… .

14. E × E, E × ρ0 ,ρ2{ },E × D4 , …
Since D4 ρ0 ,ρ2{ }  is of order four, it is commutative, so Z D4 ρ 0 ,ρ 2{ }( ) = D4 ρ 0 ,ρ2{ }  which maps to D4  under 
the canonical homomorphism.

15. Okay.
16. “A solvable group is one that has a composition series of which the factor groups are all commutative.”
17. a. true (Gi < G ⇒ Gi < G i + 1)

b. false (Gi < G i + 1 / ⇒ G i < G )
c. true
d. false
e. false (E ⊂ 3

�15
⊂ �15 and E ⊂ 5

�15
⊂ �15 )

f. true (E ⊂ G  can be finitely refined)
g. false ( S7  is not solvable (h.), but E ⊂ A7 ⊂ S 7 is a composition series with simple factor groups)

h. false (E ⊂ A7 ⊂ S 7 is a composition series, but A7 is not commutative)
i. true
j. true (Every finite group of prime order is cyclic and thus commutative.  Every finite group has a composition series, 

and each of the factor groups is commutative because each of the numerator groups is a commutative subgroup of a 
commutative group.)

18. S3 × S 3 ⊃ A3 × A3 ⊃ E × E; S 3 × S3 A3 × A3 ≅ �2 × �2 , A3 × A3 E × E ≅ A3 × A3

is solvable because it has a composition series with commutative factors.

19. D4 ⊃ ρ0 ,ρ2{ } ⊃ E ; D4 ρ 0 ,ρ 2{ } = 4, ρ0 ,ρ2{ } E = 2
is solvable because it has a composition series with commutative factors.

20. H H H H H H H H

H
H

H

H
H

s s

i i i i i i i i

k
k

i
i

i
k

+ + + +

+

= ⋅ ⇐ =

= = ⋅ = ⋅…⋅

1 1 1 1

0

1
1

21. Suppose ⊂ i H i is such a composition series.  Then ∃k : Hk < ∞, H k + 1 = ∞ .  But then Hk + 1 Hk  is commutative 
with infinite order, so by the Exercise it has a proper normal subgroup and is this not simple.

22. Concatenate the factor groups' composition series into a series for the product group:
E ≅ ×i E ⊂k≥0 ⊂ i>1 ×j <k H j , nj

× Hk , i ×j >k H j , 0( ) ⊂ ×i H i,n i

§3.5  Group Action on a Set
♥ It is simplest to think of a G-set as a group of functions, where the group operations is just function composition.  

The functions operate as permutations on some set.
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1. g ∈G X g

ρ0 = e X

ρ1 C{ }
ρ2 m1 ,m2,d1,d2 ,C{ }
ρ3 C{ }
µ1 s 1 , s3 ,m1 ,m2,C ,P1 ,P3{ }
µ2 s 2 , s4 ,m1 ,m2,C ,P2 ,P4{ }
δ1 2,4,d1,d2,C{ }
δ2 1,3,d1,d2,C{ }

2. x ∈X G x

1,3 ρ0 ,δ 2{ }
2,4 ρ0 ,δ 1{ }
s1 , s 3 ρ0 ,µ1{ }
s2 , s 4 ρ0 ,µ2{ }
m1,m2 ρ0 ,ρ2 ,µ 1,µ 2{ }
d1,d2 ρ0 ,ρ2 ,δ 1 ,δ 2{ }
C D4

P1 ,P3 ρ0 ,µ1{ }
P2 ,P4 ρ0 ,µ2{ }

3. 1,2,3,4{ }, s 1, s 2 , s 3, s 4{ }, m1,m2{ }, d1,d2{ }, C{ }, P1 ,P2 ,P3 ,P4{ } .

4. Insert “ ∀x ∈X ”.
5. Insert “ ∀x ∈X ” and delete “other”.
6. The G-set can be thought of as a direct product of its orbits.  A sub-G-set consists of a subset of the orbits of the G-

set.
7. A G-set is transitive iff it has exactly one orbit.
8. a. false (the elements of a G-set are not associative)

b. true (Definition 1, Condition 1)
c. false (G may not ‘act faithfully’)
d. true (g are permutations, which are injective)
e. false (any number of distinct permutations may operate on any particular element in the same way)
f. true (Exercise 7)

g. true (H ⊆ G  automatically abides by the same Conditions of Definition 1)
h. true (they are the same orbits, but not necessarily all of them)
i. true (Example 2)
j. true (G consists of Gx  cosets of Gx  elements, each coset of which permutes x in a different way in its orbit)

9. a. φ : s 1 , s 2, s 3 , s 4{ } → P1 ,P2 ,P3 ,P4{ } : s i a Pi .

b. δ2 ∈G  leaves 1 and 3 fixed in their orbit, but leaves no elements of the orbit s 1 , s 2, s 3 , s 4{ }  fixed.

c. m1 ,m2{ }  and d1 ,d2{ }  are not isomorphic.  But trivially, any direct product of the two isomorphic sets of (a.) with 
any other orbit, is again isomorphic.

10. a. Yes, there is only e ∈G  that leaves all the elemens of X fixed.
b. 1,2,3,4{ }, s 1, s 2 , s 3, s 4{ }, P1 ,P2 ,P3 ,P4{ } .

11.
12. •(identity) ∃e ∈G : ∀x ∈X : ex = x ⇒ ∀y ∈Y ⊆ X : ey = y ⇒ GY

•(closure) ∀g, ′ g ∈G Y : ∀y ∈Y : g ′ g ( )y = g ′ g y = gy = y ⇒ g ′ g ∈GY

•(inverse) ∀g ∈GY : ∃g−1 ∈G : ∀y ∈Y : g −1g( )y = ey = y ⇒ g −1g( )y = g −1 gy( ) = g −1y = y ⇒ g −1 ∈G Y

13. a. (identity) 0 ∈G = �,+( ) : ∀x ∈�
2 : rot 0 x = x

•(associativity) ∀θ, ′ θ ∈G : ∀x ∈�
2 : rotθ rot ′ θ x = rotθ + ′ θ x .

b. The circle centered around the origin containing P.
c. GP = 2π�.

14. a. Let X = XiiU .

•(Condition 1) e ∈G : ∀x i ∈X i : ex i = x i ⇒ ∀x ∈X : ex = x

•(Condition 2) ∀g, ′ g ∈G : ∀x i ∈X i : g ′ g ( )x i = g ′ g x i( ) ⇒ ∀x ∈X : g ′ g ( )x = g ′ g x( )
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b. By Theorem 14, any G-set X can be partitioned into its orbits.
15. Let φ : L → X : gGx 0

a gx 0 .

•(well-defined) Let g, ′ g ∈ gG x 0
 be elements of the same coset of Gx 0

.  Then ′ g ∈Gx 0
⇒ ∃g* ∈G x0

: ′ g = gg * , 

so φ ′ g = ′ g x 0 = gg *( )x 0 = g g *x 0( ) = gx 0 = φg .

•(surjective) Because X is transitive, ∀x ∈X : ∃g ∈G : gx 0 = x ⇒ φ gG x 0( ) = gx 0 = x

•(injective) ′ g Gx 0
≠ gGx 0

⇒ g −1Gx 0
⋅ ′ g Gx 0

≠ Gx 0
⇒ g −1 ′ g ∉Gx 0

⇒ g −1 ′ g ( )x 0 ≠ x 0 ⇒

g −1 ′ g x 0( ) ≠ x 0 ⇒ ′ g x 0 ≠ gx 0 ⇒ φ ′ g ≠ φg

So φ is an isomorphism from g∈G gGx 0{ }→ X .

16. Every G-set is the union of its orbits (Exercise 14b).  An orbit is a transitive G-set, so every G-set is (Exercise 15) 
isometric to a union of G-sets of left cosets in G.  By the Exercise, this union can be made disjoint.

17. a. Gx 0 g0
 are the actions g ∈G  that leave g0x 0  fixed.  If we move g0x 0  into x 0 , act leaving x 0  fixed, and return 

x 0  to g0x 0 , we have actions that leave g0x 0  fixed, so G g0 x0
⊆ g 0G x0

g 0
−1 .  Conversely, any action that leaves 

g0x 0  fixed can be converted into one leaving x 0  fixed, so Gx 0
⊆ g0

−1G g0 x0
g 0 , from which 

g0G x0
g 0

−1 ⊆ G g0 x 0
⇒ Gx 0 g0

= g0G x0
g 0

−1 .

b. It seems reasonable that H ≅ K  if ∃g ∈G : K = gHg −1, that is K is inner automorphic to H, that is (Exercise 3.27) 
K is conjugate to H.

c.

§3.6  Applications of G-Sets to Counting
1. The group has one permutation that leaves all 8 elements invariant, and 3 others that leave 4 invariant:

    

r
G

Xg G g= + = + ⋅( ) = =∈
1

8 3 4 51
4

20
4

.

2. The group has one permutation that leaves all 8 elements invariant, one (1 3) that leaves 6 invariant, two (2 4 7) 
and (2 7 4) that leave 5 invariant, and two more that leave only 3 elements invariant:

    

r
G

Xg G g= + = + + ⋅ + ⋅( ) = =∈
1

8 6 2 5 2 3 51
6

30
6

.

3. G is the group of 12 rotations of the tetrahedron, and X is the set of 4! markings.  The identity rotation leaves all 
markings invariant; because every face has a different color, every other rotation none:
r = 1

12 4!( ) = 2 .

4. G is the group of rotations of the cube: there are six ways to fix one face, then four ways to fix a second, so G = 24 .  
X is the set of 8! 2! markings.  As in the previous exercise, there is only the identity rotation leaving all markings 
invariant:

r = 1
24

8!
2!

 
 
 

 
 
 = 840 .

5. The identity rotation leaves all 86  markings invariant.  The 9 rotations that leave a pair of faces invariant can be 
divided in three groups (rotations along the x, y, and z-axis) of 3 rotations: one of which rotates the cube 180° 
along the axis, which leaves four independent choices of color for markings that remain invariant under the rotation; 
and two which rotate the cube 90°, and leave only three independent choices of color.  The 8 rotations that leave a 
pair of opposite vertices invariant are ±120° rotations along the four diagonal axes that leave only two independent 
choices of face coloring.  The 6 rotations that leave a pair of opposite edges invariant are 180° rotations along axes 
perpendicular to diagonally opposite edges, which leave three independent choices of face coloring:
r = 1

24 1 ⋅ 86 + 3 ⋅ 1 ⋅ 84 + 2 ⋅ 83( ) + 8 ⋅ 82 + 6 ⋅ 83( ) = 11712 .

6. The identity rotation leaves all 48 markings invariant.  The 3 groups of 9 ‘face-invariant’ rotations each have one 
180° rotation leaving four independent colors, and two ±90° rotations leaving two.  The 8 ‘vertex-invariant’ 
rotations leave four independent colors.  The 6 ‘edge-invariant’ rotations also leave four:
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r = 1
24 1 ⋅ 48 + 3 ⋅ 1 ⋅ 44 + 2 ⋅ 42( ) + 8 ⋅ 44 + 6 ⋅ 44( ) = 2916 .

7. The rotations are the fourth dihedral group.
a. Only the identity rotations leaves all markings invariant:

r = 1
8

6!
2!

 
 
 

 
 
 = 45 .

b. ρ0  leaves 4 choices of color, ρ1, 3  leave one, ρ2  leaves two, µ1, 2  leave three, and δ1, 2  leave two:

r = 1
8 1 ⋅ 64 + 2 ⋅ 61 + 1 ⋅ 62 + 2 ⋅ 63 + 2 ⋅ 62( ) = 231 .

8. The tetrahedron can be rotated by fixing one of four faces and then one of three remaining faces, so G = 12 .  The 
rotation that leaves the first and the second face invariant leaves six independent choices of ‘color’.  The two 
rotations that leave the first face invariant and rotates the second leaves two choices.  In each of the two remaining 
groups of rotation for the first face, one leaves the second face invariant and leaves four choices, and two rotate the 
second face also and leave only once independent choice of ‘color’:
r = 1

12 1 ⋅ 26 + 2 ⋅ 22 + 3 ⋅ 1 ⋅ 24 + 2 ⋅ 21( )( ) = 11 .

9. What is the shape of a prism?
r = 1

8 66 + 1 ⋅ 64 + 2 ⋅ 63 + 1 ⋅ 64 + 1 ⋅ 63 + 2 ⋅ 62( ) = 6246  is not correct.

§4.1  Isomorphism Theorems
♥ 3. Homomorphisms preserve normal subgroups.  The Lemma states that, in factor groups at least, this preservation is 

bijective: there are no more or fewer normal groups containing the factor, then there are in the factor group.
Let N < G , and γ : G → G N  the canonical homomorphism.  Then, the canonical correspondence φ given by 
φ : L → γL  between normal groups containing N in G, and normal groups in G N  is bijective.
Note the fact that we have two names γ and φ for essentially the same operation.  γ operates on elements h to 
produce γ (h) , but has an implicit ‘extended’ interpretation in which it operates on sets H to produce 
γ [H] ≡ ∪ h ∈H γ (h) .  φ is simply a name given to this interpretation.  The book uses the special notation with square 
brackets to indicate the extended interpertation.
First, show that φ is well-defined.  If L < G  ( L ⊇ N  is not really relevant here), and γ : G → G N  is a 
homomorphism, then by Theorem 3.3.16 φL = γL < G N , so φ really does produce normal groups.
To show that φ is injective we need to be able to calculate inverses.  By Theorem 3.1.15, the inverse of the forward 
homomorphism of an element is the coset of its kernel containing that element, i.e. inverses of forward mappings of 
elements g ∈G  under γ are of the form g Kerγ .  Let L < G,L ⊇N .  Since Kerγ = N ⊆ L  and L is a subgroup and 
thus closed, ∀g ∈L : g Kerγ ⊆ L , so L Kerγ ⊆ L .  Conversely, ∀g ∈L : g ∈ g Kerγ  so L ⊆ L Kerφ , so 
L Kerφ = L ⇒ L = γ −1γL = γ −1φL .

Now, show that φ is injective.  Let L,M < G  such that φL = φM.  Then from the above, L = γ −1φL and 
M = γ −1φM = γ −1φL so L = M .

Finally, show that φ is surjective.  Let H < G N , then γ −1H ⊆ G : φγ −1H = γγ −1H = H , γ −1H ⊇ N  and normal in 
G by Theorem 3.3.16.

♥ 5. Given a homomorphism, Theorem 2 allows us to generate isomorphisms between the image of that homomorphism 
and a factor group.  Applying this procedure twice, this allows us to generate isomorphisms between factor groups.  
Note that it is not even necessary to consider the canonical homomorphism γ (the missing side of the triangles in 
the diagram).
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γH

H

H
H ∩ N

γ |H  homomorphism

Kerγ |H = H ∩ N

µ1 isomorphism
γH

HN

HN
N

γ |HN  homomorphism

Kerγ |HN=N

µ2 isomorphism

HN

H

N

γHHN
N

H
H ∩ N

1. a. φ : �12 → �3 : i a 2i mod3; φ1 = 2 .  Kerφ = 3
2 � ∩ �12.

b. 0,3,6,9{ }, 1,4,7,10{ }, 2,5,8,11{ } .

c. µ : �12 K → �3 : Kerφ + i a i .

2. a. φ : �18 → �12 : i a 10i mod12; φ1 = 10 .  Kerφ = 12
10 � ∩ �18 = 0,6,12{ } .

b. 0,6,12{ }, 1,7,13{ }, 2,8,14{ }, 3,9,15{ }, 4,10,16{ }, 5,11,17{ } .

c. By Theorem 2 it is isomorphic to �18 Kerφ ≅ �18 �3 ≅ �6 .

d. µ : �18 → φ�18 : Kerφ + i a i .

3. H = 4
�24

= 0,4,8,12,16,20{ }, N = 6
�24

= 0,6,12,18{ } .

a. HN = 0,2,4,… ,22{ } , H ∩ N = 0,12{ } .

b.
HN
N

= 0,6,12,18{ }, 2,8,14,20{ }, 4,10,16,22{ }{ } .

c.
H

H ∩ N
= 0,12{ }, 4,16{ }, 8,20{ }{ } .

d. φ :
HN
N

→
H

H ∩ N
:N + i a H ∩ N( ) + 2i .

Note that the book gives a different correspondence.  This is possible because �3 is automorphic.

4. H = 6
�36

= 0,6,12,18,24{ }; N = 9
�36

= 0,9,18,27{ }.

a. HN = 0,3,6,… ,33{ } , H ∩ N = 0,18{ } .

b.
HN
N

= 0,9,18,27{ }, 3,12,21,30{ }, 6,15,24,33{ }{ } .

c.
H

H ∩ N
= 0,18{ }, 6,24{ }, 12,30{ }{ } .

d. φ :
HN
N

→
H

H ∩ N
:N + i a H ∩ N( ) + 2i .

5. H = 4
�24

= 0,4,8,… ,20{ }; K = 8
�24

= 0,8,16{ } .
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a.
G
H

= 0,4,8,12,16,20{ }, 1,5,9,13,17,21{ }, 2,6,10,14,18,22{ }, 3,7,11,15,19,23{ }{ } .

b.
G
K

= 0,8,16{ }, 1,9,17{ }, 2,10,18{ }, 3,11,19{ }, 4,12,20{ }, 5,13,21{ }, 6,14,22{ }, 7,15,23{ }{ } .

c.
H
K

= 0,8,16{ }, 4,12,20{ }{ } .

d.
G /K
H /K

= 0,8,16{ }, 4,12,20{ }{ }, 1,9,17{ }, 5,13,21{ }{ }, 2,10,18{ }, 6,14,22{ }{ }, 3,11,19{ }, 7,15,23{ }{ }{ } .

e. φ :
G
H

→
G /K
H /K

: H + i a H /K( ) + i .

Note that the book writes the correspondence as i a H /K( ) + K + i( ) .  This gives the same sets using a different 
computation.

6. H = 9
�36

= 0,9,18,27{ }; K = 18
�36

= 0,18{ } .

a.
G
H

=

0,9,18,27{ }, 1,10,19,28{ }, 2,11,20,29{ },

3,12,21,30{ }, 4,13,22,31{ }, 5,14,23,32{ },
6,15,24,33{ }, 7,16,25,34{ }, 8,17,26,35{ }

 

 
 

 
 

 

 
 

 
 

.

b.
G
K

=
0,18{ }, 1,19{ }, 2,20{ }, 3,21{ }, 4,22{ }, 5,23{ }, 6,24{ }, 7,25{ }, 8,26{ },

9,27{ }, 10,28{ }, 11,29{ }, 12,30{ }, 13,31{ }, 14,32{ }, 15,33{ }, 16,34{ }, 17,35{ }
 
 
 

  

 
 
 

  
.

c.
H
K

= 0,18{ }, 9,27{ }{ } .

d.
G /K
H /K

=

0,18{ }, 9,27{ }{ }, 1,19{ }, 10,28{ }{ }, 2,20{ }, 11,29{ }{ },

3,21{ }, 12,30{ }{ }, 4,22{ }, 13,31{ }{ }, 5,23{ }, 14,32{ }{ },

6,24{ }, 15,33{ }{ }, 7,25{ }, 16,34{ }{ }, 8,26{ }, 17,35{ }{ }

 

 
  

 
 
 

 

 
  

 
 
 

.

e. φ :
G
H

→
G /K
H /K

: H + i a H /K( ) + i .

7. H : 0{ }
H 0

⊂ 12
H 1

⊂ 3
H 2

⊂ �36
H3

; K : 0{ }
K0

⊂ 18
K1

⊂ �36
K2

.

H00 = H 0 H 1 ∩ K0( ) = E 12 ∩ E( ) = EE = E

H01 = H 0 H 1 ∩ K1( ) = E 12 ∩ 18( ) = EE = E

H02 = H 0 H 1 ∩ K2( ) = E 12 ∩ �36( ) = E 12 = 12

H10 = H 1 H 2 ∩ K0( ) = 12 3 ∩ E( ) = 12 E = 12

H11 = H 1 H 3 ∩ K1( ) = 12 3 ∩ 18( ) = 12 18 = 6

H12 = H 2 H 3 ∩ K2( ) = 12 3 ∩ �36( ) = 12 3 = 3

H20 = H 2 H 3 ∩ K0( ) = 3 �36 ∩ E( ) = 3 E = 3

H21 = H 2 H 3 ∩ K1( ) = 3 �36 ∩ 18( ) = 3 18 = 3

H22 = H 3 H 3 ∩ K2( ) = 3 �36 ∩ �36( ) = 3 �36 = �36

and
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K00 = K 0 K 1 ∩ H0( ) = E 18 ∩ E( ) = EE = E

K01 = K 0 K 1 ∩ H1( ) = E 18 ∩ 12( ) = EE = E

K02 = K 0 K 1 ∩ H2( ) = E 18 ∩ 3( ) = E 18 = 18

K03 = K 0 K 1 ∩ H3( ) = E 18 ∩ �36( ) = E 18 = 18

K10 = K 1 K 2 ∩ H0( ) = 18 �36 ∩ E( ) = 18 E = 18

K11 = K 1 K 2 ∩ H1( ) = 18 �36 ∩ 12( ) = 18 12 = 6

K12 = K 2 K 2 ∩ H2( ) = 18 �36 ∩ 3( ) = 18 3 = 3

K13 = K 2 K 2 ∩ H3( ) = 18 �36 ∩ �36( ) = 18 �36 = �36

This gives the chains

E = E ⊆ E ⊆ 12

⊆ 12 ⊆ 6 ⊆ 3
⊆ 3 ⊆ 3 ⊆ �36 = �36

 and E = E ⊆ E ⊆ 18 ⊆ 18
⊆ 18 ⊆ 6 ⊆ 3 ⊆ �36 = �36

,

or E ⊂ 12 ⊂ 6 ⊂ 3 ⊂ �36 ; E ⊂ 18 ⊂ 6 ⊂ 3 ⊂ �36 .

The factor group isomorphisms are:
A : 12 E ≅ 6 18 ≅ �3

B : 6 12 ≅ 18 E ≅ �2

C : 3 6 ≅ 3 6 ≅ �2

D: �36 3 ≅ �36 3 ≅ �3

8. H : 0{ }
H 0

⊆ 12
H 1

⊆ 4
H2

⊆ �24
H3

; K : 0{ }
K0

⊆ 6
K1

⊆ 3
K2

⊆ �24
K3

H00 = H 0 H 1 ∩ K0( ) = E 12 ∩ E( ) = EE = E

H01 = H 0 H 1 ∩ K1( ) = E 12 ∩ 6( ) = E 12 = 12

H02 = H 0 H 1 ∩ K2( ) = E 12 ∩ 3( ) = E 12 = 12

H03 = H 0 H 1 ∩ K3( ) = E 12 ∩ �24( ) = E 12 = 12

H10 = H 1 H 2 ∩ K0( ) = 12 4 ∩ E( ) = 12 E = 12

H11 = H 1 H 2 ∩ K1( ) = 12 4 ∩ 6( ) = 12 12 = 12

H12 = H 1 H 3 ∩ K2( ) = 12 4 ∩ 3( ) = 12 12 = 12

H13 = H 1 H 4 ∩ K3( ) = 12 4 ∩ �24( ) = 12 4 = 4

H20 = H 2 H 3 ∩ K0( ) = 4 �24 ∩ E( ) = 4 E = 4

H21 = H 3 H 4 ∩ K1( ) = 4 �24 ∩ 6( ) = 4 6 = 2

H22 = H 3 H 4 ∩ K2( ) = 4 �24 ∩ 3( ) = 4 3 = 1 = �24

H23 = H 3 H 4 ∩ K3( ) = 4 �24 ∩ �24( ) = 4 �24 = �24

and
K00 = K 0 K 1 ∩ H0( ) = E 6 ∩ E( ) = EE = E

K01 = K 0 K 1 ∩ H1( ) = E 6 ∩ 12( ) = E 12 = 12

K02 = K 0 K 1 ∩ H2( ) = E 6 ∩ 4( ) = E 12 = 12

K03 = K 0 K 1 ∩ H3( ) = E 6 ∩ �24( ) = E 6 = 6
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K10 = K 1 K 2 ∩ H0( ) = 6 3 ∩ E( ) = 6 E = 6

K11 = K 1 K 2 ∩ H1( ) = 6 3 ∩ 12( ) = 6 12 = 6

K12 = K 2 K 3 ∩ H2( ) = 6 3 ∩ 4( ) = 6 12 = 6

K13 = K 3 K 3 ∩ H3( ) = 6 3 ∩ �24( ) = 6 3 = 3

K20 = K 2 K 3 ∩ H0( ) = 3 �24 ∩ E( ) = 3 E = 3

K21 = K 2 K 3 ∩ H1( ) = 3 �24 ∩ 12( ) = 3 12 = 3

K22 = K 2 K 3 ∩ H2( ) = 3 �24 ∩ 4( ) = 3 4 = 1 = �24

K23 = K 3 K 3 ∩ H3( ) = 3 �24 ∩ �24( ) = 3 �24 = �24

This gives the chains

E = E ⊆ 12 ⊆ 12 ⊆ 12

⊆ 12 ⊆ 12 ⊆ 12 ⊆ 4
⊆ 4 ⊆ 2 ⊆ �24 ⊆ �24 = �24

 and E = E ⊆ 12 ⊆ 12 ⊆ 6

⊆ 6 ⊆ 6 ⊆ 6 ⊆ 3
⊆ 3 ⊆ 3 ⊆ �24 ⊆ �24 = �24

,

or E ⊂ 12 ⊂ 4 ⊂ 2 ⊂ �24 ; E ⊂ 12 ⊂ 6 ⊂ 3 ⊂ �24 .

The factor group isomorphisms are:

      

A :

B :

C :

D:

12 12

4 12 3

2 4 6 12

2 3 6

2

4 3

2

24 2

E E≅ ≅

≅ ≅

≅ ≅

≅ ≅

�

� �

�

� �

H

N < G

gN = Ng

H

H*

K
hH* = H* h

9. (left figure)  Because H is a group, ∀h ∈H : h H ∩ N( ) ∈H .  Also, obviously h N \ H ∩ N( ) ∉H , so 

h H ∩ N( ) = hN ∩ H .  Similarly, H ∩ N( )h = Nh ∩ H .  Because N < G , hN = Nh, so h H ∩ N( ) = H ∩ N( )h  and 
so H ∩ N < H .

10. (right figure)  Let h ∈H ∩ K .  Then h H* ∩ K( ) ∈hH* ∩ K .  Also, obviously 

∀ ′ h ∈H \ H ∩ K : ′ h H* ∩ K( ) ∉hH* ∩ K , so h H* ∩ K( ) = hH* ∩ K .  Similarly, H* ∩ K( )h = H* h ∩ K .  

Because H* < H , h H* ∩ K( ) = H* ∩ K( )h , so H* ∩ K < H ∩ K .

11. a. Prove that K /H < G /H .  Now, this is the case if ∀gH ∈G /H, kH ∈K /H : gH ⋅ kH ⋅ gH( )−1
∈K /H .  Since 

coset multiplication is well-defined by H < G , this is true if gkg −1( )H ∈K /H  or gkg −1 ∈K , which is just to say 

that K < G .  The same argument proves L /H < G /H .
Inclusion follows immediately from K ⊂ L ⇒ ∃l ∈L \ K : lH ∈L /H , lH ∉K /H ⇒ K /H ⊂ L /H .

b. Because B,C < A, B ⊂ C , by the Third Isomorphism Theorem 
A /B
C /B

≅ A /C , or writing the synonyms out, 
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G /H
K /H

L /H
K /H

≅
G /H
L /H

≅ G /L .  This exercise proves a sort of ‘transitivity’ of the Third Isomorphism Theorem.

12. By Lemma 4, K ∪ L = KL = G , so by the Second Isomorphism Theorem 
KL
L

≅
K

K ∩ L
⇒

G
L

≅
K
E

= K .  Mutatis 

mutandis G /K .

13. Since G is solvable, there is a maximal i Gi( )  such that Gi < G i + 1 and Gi + 1 Gi commutative.  By Exercise 10, 

K ∩ Gi < K ∩ G i + 1, so i K ∩ Gi( )  forms a subnormal series.  I don't know by what argument the factor groups 
are simple, so that this is also a composition series.  Gi  are commutative, and thus so are K ∩ Gi  and 
K ∩ Gi + 1 K ∩ Gi .  So K ∩ G  is solvable.

14. (See figure)  i HiN( )  is a composition series iff it is a subnormal series with simple factors.  Obviously 

H0N = E < H 1N .  For all other subgroups in the series, ∀hn ∈Hi + 1N : hn( ) H iN( ) =
H i <Hi+1

H i hn( )N =
N<G

HiN( ) hn( )  
so Hi < H i + 1 and the series is subnormal.  To see that the factor groups are simple, we evaluate 

Hi + 1N
HiN

=
H i + 1 ⋅ HiN

H iN
≅

2 Iso Th H i + 1

H i + 1 ∩ HiN
≅

3 Iso Th H i + 1 /Hi

Hi + 1 ∩ H iN( ) /Hi
.  Now Hi + 1 /H i is simple, so the 

denominator must be either trivial or nonproper.  Obviously Hi ⊂ H i + 1 ⇒ H i + 1 ∩ HiN ⊂ H i + 1, so the 
denominator is proper and must therefore be trivial.  So the fraction as a whole is isomorphic to just Hi + 1 /H i, and 
thus the factor groups of our series are simple also.

N < G

H1N

H2N

H3N

H1

H2

H3

15. (See figure relating to Exercise 14, repacing HiN  with Hi /N )  i Hi /N( )  is a composition series iff it is a 

subnormal series with simple factors.  Hi /N < H i + 1 /N  iff ∀hN ∈Hi + 1 /N : hN Hi /N( ) = Hi /N( )hN .  

Hi < H i + 1 ⇒ hH i = Hih ⇒ hHi ⋅N = H ih ⋅N ⇒
N<G

hN ⋅ Hi = H i ⋅ hN ⇒

canonical
homomorphism hN ⋅ Hi

N
=

H i ⋅ hN
N

⇒

coset multiplication
well-defined

hN ⋅ Hi /N = H i /N ⋅ hN

so the series is indeed subnormal.  To see that the factor groups are simple, we first find that 
Hi + 1 /N
Hi /N

≅
H i + 1N
H iN

 

(*) which (we saw in Exercise 14) is simple.  The isomorphism follows from the fact that 
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ψ i : Hi + 1N →
H i + 1 /N
H i /N

: hn a hN ⋅ Hi /N( )  is a homomorphism:

∀hn, ′ h ′ n ∈H i + 1N : ψ i hn( ) ⋅ ψ i ′ h ′ n ( ) = hN ⋅ Hi /N( )( ) ⋅ ′ h N ⋅ Hi /N( )( ) = hN ⋅ ′ h N ⋅ H i /N( ) =

h ′ h N ⋅ Hi /N( ) = ψ i hn ⋅ ′ h ′ n ( )
By the First Isomorphism Theorem, the range of the homomorphism is isomorphic to the kernel factor group of the 
range, which is the beforementioned (*) isomorphism above.

16. Let G be solvable by i Gi( ) , and φ be a homomorphism.  By the First Isomorphism Theorem, φG ≅ G / Kerφ .  

Then by Exercise 15, G / Kerφ  has a composition series also in the distinct groups of i Gi / Kerφ( ) .  Since 
Gi + 1 /G i are commutative, then so are Gi + 1 / Kerφ Gi / Kerφ .  So G / Kerφ  and φG  are solvable.

§4.2  Sylow Theorems
♥ The normalizer   N HG  is the largest subgroup of G in which H is normal.
♥ 1. This theorem applies the obvious fact that when a G-set X is stripped of its ‘irrelevant’ part, the remainder reflects 

something of the structure of the group.  In particular, if G is a p-group, the important part of X has a multiple of p 
elements.

•

•

•

••

•

•

••
•

•
•

•
•

•
•

•
••

•
•

•
•

•
•

•

}
orbits of X
This is the ‘important’ part of X that 
actually says something about G

    
X X pG− ∈�

p-group G

}XG
This is the ‘irrelevant’ part of X that is 
invariant for all g and says nothing about 
G

G-set X

♥ 3. This applies the previous theorem.  The entire X also has a multiple of p elements, so we can conclude that the 
irrelevant part does too.  That irrelevant part happens to consist of p-tuples of one single element, and because there 
is at least one, there have to be at least p.

♥ 6. Now the theorem leads to conclude that there is a multiple of p cosets of H outside of the normalizer.

G
N HG

H

♥ 8. Since there is a multiple of p cosets of H in the whole of G, and (by Lemma 6) a multiple outside of the normalizer, 
there must be a multiple of p inside it as well.  Inside the normalizer, we can then find one that has exactly p, and if 
H is of order   p

i , this new one will form a subgroup of order   p
i +1.
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1.   12 2 32 1= ⋅ , so by the remark following Definition 9 the maximal 3-subgroups have order  3 31 = .

2.   54 2 33= ⋅ , so the maximal 3-subgroups have order   3 273 = .

3. By the Third Sylow Theorem, the number must be in 
  
2 1 1 2 3 4 6 8 12 1 3� +( ) ∩ { } = { }, , , , , , , .

4. The number must be in 
    
3 1 1 3 5 17 3 5 15 3 17 51 5 17 85 3 5 17 255 1 85� +( ) ∩ ⋅ = ⋅ = ⋅ = ⋅ ⋅ ={ } = { }, , , , , , , , .

5.
    
S4

3 14 24 2 3= = =! , so a maximal 3-subgroup has order   3 31 = .  There are 
  
3 1 1 2 3 4 6 8 12 1 4� +( ) ∩ { } = { }, , , , , , ,  of 

them.  Now 
  

1 2 3 1 2 3 13 2( ) = ( ) ( ) ( ){ }, ,  is a 3-subgroup and maximal, and so are the other three 3-cycles.  By 

example, 
  

1 2 4( )  is conjugate by 
  
3 4( ) :

  
3 4 3 4 3 4 1 2 3 3 4 1 2 4 3 4 13 2 3 4 1 4 2

1 1 1( ) ( )( ) = ( ) ( ) ( )( ) = ( ) ( ) ( )( ) = ( )− − −
; ; .

The rest follow similarly.

6. The order of a maximal 2-subgroup of   S4  is (Exercise 5)  2 83 = , and there are (Exercise 3) either 1 or 3 of them.  
There are 4 0 4 6! !⋅ =  4-cycles, 4 1 3 8! !⋅ =  3-cycles, 4 2 2 6! !⋅ =  2-cycles, 4 4 2 3! ⋅ =  2×2-cycles, and 1 1-cycle.  The 
3-cycles have order 3 and cannot participate in 2-subgroups.  Every subgroup must contain the 1-cycle identity.  
Conjecture that the remaining 7 elements of each of the three 2-subgroups result from some ‘symmetric’ 
distribution of the 4-, 2-, and 2×2-cycles.  One such distribution is to assign all 3 2×2-cycles, and one-third each of 
the 4- and 2-cycles to each 2-subgroup.  Since the 1- and 2×2-cycles are the only even permutations, they are closed 
in each subgroup.  It remains to be shown that the product of any odd and even permutation results in one of the 
four odd 4- and 2-cycles from its distribution.  Assign to a 2-subgroups the two component 2-cycles from one of 
the 2×2-cycles, for example, (1 2) and (3 4):
(  )(  ) (  ) (  ), (  )(  ) (  ) (  )
(  )(  ) (  ) (    ), (  )(  ) (  ) (    )
(  )(  ) (  ) (    ),

1 2 3 4 1 2 3 4 1 2 3 4 3 4 1 2
1 3 2 4 1 2 1 4 2 3 1 3 2 4 3 4 1 3 2 4
1 4 2 3 1 2 1 3 2 4

⋅ = ⋅ =
⋅ = ⋅ =
⋅ = ((  )(  ) (  ) (    )1 4 2 3 3 4 1 4 2 3⋅ =

Hence the two 4-cycles that need to be distributed to the 2-subgroup follow naturally.  Note that the two 2- and 4-
cycles are each others' inverses, so the entire 2-subgroup is closed and thus well-defined.
The other two 2-subgroups follow directly from mechanical substitution of letters in the permutations.
To show conjugacy, note first that the subgroup of even cycles (which is contained by each 2-subgroup) is normal.  
Finally, verify that the odd cycles of one 2-subgroup are conjugate to those in another under one of the 3-cycles:

(   ) (  ) (   ) (  ); (   ) (    ) (   ) (    );

(   ) (  ) (   ) (  ); (   ) (    ) (

1 2 3 1 2 1 2 3 1 3 1 2 3 1 3 2 4 1 2 3 1 4 3 2

1 2 3 3 4 1 2 3 2 4 1 2 3 1 4 2 3 1

1 1

1 1

− −

− −

⋅ ⋅ = ⋅ ⋅ =

⋅ ⋅ = ⋅ ⋅    ) (    ).2 3 1 2 3 4=
7. “order power of p”
8. “the maximal set of elements by whose inner automorphisms”
9. Correct— this uses Corollary 4.
10. a. true (by the Third Sylow Theorem)

b. true (by Example 13)
c. true (by Corollary 4)

d. false (a 2-subgroup of a group of order   22  could have order   21)
e. true (any subgroup of a commutative group is invariant under conjugation)
f. false?

g. true (Definition 5)
h. true (by the Second Sylow Theorem all maximal p-subgroups are conjugate and thus not invariant)
i. false (for a commutative group N H GG = )
j. false (but it is true that it has no proper p-subgroup)

11. (closure) ∀ ′ ∈ ′( ) ′( ) = ′ ′ = = ⇒ ′ ∈
− − −

′∈
−

∈

g g G gg H gg gg Hg g gHg H gg GH

g G g G

H

H H

, :
1 1 1 1 .

(identity)     e G eHe H e GH∈ = ⇒ ∈−: 1 .

(inverse) ∀ ∈ = ⇒ = ⇒ = = ( ) ⇒ ∈− − − − − −
−

−g G gHg H Hg g H H g Hg g H g g GH H: 1 1 1 1 1 1
1

1 .
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12. By the Second Sylow Theorem, all maximal p-subgroups are conjugate.  If G has only one such subgroup, then it 
must therrefore be invariant under conjugacy, which is to say, it is a normal subgroup.  Assuming that 

  
G p∉ � , this 

subgroup is proper; and assuming that     p > 1, it is not trivial.  Then G is not simple.

13.   45 3 52 1= , so the maximal 3-subgroups of such a group have order  3 92 =  and their number is in 

    
3 1 1 3 5 9 15 45 1� +( ) ∩ { } = { }, , , , , .  So by Exercise 12 the subgroup is normal.

14. If a group is divisible by a prime other than p, then by Cauchy it has a subgroup of that order, which is cyclic and 
thus has an element of order of that prime, so the group is not a p-group.  Conversely, suppose that a p-group has 
an element of order of a power of some other prime.  Then that would generate a subgroup of other prime power 
order which would hence not divide the order of the group, which is impossible by Lagrange.

15.       P N P g N P i P PG G g< ⇒ ∀ ∈ =:  so by the Second Sylow Theorem,   N PG  has only the p-subgroup P.  Now, 

suppose     N N P N P g N N P N P i P P i P N PG G G G G G g g G⊃ ⇒ ∃ ∈ ≠ ⇒ /⊆\ : , so there is another p-subgroup outside 

of   N PG .  However,   g N N P i N P N PG G g G G∈ ⇒ =  and  P N P i P i N P N PG g g G G⊆ ⇒ ⊆ =  so this other p-

subgroup would have to be inside of   N PG .  This is a contradiction, so   N N P N PG G G/⊃ .  Therefore  N N P N PG G G= .
16. By Cauchy, H is contained in some maximal p-subgroup   ′P  of G.  By the Second Sylow Theorem, 

∃ ∈ ′ = ⇒ ⊆− −g G gP g P gHg P: 1 1 .

17.
    
G = =35 5 73 3 3, so the 5-subgroups in G have order  5 1253 = .  The only divisors of 125 that can be in   5 1� +  

cannot contain powers of 5, and 
    
5 1 7 1 7 7 7 49 7 343 10 1 2 3� +( ) ∩ = = = ={ } = { }, , , , so the only 5-subgroup is 

normal.

18. The only divisors of 
  
G  that can be in 17 1� +  cannot contain powers of 17.  The largest remaining divisor of G is 

  3 5 15 18⋅ = <  also cannot possibly be in     17 1� + .  Therefore there is one normal 17-subgroup.

19. The number of p-subgroups divides p mr  and is in p� + 1, so the divisors p ms r t≤ ≤1 cannot contain any powers of p.  

The only possible divisors therefore are     m0 1, , but since   m p<  it cannot be in       p� + 1.  So there is one normal p-
subgroup.

20. a.
  
G g G x G i g xgx g g G x G xg gx GG x= ∈ ∀ ∈ = ={ } = ∈ ∀ ∈ ={ } =−| : | : Z1 .

b. By Theorem 1, 
  
G GG−  is divisible by p, and because G is a p-group and thus divisible by p, so is  GG .  Because G is 

nontrivial,     p > 1.  Since 
    
e G GG G∈ >, 1 so     G GG = Z  is nontrivial.

21. By the First Sylow Theorem, we know that a group G with the given characteristics has a subnormal series.  The 
Exercise asks us to prove that it has a normal series.  We will prove this by showing that any subnormal series is itself 
a normal series.

Let 
    0≤ ≤( )i n iH  be a subnormal series of G; we show that these are the only subgroups of G.  Let H be a subgroup of 

G.  Since G is a p-group, H is a p-subgroup and 
    
∃ ≤ ≤ =i i n H pi: :0 , so we may reasonably refer to this subgroup 

as   ′Hi .  By the First Sylow Theorem, this group is contained in an     ′+Hi 1 and so on.  Obviously for some k,  H Hk k= ′
.  By the First and Second Sylow Theorem,   H Hk k− −′1 1,  are normal conjugate maximal p-subgroups of   Hk , so 

    H Hk k− −= ′1 1 , and so forth.

Now we show by induction that every H Gi < .  Obviously H E G0 = < .  Consider ZG .  By Exercise 20, 
ZG Hk=

0
 for some 0 0< ≤k n .  Now for ∀ < ≤ ⊆i i k H Gi: : Z0 0  so ∀ ∈ ∀ ∈ = ⇒h H g G hg gh H Gi: : < .  If 

    k n0 =  we are done.  Otherwise, consider G Hk0
, and since 

    
G H G H p p pk k

n k n k
0 0

0 0= = = −  it is again a p-

subgroup.  The same argument shows that Z G H H Hk k k0 1 0( ) =  for some     k k n0 1< ≤ .  For 

∀ < ≤ ⊆ ( ) ⇒ … ⇒i k i k H H G H H H G Hk k k k k k: : Z0 1 1 0 0 1 0 0
< .  If   γ :G G Hk→

0
 is the canonical 

homomorphism, then 
      γ

inv H H H Gk k k1 0 1
= < .  Since     k ki i> −1, this procedure terminates under induction.

22. Let H be a normal p-subgroup of G, so H is invariant under conjugation by G.  By the First Sylow Theorem, H is 
contained in at least one maximal p-subgroup.  Since by the Second Sylow Theorem every other maximal p-
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subgroup is conjugate to this one, and since H is invariant under conjugation, H is also contained in every 
conjugate.

§4.3  Applications of the Sylow Theory
1. a. The table lists the conjugations   i x gxgg = −1:

    

x g
g

ρ ρ ρ µ µ δ δ
ρ ρ ρ µ µ δ δ

ρ ρ ρ ρ ρ ρ ρ δ ρ δ ρ µ ρ µ ρ
ρ ρ ρ ρ ρ ρ ρ µ ρ µ ρ δ ρ δ ρ
ρ ρ ρ ρ ρ ρ ρ δ ρ δ ρ µ

1 2 3 1 2 1 2
1

3 2 1 1 2 1 2
1 2 1 3 1 0 1 2 3 1 3 1 3 2 3
2 3 2 0 2 1 2 2 2 1 2 2 2 1 2
3 0 3 1 3 2 3 1 1 2 1 2

−

ρρ µ ρ
µ δ µ µ µ δ µ ρ µ ρ µ ρ µ ρ µ
µ δ µ µ µ δ µ ρ µ ρ µ ρ µ ρ µ
δ µ δ δ δ µ δ ρ δ ρ δ ρ δ ρ δ
δ µ δ δ δ µ δ ρ δ ρ

1 1 1
1 1 2 2 1 2 2 0 1 2 1 1 2 3 2
2 2 1 1 2 1 1 2 2 0 2 3 1 1 1
1 2 2 2 1 1 2 3 2 1 2 0 1 2 1
2 1 1 1 2 2 1 1 1 3 δδ ρ δ ρ δ1 2 2 0 2

So the conjugate classes are 
  

ρ ρ ρ ρ µ µ δ δ0 1 3 2 1 2 1 2{ } { } { } { } { }, , , , , , , .

b.   8 2 2 2 2= + + + .
2. 0 1 2 3 4 5 6 7 8 9

00 − ♦ ♦ ♦ ♣ ♦ ♥ ♦ ♣ ♣
10 ♥ ♦ ♦ ♥ ♥ ♣ ♦ ♠ ♦
20 ♠ ♥ ♥ ♦ ♣ ♥ ♣ ♠ ♦
30 E12 ♦ ♣ ♥ ♥ ♥ Ε14 ♦ ♥ ♥
40 Ν40 ♦ ♠ ♦ ♠ Ν45 ♥ ♦ Ε13 ♣
50 ♠ ♥ ♠ ♦ ♣ ♥ ♥ ♥ ♦
♦ prime
♣ Example 9
♥ Theorem 7
♠ Exercise 2.19
Ν40   40 2 53=  has one 5-subgroup
Ν45   45 3 52=  has one 5-subgroup

3. a. true (  159 53 3= ⋅ , and 53 27 3 2= ⋅ +  so cyclic by Theorem 7)
b. true (  102 2 3 17= ⋅ ⋅ , not simple by Exercise 2.19)

c. false (Example 3.4.17 shows     S3 is solvable, and 
    
S3 3 6= =! )

d. true (Theorem 1)
e. true
f. true (Theorem 7)

g. true (  125 53= , by Exercise 21 has a normal subgroup of order   51, i.e. commutes with every element)
h. true (  42 2 3 7= ⋅ ⋅ , by Exercise 2.19)
i. false ( 42 2 3 7= ⋅ ⋅  cannot by Lagrange even have any subgroup of that order)
j. false (trivially, A5 is simple)

4. Let G be a group of order   5 7 47⋅ ⋅ .  By familiar reasoning, it has one 5-subgroup   H5 and one 7-subgroup     H7 .  

Then G H/ 5 7 47= ⋅  and G H/ 7 5 47= ⋅  so both factor groups are cyclic by Theorem 7.  Then by Theorem 

3.3.20,     H H G5 7, C⊇  contain the commutator subgroup of G, so 
  
C , ,G ∈{ } ∩ { }1 5 1 7  so     CG E= .  Therefore 

    G G G E G/ C /= ≅  is commutative, and each of its subgroups is normal.

5. Let G be a group of order 96 2 35= .  The number of 2-subgroups of order  2 325 =  must be 1 or 3.  Suppose it has 
3, and let H and K be two distinct ones.   H K∩  is again a 2-subgroup of order a power of 2.  If 

    
H K∩ = 23 then 

by Lemma 8 
    
HK G= ⋅ = = > =2 2

2
2 128 96

5 5

3
7  which is impossible.  Since 

 
H K H K G≠ ⇒ ∩ < , so 

    
H K∩ = 24 .  Then 

    
H H K∩ = =2 2 25 4 , so     H K G∩ < .

6. Let G be a group of order   160 2 55= .  The number of 2-subgroups of order  2 325 =  must be 1 or 5.  Suppose it has 
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5, and let H and K be two distinct ones.   H K∩  is again a 2-subgroup of order a power of 2.  If 
    
H K∩ = 22  then 

by Lemma 8 
    
HK G= ⋅ = = > =2 2

2
2 256 160

5 5

2
8  which is impossible.  Since 

  
H K H K G≠ ⇒ ∩ < , so 

    
H K∩ ∈{ }2 23 4, .  By Exercise 2.21, 

      
H K H K N H K H KG∩ ⇒ ∩( ) ⊃< , ,  and (why?) 

    
N H K n nG ∩( ) = ⋅ >2 15,  and divides the order of G, so 

  
N H K G N H K GG G∩( ) = ⇒ ∩( ) = , so   H K G∩ < .

7. a.
  
τστ τ τ−

−
−= …( )1

0 2 1
1a a am , so the only letters affected by σ are the  τai  and all other letters are invariant under the 

entire product.  
    
∀ ( )( ) = ( ) = ( ) = ( ) =− −

+( )i a a a a ai i i i i m: modτστ τ τσττ τσ τ σ τ1 1
1 , so 

  
τστ τ τ τ−

−= …( )1
0 1 1a a am .0

b. For any two cycles of the same length 
    
α β= …( ) = …( )− −a a a b b bm m0 1 1 0 1 1, , let 

  
′ = ′ ′ … ′( )−α a a an0 1 1  be any cycle 

of all the letters not in α, and β similarly.  Then define τ :
:
:

∃ =
∃ = ′ ′





i x a x b
i x a x b

i i

i i

a

a
, which is a bijection and a 

permutation.  By (a.), 
    
τατ τ τ τ β− −= ( ) = ( ) = ( ) =1 1

i i i i i ia a b , so   α β~ .

c. Write the products of cycles as α α β β= ⋅ = ⋅ ( ) = ⋅ = ⋅ ( )< < < < < <i s i i s j r ij i s i i s j r iji i
a b, , and let α s j r js

a= ( )<  be any 

cycle of all the letters not in any   αi s< , and β similarly.  Then define       τ : , :∃ ≤ < =i s j r x a bs ij ija , which is a 

bijection and a permutation.  Then 
    
τστ τ α τ τα τ β β

α
−

≤
−

≤
−

≤= ⋅( ) = ⋅( ) = ⋅( ) =1 1 1
i s i i s i i s i

i  disjoint (b.)

.

d. Differently factored disjoint products cannot be conjugate.  Any disjoint factoring into cycles is unique:  disjoint 
factors cannot be combined into a cycle, and a cycle cannot be split into disjoint factors.  For any disjoint 
permutation, every letter must be in exactly one cycle (perhaps a 1-cycle).  So   pn  as described gives the number of 
ways permutations of   Sn  are factored into disjoint cycles, which are (by c.) the conjugate classes.

e.   p1 1= 1

    p2 2= 1 1, 2
p3 3= 1 1 1, 2 1, 3

    p4 5= 1 1 1 1, 1 1 2, 2 2, 3 1, 4

    p5 7= 1 1 1 1 1, 1 1 1 2, 1 2 2, 1 1 3, 2 3, 1 4, 5
p6 11= 1 1 1 1 1 1, 1 1 1 1 2, 1 1 2 2, 2 2 2, 1 1 1 3, 1 2 3, 3 3, 1 1 4, 2 4, 1 5, 6

    p7 15= 1 1 1 1 1 1 1, 1 1 1 1 1 2, 1 1 1 2 2, 1 2 2 2, 1 1 1 1 3, 1 1 2 3, 2 2 3, 1 3 3, 1 1 1 4,
1 2 4, 3 4, 1 1 5, 2 5, 1 6, 7

8. By Exercise 7, S4  has 5 conjugate classes:

  

4
4

1
!
!

= (1)(2)(3)(4)

  

4
2 2

6
!

! !⋅
= (1 2), (1 3), (1 4), (2 3), (2 4), (3 4)

4
2 2 2

3
!

!⋅ ⋅
= (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)

  

4
3

8
! = (1 2 3), (1 3 2), (1 2 4), (1 4 2), (1 3 4), (1 4 3), (2 3 4), (2 4 3)

  

4
4

6
! = (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2)

  24 1 6 3 8 6= + + + +
9. The class equation can be found as follows.  First, find the structure of each of the conjugate classes as in Exercise 

7e.  To find the number of distinct permutations in each conjugate class, imagine listed in a table the     n! different 
ways of writing the letters of   Sn , and draw dividing lines between the columns of this table so as to separate each 
row into cycles according to the partition of the conjugate class.  This surely represents every possible element of the 
class, although each element may be overrepresented.  In particular, if the conjugate class has   ml  cycles of a certain 
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length l, the     ml ! rearrangements of these cycles within a permutation are equivalent.  Also, every cycle of length p 
can itself be written in p different ways by ‘rotating’ its letters.  So the number of cycles of a conjugate class is 

    

n
m pl l i i

!
!⋅ ⋅

.  With the help of the partitioning found in Exercise 7,

S

S

5

6

5
5
5

5
3 2

5
2 2 2

5
2 3

5
2 3

5
4

5
5

120 1 10 15 20 20 30 24

6
6
6

6
4 2

6
2 2 2 2

6
3 2 2 2

6
3 3

6
2 3

6

: !
!
!

!
!

!
!

!
!

! ! !

: !
!
!

!
!

!
! !

!
!

!
!

!

= +
⋅

+
⋅ ⋅

+
⋅

+
⋅

+ + ⇔ = + + + + + +

= +
⋅

+
⋅ ⋅

+
⋅ ⋅ ⋅

+
⋅

+
⋅

+ !!
!

!
!

! ! !
2 3 3

6
2 4

6
2 4

6
5

6
6

720 1 15 45 15 40 120 40 90 90 144 120
⋅ ⋅

+
⋅

+
⋅

+ + ⇔

= + + + + + + + + + +

10. By Theorem 2.4.12 the commutative groups of order pn  are isomorphic to 
  
×i pni� , where 

⋅ = ⇒ + =i
n n

i ip p n ni .  Therefore the commutative groups of order pn  differ only (up to isomorphism) in the 
distribution of n, which can be done in pn ways.

11.
    
Z | : |S S S Sn n n n= ∈ ∀ ∈ ={ } = ∈ ={ }−σ τ στ τσ σ σ τστ 1 , so the center of   Sn  is the permutations that are invariant 

under conjugation of all   Sn , which is the conjugate classes of   Sn  that have exactly one element.  By Exercise 7 the 
conjugate class consisting only of 1-cycles contains only the identity.  Also, any permutation containing an n-cycle 
will be conjugate to every other permutation with an n-cycle.  If     n > 2 two distinct n-cycles can always be found, so 
that the conjugate class has more than one element.  Therefore, for   n > 2   ZS En = .

§4.4  Free Abelian Groups
1. ( , , ), ( , , ), ( , , )1 1 1 1 2 1 1 1 2{ } .

2. ( , ), ( , ) ( , ), ( , ) ( , ), ( , )2 1 3 1 2 1 1 0 0 1 1 0= = = ×� �

  
α β α β

α β
α α α

β α

α
β

( , ) ( , ) ( , )2 1 3 1 0 0
2 3 0
1 1 0

2 3 0 0
0

+ = ⇒
+ =
+ =





⇒
+ −( ) = − =

= −






⇒

=
=





So this does form a basis.

3. ( , ), ( , ) ( , ), ( , ) ( , ), ( , )2 1 4 1 2 1 2 0 0 1 2 0= = ≠ ×� � does not form a basis.

4. ( , ), ( , )a b c d{ }  is a basis for � �×  iff (Theorem 1, Condition 2) ( , ), ( , )a b c d = ×� �  and 

    α β α β( , ) ( , ) ( , ) ,a b c d+ = ⇒ =0 0 0.  Show that these conditions are equivalent to being able to generate (1,0) and 
(0,1).

⇒Suppose that 
    
∃

+ =
+ =





α β α β
α β1 2 1 2

1 1

2 2

1 0
0 1, ,, :

( , ) ( , ) ( , )
( , ) ( , ) ( , )
a b c d
a b c d

.  Prove that this implies 
  
( , ), ( , )a b c d{ }  is a basis by showing that 

it satisfies Condition 2 of Theorem 1.  For any ( , )e f ∈ ×� � ,

    
( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )e f e f e a b c d f a b c d e f a b e f c d= + = +( ) + +( ) = +( ) + +( )1 0 0 1 1 1 2 2 1 2 1 2α β α β α α β β

so 
      
( , ), ( , )a b c d = ×� � .  Next,

    

α β α β

α β α β

α β α β
α

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

a b c d a b c d

a c b d

a c b d

a

+ = ⇒ +( ) + +( ) =

⇒ +( ) + +( ) =

⇒ + = ∧ + =
⇒ = ∨ =( )

0 0 1 0 0 1 1 0 0 1 0 0

1 0 0 1 0 0

0 0

0 0 ∧∧ = ∨ =( ) ∧ = ∨ =( ) ∧ = ∨ =( )β α β0 0 0 0 0 0c b d

Suppose α ≠ 0, then     a = 0 and   b = 0, but then ( , ), ( , )a b c d{ }  cannot possibly generate   � �× .  Similarly β ≠ 0 is 

impossible.  So α β, = 0.

⇐If ( , ), ( , )a b c d{ }  is a basis, then obviously they can generate (1,0) and (0,1).

Now, find conditions on a, b, c, d such that 
    
∃

+ =
+ =





α β α β
α β1 2 1 2

1 1

2 2

1 0
0 1, ,, :

( , ) ( , ) ( , )
( , ) ( , ) ( , )
a b c d
a b c d

, that is 
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α β
α β

α β
α β

1 1

1 1

2 2

2 2

1
0

0
1

a c
b d

a c
b d

+ =
+ =





∧
+ =
+ =





.

•First, suppose     a = 0.  Then 
    

[ ]  ,
[ ]  

[ ]  
[ ]  

1 1 1
4 0

2 0 0
3 1 1

1 1

1 1

2 2

2

β β
α α

β β
α

c c
d d

c
b b

= ⇒ = ±
± ± = ⇒ = ±





∧
= ⇒ =
= ⇒ = ±





, so 
  
( , ),  ( , )0 1 1± ±{ }d  are possible 

bases.  Similarly for b, c, or d = 0.
•The remainder of the cases have     a b c d, , , ≠ 0.  Then 

[ ]  

[ ]  

2 1 1

1

0
0

1 1 1

1 1 1 1

− ⋅( ) + = ⇒ − +( ) =

= − ⇒ = − ⋅






∧

…
…





⇒
− + ≠




∧
− ≠





⇒ ≠
β β β

α β α β

d b a c ad b c

b d d b

ad b c
b ad c

ad bc

This is the familiar condition of linear independence that the determinant formed by a basis be nonzero.
5. Replace “generating set” with “basis.”
6. Correct.
7.     2� �⊂  both have rank 1.
8. a. true (Exercise 10)

b. true (any minimal generating set is a basis)

c. true ( �n )
d. true (the condition implies that the group is torsion-free)
e. true
f. false (if Y X⊃  the expression of elements in terms of Y is not unique)

g. false (  � has only ±{ }1  as bases)

h. true (Theorem 9)
i. true (why?)
j. false (    � � �2 2=  is not free commutative)

9. •(injective) 
    
∃ ′ ∈ = ′ ∃ ′ = + ′ = + ′ ⇒ ( ) = ′( ) ⇒ = ′g g G g g n n g n x g n x n n g gi i i i i i i i i i i i, : , , : ,φ φ .

•(surjective) 
      
∀( ) ∈ ∃ ∈ = + = ( )i i

r
i i i i in g G g n x g n� : : , φ .

•(associative) For all     ∀ ′ ∈ ∃ ′ = + ′ = + ′g g G n n g n x g n xi i i i i i i i, : , : , ,

  
φ φ φ φ φ φ φg g n x n x n n n n n n x n x n x g gi i i i i i i i i i i i i i i i i i i i i i i+ ′ = ( ) + ′( ) = ( ) + ′( ) = + ′( ) = + ′( )( ) = ( ) + ′( )( ) = + ′( ) .

10. If G had an element   g G∈  of order n, and  g xi i i= + α  for some basis 
 i ix{ } , then 

g ng g n g n x n xi i i i i i= + = +( ) = +( ) +( ) = + +( )1 1 1α α( ) , contradicting the uniqueness of the expression of g in 

terms of its basis elements.
11. Let X and   ′X  be bases for G and   ′G , respectively.  Show that Condition 2 of Theorem 1 holds:

• ∀ ′( ) ∈ × ′ ∈ ′ ∈ ′ ⇒ ∃ ′ = + ′ = + ′ ′ ⇒ ′( ) = + + ′ ′( )g g G G g G g G n n g n x g n x g g n x n xi i i i i i i i i i i i i i, : , , : , , ,  so 

∪ ( ) ∪ ′( ) = × ′i i i ix x G G, ,0 0 .

• + + ′ ′( ) = ⇒ + = ∧ + ′ ′ = ⇒ = ∧ ′ =i i i i i i i i i i i i i in x n x n x n x n n, ( , )0 0 0 0 0 0.

12. ⇒If G is free commutative of finite rank, then by Condition 2 of Theorem 1 the finite basis generates it.  By Exercise 
10 it has no elements of finite order.

⇐Let X be a minimal generating set of G.  We just have to prove ‘the uniqueness of zero’.  Suppose   + =i i in x 0, and 
let K partition the coefficients such that     n nk K k K∈ ∉≠ =0 0, , and   + =∈i K i in x 0.  Suppose there is  ∃ ∈k K , and thus 
n x n xk k i K i k i i= + ∈ ≠, .  If + ≠∈ ≠i K i k i in x, 0 then it and  n xk k  are different expressions of the same element so X could 

not have been minimal.  If     + =∈ ≠i K i k i in x, 0 then xk  is an element of finite order nk .  So   K = ∅ .

13. Since for any prime p,     1 pn  cannot be formed from     1 qm  for any other prime q, or from   1 pn ′  for ′ <n n,  a basis 

for   �  would have to contain at least p
n

np∈
→∞

−
� lim , but no element can have a definite expression in terms of such 

a basis.
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14. Clearly the torsion subgroup is finite.  By the First Sylow Theorem, T has a p-subgroup  Tp  of elements of some 

power of p, and p does not divide 
 
T Tp .  So   T Tp  has no elements of order p, which must therefore all be in  Tp .

15. Since T is isomorphic to its prime-power decomposition, the subgroup  Tp  of all elements of power of p has a 
corresponding subgroup of all elements of power of p in the decomposition, which is exactly the direct product of 
the cyclic factors of order some power of p.

16.     G n G[ ] ⊆  follows from:
•(identity)     0 0 0 0∈ = ⇒ ∈G n G n: [ ] ;

•(inverse) 
    
∀ ∈ = ⇒ ( ) = ⇒ ( ) = ⇒ ∈

− − −g G n ng ng n g g G n[ ] : [ ]0 0 0
1 1 1

commutative

;

•(closure) 
    
∀ ′ ∈ = ′ = ⇒ ( ) ′( ) = ′( ) = ⇒ ′ ∈g g G n ng ng ng ng n gg gg G n, [ ] : , [ ]0 0 0

commutative

.

17.
      
g p pg n pg n p g np p pp

r r
pr r∈ ⇔ = ⇔ ∃ = ⋅ ⇔ = ⇒ =−� �[ ] : [ ]0 1 , and 

      
� �p pr rp[ ] ⊆  is commutative, so 

      
� �p pr p[ ] ≅ .

18.
      

×( ) = × ≅ ×i p i p i pi ip p� � �[ ] [ ] .

19. a. If × ≅ × ⇒ ×( ) ≅ ×( ) ⇒ × ≅ × ⇒ ≅ ⇒ =i p i p i p i p i p i p p pri si ri si ri si m np p m n� � � � � � � �[ ] [ ] .

b. Let     j ≥ 0 such that ∀ < = <i j r s r si i j j: ; .  Certainly 
    
p p p pr

i p
r

i p i
r

p i
r

p
j

ri
j

si
j

ri
j

si⋅ × ≅ ⋅ × ⇒ × ≅ ×� � � � .  Now, 

for any 
      
q r p Ej

r
p

j
q≤ =, � , so 

    
× × × ≅ × × ×< = > < = >i j i j i j

r
p i j i j

r
p i j

r
pE E p E p pj

ri
j

si
j

si� � �  with 

p E r sr
p j j

j
sj� ≠ ⇐ < , but this is impossible by (a).

20. Factorize each of the torsion coefficients m p p qi j j
q

j j
j= ⋅ ∈ ∈ +, ,� � , then 

  
G i j p j

qj= × × � .  For example, 

      T m m G= × ⇒ = = ⇒ = × ×� � � � �216 4 0
3 3

1
2

2 3 22 3 2 3 3 2, .

21. From Exercise 2.4.42,     m p m pj i j n i
q

i i
q

i

ij i= ⋅ ⇒ = ⋅<: 0
0  where     qi0 is the highest power of  pi  in the decomposition.

22. From Exercise 2.4.42 (not really proved there).

§4.5  Free Groups
1. a.     a b a c b b c a b a2 2 3 3 2 2 3 3 2 2− − − − −; ;  b.     a b a c a a c a b a− − − − −1 3 4 6 1 1 6 4 3 1; .

2. a. a c a c5 3 5 3; − − ;  b. a b c a b c− − −4 3 6 4 3 6; .
3. By Theorem 12, there is exactly one homomorphism for each selection of 2 elements in the range ′G , so there are 

′G
2
 homomorphisms:  a. G

2 24 16= = ;  b. G
2 26 36= = ;  c. G

2 2 23 6 36= = =! .

4. In this case, the   φai  must also generate   ′G .  a. 2 2 4 2 122⋅ ⋅( ) −( ) = ;  b. 2 2 6 2 2 2 1 20 4 242⋅ ⋅( ) −( ) + ⋅ ⋅( ) = + = ;  

c. 
  
2 2 3 2 3 2 24⋅ ⋅( ) + ⋅ ⋅( ) = .

5.
6.
7. Correct.
8. Insert “free” before “generators”.  I don't think it's been proved that there are no other generators.
9. “It would seem obvious that this operation of multiplication is well-defined and associative.”  I think this is obvious 

too.  Can't think of anything that might throw a spoke in the wheel.
10. a. false (E is not free by definition)

b. false (a subgroup of a commutative group is commutative and thus not generally free)
c. false (the image of the trivial homomorphism is not free)
d. true (by Definition 4.2)
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e. false (torsion groups are finitely generated but not free commutative)
f. false (is this a trick question?)

g. false (a free group generated by one element is free commutative on the basis of that element)
h. true (a free commutative group of rank greater than one must have more than one generator, but any free group 

with more than one generator is not commutative)
i. false (Theorem 9)
j. true (Theorem 4.5)

11. a.  1 2 2 3 0 1 2 1 2 3 2⋅ + ⋅ = ⋅ = ⋅ =, , .  {1} is a basis for     �4 , certainly 
  
1 4= �  and any one-element generating set is a 

basis under the definition.

b. {1} is a one-element generating set and hence a basis.  Also, 
    
{ , }2 3 6= � .  

    + = ⇒ ⋅ + ⋅ = ⇒ = −i i im b m m m m0 2 3 0 2 30 1 0 1 so     m0  is a multiple of 3 and   m1 is a multiple of 2, so     2 0m  and 

    3 1m  are multiples of 6, so     2 0 3 00 1m m= =, .
c. No, because a basis of a free commutative group induces unique expressions in terms of it.
d. A finite commutative group has an expression in terms of torsion coefficients, one dividing the next, where each 

factor in the direct product has an element of the order of its coefficient.

12. a. G

G1
*

G2
*

  φ1 θ2

  φ θ φ2 2 1=
G

G2
*

G1
*

  φ2 θ1

 φ θ φ1 1 2=

    G Kerψ

  ′GG

  G K

ψ

isomorphism

    G G1 2
* *
,  can each be factored in terms of the other, so   φ θ φ φ θ φ1 1 2 2 2 1= =, .  Then 

    φ θ φ θ θ φ θ θ φ θ φ θ θ φ θ θ1 1 2 1 2 1 1 2 2 2 1 2 1 2 2 1= = ⇒ = = = ⇒ =i i; .  Now

    
ker |

*
θ θ θ θ1 2 1 2 1= ∈ = ⇒ = ⇒ =








=g G g e g e ig e E ;  ∀ ∈ ∈ ( ) = ( ) = =g G g G g g ig g1 2 2 1 2 1 2
* *

: :θ θ θ θ θ

so   θ1 is injective and surjective, so is an isomorphism, so     G G1 2
* *

≅ .
b. Consider all possible homomorphisms of G into commutative  ′G , and let K be a minimal set contained by the 

kernels of all these homomorphisms. If    K G1 2, <  are kernels of two homomorphisms such that   G K1 2,  are 

commutative, then       K K G1 2∩ <  must be the kernel of a homomorphism with     G K K1 2∩  commutative, so K is the 
minimal kernel of all commutative homomorphisms.
Refer to the figure on the right.  By Fundamental Homomorphism Theorem, any homomorphism ψ can be 
factored into a homomorphism onto its kernel factor group and an isomorphism from this group.  By Exercise 
3.3.35.       K G K K< <⇒ ∩ =ker K kerψ ψ , so there are canonical homomorphisms  G G K→  and     G K G→ kerψ
.    G K  is thus a blip group.

c. The blip group of G is its commutator subgroup.

13. a.  S

  G

  ′G

 f   φ ′f

  ′f S

G1

G2

    f 1 φ f 2

  f ff2 12
= φ

S

G2

G1

    f 2 φ f 1

    f ff1 21
= φ

Refer to the figure on the left for the adjusted naming.  Suppose   f  is not injective.  Then 

    ∃ ∈ ≠ =s s S s s fs fs1 2 1 2 1 2, , : .  Then there is a group  ′G  and     ′ → ′f S G:  such that     ′ = ′ ′ = ′g f s g f s1 1 2 2,  and     ′ ≠ ′g g1 2 .  
But then there cannot be a homomorphism φ ′f  such that ′ = ′f ffφ , because then 

′ = ⇒ = ′ ′ = ⇒ = = ′′ ′ ′ ′ ′f s fs g g f s fs g g gf f f f f1 1 1 1 2 2 2 1 2φ φ φ φ φ;  and φ ′f  would not even be a function.

Now, suppose fS does not generate G.  Then there is a g G∈  that is not generated by fS, and then for any ′ ′G f,  
and     φ φ′ ′′ =f ff f:  we can let   φ ′f g  equal any element of ′G  without affecting   φ ′f f , contradicting the uniqueness 

of φ ′f .
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Now let     G1 2,  be blop groups.  The figures on the right illustrate how     f 1 2,  can each be factored in terms of the 

other, so     f f f ff f1 2 2 11 2
= =φ φ, .  Then   f f i f f if f f f f f f f1 1 2 21 2 1 2 2 1 2 1

= ⇒ = = ⇒ =φ φ φ φ φ φ φ φ; .  Then

    
ker |φ φ φ φ φf f f f fg G g e g e ig e g e E

1 1 2 1 22 2 2 2 2 2= ∈ = ⇒ = ⇒ = ⇒ ={ } = ;

    ∀ ∈ ∃ ∈ = ⇒ = ⇒ = ⇒ =g G g G g g g g ig g g gf f f f f f1 1 2 2 2 1 2 1 2 1 2 11 2 1 2 2 2
: : φ φ φ φ φ φ ,

so     φ f 1
 is an isomorphism and     G G1 2≅ .

b. Let     F S[ ] be the free group on S si i= { }.  Then by Theorem 12, for any group ′G  and ′ → ′f S G:  there is a 

unique homomorphism   φ ′f  such that  φ ′ = ′f i ifs f s   Since 
  

fS G= , it follows that   φ ′ = ′f f f , so F S[ ] is a blop 

group on S.
c. A blop group on S is the free group on S.

14. A group G is a free commutative group if it is isomorphic to �n  for some n ∈ +� .

§4.6  Group Presentations
1. • �4

4≅ ( )a a:

•Trivially, 
      
�4

4≅ ( )a b a b, : ,  is akin to saying that b does not generate anything at all.  Also 
      
�4

4 2 1≅ ( )−a b a a b, : ,  

which implies     a b a= = =1 22, .

•Trivially, 
      
�4

4≅ ( )a b c a b c, , : , , .  Also, 
   
�4

4 2 1≅ ( )−a b c a a b ac, , : , ,  implies a b c a= = = =−1 2 31, , .

2. S3 1 1 2 1
3

1
2

2
2

1 2 1
1

≅





−
?

, , : , , ,ρ µ µ ρ µ µ µ µ ρ .

3.

    

1
1

1
1

1
1

1
1

2 3 2 3

2 3 2 3

2 3 2 3

3 2 3 2

3 2 3 2

3 2 3 2

2 3 2 3

3 2 3 2

a a a b ab a b a b
a a a ab a b a b b

a a a a b a b b ab
a a a a b b ab a b
b a b a b ab a a a

ab b a b a b a a a
a b ab b a b a a a
a b a b ab b a a a     

1
1

1
1

1
1

1
1

2 3 2 3

2 3 2 3

2 3 2 3

3 2 3 2

3 2 2 3

3 2 3 2

2 3 3 2

3 2 3 2

a a a b ab a b a b
a a a ab a b a b b

a a a a b a b b ab
a a a a b b ab a b
b a b a b ab a a a

ab b a b a b a a a
a b ab b a b a a a
a b a b ab b a a a

4. The commutative groups of order 14 are isomorphic to     � � �14 2 7≅ × .  Suppose G is a noncommutative group of 
order 14.  Then G contains normal subgroups G2 7,  of order 2 and 7 respectively, and both cyclic so 

    
a G a G a b G b G b∈ = = ∈ = =: , ; : ,2

2
7

71 1.  Since       G G7 < ,   ia  is an automorphism of   G7 so   i ba  must also be 

an element of order 7, so i b aba ba i
i= ∈{ }−

≤ ≤
1

2 6 .      i = 1 is not possible, because this would imply 

aba b ab ba− = ⇒ =1 1  that G was commutative.  By Exercise 13b. this gives a group of order 14 iff     i i2
7 1 6= ⇒ = .  

So this leaves a b a b aba b, : , ,2 7 1 6− −( ) .

5. The commutative groups of order 21 are isomorphic to     � � �21 3 7≅ × .  Suppose G is a noncommutative group of 
order 21.  Then G contains normal subgroups G3 7,  of order 3 and 7 respectively, and both cyclic so 

    
a G a G a b G b G b∈ = = ∈ = =: , ; : ,3

3
7

71 1.  Since    G G7 < ,  ia  is an automorphism of     G7 so   i ba  must also be 

an element of order 7, so i b aba ba i
i= ∈{ }−

≤ ≤
1

2 6 .      i = 1 is not possible, because this would imply 

aba b ab ba− = ⇒ =1 1  that G was commutative.  By Exercise 13b. this gives a group of order 21 iff 

    
i i3

7 1 2 4= ⇒ ∈{ }, .  Why are these isomorphic?

6. “Raised to powers” is redundant.
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7. This appears to be completely incorrect.  Example 3 shows that presentations with different numbers of generators 
(between which hence no one-to-one correspondence can exist) can still give isomorphic groups.  Rewrite the 
definition as: “Group presentations are isomorphic iff they give isomorphic groups.”

8. a. true (remark before Example 4; by Theorem 5.13 every group is homomorphic to a free group, and the generators 
of the kernel are the relators of its presentation)

b. false (depends how you define “different”;  E has only 
    
a a: =( )1 )

c. false (if the presentations are not isomorphic then neither are the groups)
d. false (the question is unsolvable by the remark after Example 3)

e. false (
      
a :( ) ≅ � has a finite presentation)

f. true (every cyclic group is isomorphic to 
      
�n

na a≅ ( ): )

g. true (the relators form a normal subgroup that is thus invariant under conjugation)

h. false (
      
a a a a: , :2

2
3

3( ) ≅ ( ) ≅� � )

i. true (F A R[ ]  is isomorphic to the group and thus commutative, so R contains the commutator subgroup)
j. true (I think so…)

9. A noncommutative group G of order 15 would have normal subgroups   G3 5,  of order 3 and 5 respectively, and both 

cyclic so a G a G a b G b G b∈ = = ∈ = =: , ; : ,3
3

5
51 1.  Since G G5 < , ia  is an automorphism of G7 so i ba  must 

also be an element of order 5, so i b aba ba i
i= ∈{ }−

≤ ≤
1

2 4 .  By Exercise 13b. this gives a group of order 15 iff 

i 2
5 1= , but this is not so for any i.

10. By Exercise 13b, a b a b ba a b, : , ,3 2 2=( )  has   2 4 12
3= =  so is a group of order   2 3 6⋅ = .  If this group were 

commutative, then ab ba ab a b a= ⇒ = ⇒ =2 1 , but then the group would have one generator of order 1 and one 
of order 2, which cannot possibly generate a group of order 6.

11. By familiar reasoning, 
    
aba bi

i−
≤ ≤∈{ }1

2 2  and from Exercise 10 we know i = 2 yields S3.  So this must be the only 

noncommutative group of order 6.
12.     A4 consists of the even permutations on 4 letters, so disjoint products of 1×1×1×1-cycles (order 1), 2×2-cycles 

(order 2), and 3×1-cycles (order 3), and no elements of order 6, so cannot be isomorphic to   �6.

    S3 has two elements (  ρ1 2, ) of order 3 and three elements (  µ1 2 3, , ) of order 2.  Suppose   A4 has two elements of 
order 3, that is two 3-cycles.  To form a group, these elements have to be each other's inverse.  Without loss of 
generality, let (1 2 3), (1 3 2) be these two elements.      A4 would have to contain three elements of order 2, that is 
all three 2×2-cycles.  But then   ( )( ) ( ) ( )1 2 3 4 1 2 3 2 4 3⋅ =  and     A4 would have to contain at least three elements of 
order 3, so cannot be isomorphic to   S3 either.

13.
14.

§5.1  Rings and Fields
1. 12 16 192 24 0

24
⋅ = =� mod .

2.     16 3 48 32 16
32

⋅ = =� mod .

3.     11 4 44 15 1
15

⋅ − = − =� mod .

4. 20 8 160 26 22
26

⋅ − = − =� mod .

5.     ( , ) ( , ) ( , ) ( mod , mod ) ( , )2 3 3 5 2 3 3 5 6 5 15 9 1 6
5 9 5 9

⋅ = ⋅ ⋅ = =×� � � � .

6.     ( , ) ( , ) ( , ) ( mod , mod ) ( , )− ⋅ − = − ⋅ ⋅ − = − − =×3 5 2 4 3 2 5 4 6 4 20 11 2 2
4 11 4 11� � � � .

7.     n�  are commutative groups.  Check multiplication:
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•(closed)       ∀ ∈ ⋅ = ∈na nb n na nb n ab n, :� �2

•(associative) 
      
∀ ∈ ⋅( ) ⋅ = ⋅ = = ⋅ = ⋅ ⋅( )na nb nc n na nb nc n ab nc n abc na n bc na nb nc, , :� 2 3 2

•(commutative)       ∀ ∈ ⋅ = = = ⋅na nb n na nb n ab n ba nb na, :� 2 2

So they are also commutative fields.  Do they have a multiplicative identity?

•(multiplicative identity)       ∃ ∈ ∀ ∈ ⋅ = ⇒ = ⇒ = ⇒ = =na n nb n na nb nb n ab nb na n a� �: : ,2 1 1 1
So only 1� �=  has unity.  Which elements have a multiplicative inverse?

•(multiplicative inverse)       ∀ ∈ ∃ ∈ = ⇒ = ± =a b ab a b a� �: : ,1 1
So not even   � is a division ring.

8.   �
+  under addition is not even a group.

9.   � �×  is a commutative group.  Checking the multiplication:

•(closed) 
      
∀( ) ( ) ∈ × ( ) ⋅ ( ) = ( ) ∈ ×a a b b a a b b a b a b0 1 0 1 0 1 0 1 0 0 1 1, , , : , , ,� � � �

•(associative) 
      
∀( ) ( ) ( ) ∈ ×a a b b c c0 1 0 1 0 1, , , , , :� �  

    
a a b b c c a b a b c c a b c a b c a a b c b c a a b b c c0 1 0 1 0 1 0 0 1 1 0 1 0 0 0 1 1 1 0 1 0 0 1 1 0 1 0 1 0 1, , , , , , , , , , ,( ) ⋅ ( )( ) ⋅ ( ) = ( ) ⋅ ( ) = ( ) = ( ) ⋅ ( ) = ( ) ⋅ ( ) ⋅ ( )( )

•(commutative) 
      
∀( ) ( ) ∈ × ( ) ⋅ ( ) = ( ) = ( ) = ( ) ⋅ ( )a a b b a a b b a b a b b a b a b b a a0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1, , , : , , , , , ,� �

•(identity) ∃( ) ∈ × ∀( ) ∈ ×a a b b0 1 0 1, : , :� � � �  

a a b b b b a b a b b b
a b b
a b b

a
a0 1 0 1 0 1 0 0 1 1 0 1

0 0 0

1 1 1

0

1

1
1

, , , , ,( ) ⋅ ( ) = ( ) ⇒ ( ) = ( ) ⇒
=
=





⇒
=
=





•(inverse) ∀( ) ∈ × ∃( ) ∈ × ( ) ⋅ ( ) = ⇒ ( ) = ⇒ ( ) = ± ±a a b b a a b b a b a b a a0 1 0 1 0 1 0 1 0 0 1 1 0 11 1 1 1 1 1, : , : , , ( , ) , ( , ) , ( , )� � � �

So it is a commutative ring with unity, but not a division ring.
10. 2� �×  is a commutative group.    2� �,  are both commutative rings by Exercise 7, so 2� �×  is a commutative ring 

by Example 7.    2� does not have a unity by Exercise 7, so neither does 2� �× .

11.
      
G a a a= + ∈{ }0 1 0 12 | , � .  It is obvious that 

    
X = { }1 2,  is a generating set for G.  Now

      
∃ ∈ = +



 ∈ = ⇒ + = ⇒ =g G g a b a b g a b a b, , , : ,2 0 2 0 0�

since there is no common multiple of 1 and   2 , so G is free commutative on X.  Check multiplication:

•(closed) ∀ +



 +



 ∈a a b b G0 1 0 12 2, :

    
a a b b a b a b a b a b a b a b a b a b G0 1 0 1 0 0 0 1 1 0 1 1 0 0 1 1 0 1 1 02 2 2 2 2 2+



 ⋅ +



 = + +( ) + = +( ) + +( ) ∈

Multiplicative associativity and commutativity follows from the operation in �.  Since � is a commutative group 
under addition, G is a commutative ring.  Obviously 1 1G = �  is the multiplicative identity.

•(inverse) 
    
∀ = 



 ∈ ∃ = 



 ∈a a a G b b b G0 1 0 12 2, *: , * :

ab a a b b a b a b a b a b
a b a b
a b a b

= ⇒ 



 ⋅ 



 = +( ) + +( ) = ⇒

+ =
+ =





1 2 2 2 2 1
2 1

00 1 0 1 0 0 1 1 0 1 1 0
0 0 1 1

0 1 1 0

, ,

From the first equation, a b0 0  must be odd, but if a0  is even this is not possible, so G is not a division ring.
12. From Exercise 11, G is a commutative ring with multiplicative inverse.  Also from that exercise,

•(inverse) 
    
∀ = 



 ∈ ∃ = 



 ∈a a a G b b b G0 1 0 12 2, *: , * :

    

a b a b
a b a b

a b a a b a

b a b a

a a a b b a a a

b a b a

a
0 0 1 1

0 1 1 0

0
0 0 1 1 0 0

1 1 0 0

0 1
2

0 0 0 0 1
2

0

1

1 1 0

2 1
0

2 1 2 1 20+ =
+ =





⇒
+ −( ) =

= −






⇒

−



 =

…






⇒ = −





= −

≠
−

00









So a has inverse b if a a a a a a a a a a0 0 1
2

0 0 1
2

0 1
2

0
2

10 2 0 2 2 0≠ ∧ − ≠ ⇒ = ⇒ ≠ ⇒ ≠ , that is, for all G*, so G 
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is a field.

13.
      
G ri r= ∈{ }| �  is not closed under multiplication because     i i G⋅ = − ∈1 , so G is not a ring.

14. The identity of     �* is 1.        ∀ ∈ ∃ ∈ = ⇒ = ±a b ab a� �: : 1 1.

15. From Exercise 9, 
  

± ±( )1 1,  have inverses.

16. From Example 17, 
    
1 2 3 4 5, , , *{ } = �  have inverses.

17. The identity of     �* is 1.        ∀ ∈ ∈ ⋅ =a b b a a b b a� �*: : 1, so all of     �* have inverses.

18.
    

±{ } × × ±{ }1 1�*  have inverses.

19.
  
1 3,{ }  have inverses.

20. a.
  
M2 2 2

2 4
2

2 16� �= = = .

b. Under matrix multiplication, the identity is obviously the identity matrix, and all matrices with nonzero determinant 
have an inverse:

0 1
1 0 1

1 0
0 1 1

1 0 1
0 1

0 1 1
1 0,

,
,

,
,

,
,



















































21. φ : : ,� � �→ × ( )n na 0  is obviously a homomorphism, and has φ1 1 0 0 1= ( ) ≠, ', '.

22. For det to be a ring homomorphism, it must preserve addition as well, but
1 0
0 1

1 0
0 1

2 0
0 2

1 1 2 4








 +









 =









 + = ≠, ,

so it is not even a group homomorphism.

23. By Theorem 4.5.12, since � is free on ±{ }1 , 
    
φi i

a ia: : :� �→




0 0
1

a

a
a  are all the group homomorphisms.  

      
∀ ∈ ( ) = ⋅ ⇒ ( ) = ⋅ = ⇒ = ∨ =a b ab a b i ab ia ib i ab i i, :� φ φ φ 2 0 1, so the only ring homomorphisms are trivial or 

the identity.

24. From Exercise 23, the ring homomorphisms are φij a b ia jb i j: : , , , , ,� � �→ × ( ) ( ) =a 0 1.

25. The projection maps   π i  (Example 25) or the trivial homomorphism.
26. From Exercise 25, there are   3 1 4+ = .

27. The problem is that     ab a b= /⇒ = ∨ =0 0 0.  For example, 

  

1

1

0
0

0

















⋅
















=















.

28. Is there some more effective way to do this?

x 2 + x − 6 = 0 ⇒ x − 2( ) x + 3( ) ∈14� ⇒
x − 2( ) x + 3( ) = 0

x − 2( ) x + 3( ) = n ⋅ 14

 
 
 

  
⇒

x = 2 ∨ x = −3 = 11 
 
 

…
x − 2 ∈7� ∧ x + 3 ∈2�

x − 2 ∈2� ∧ x + 3 ∈7�

 
 
 

 
 

⇒ x ∈ 2,9{ } ∩ 1,3,5,… ,11{ }
x ∈ 0,2,4,… ,12{ } ∩ 4,11{ }

 

 
 

 
 

⇒
x = 2,11
x = 9
x = 4

 
 
 

 
 

⇒ x ∈ 2,4,9,11{ }

29. That is the definition for a division ring.  A field also needs commutative multiplication.
30. The concept of “magnitude” has not been defined in the context of a ring.  A unit in a ring is an element with a 

multiplicative inverse.
31. 2,3 ∈�6 : 2 ⋅ 3 = 0 .

32. �6  has multiplicative identity 1, 3 ⊂ �6  has identity 3.

33. a. true (a field is a commutative division ring)
b. false ( 2�, by Exercise 7)
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c. false (E)
d. false (�)
e. true ( 2� ⊂ � )
f. false (they relate its two operations)

g. true (by Definition 16)
h. true (the operation is associateive by definition of ring, the identity exists and is nonzero by definition of field, and 

every nonzero element has an inverse by definition of division ring)
i. true (by Definition 1)
j. true (because a ring is an additive group)

34. •(associative) ∀f , g ,h ∈F : ∀x ∈� :
f gh( )( )x = fx ⋅ gh( )x = fx ⋅ gx ⋅ hx = fg( )x ⋅ hx = fg( )h( )x ⇒ f gh( ) = fg( )h

•(distributive) ‘Left distributivity’ follows from ∀f , g ,h ∈F : ∀x ∈� :

f ⋅ g + h( )( )x = fx ⋅ g + h( )x = fx ⋅ gx + hx( ) = fx ⋅ gx + fx ⋅ hx = fg( )x + fh( )x = fg + fh( )x ⇒ f ⋅ g + h( ) = fg + fh

and right distributivity be a similar evaluation.
35. ∀f , g ∈F : ∀x ∈� : φx fg( ) = fg( )x = fx ⋅ gx = φx f ⋅ φx g

36. •(reflexivity) Obviously under the identity isomorphism ∀a,b ∈R : i ab( ) = ab = ia ⋅ ib .

•(symmetry) Let φ : R→ ′ R  be a ring isomorphism.  ∀ ′ a , ′ b ∈ ′ R : ∃a,b ∈R :φa = ′ a ,φb = ′ b :

φ ab( ) = φa ⋅ φb = ′ a ⋅ ′ b ⇒ φ inv ′ a ′ b ( ) = φ invφ ab( ) = ab = φ invφ( )a ⋅ φ invφ( )b = φ ′ a ⋅ φ ′ b 

so φ inv : ′ R → R is a ring isomorphism also.
•(transitivity) ∀φ : R→ ′ R ,ψ : ′ R → ′ ′ R : ∀a,b ∈R :

φ ab( ) = φa ⋅ φb ⇒ ψφ( ) ab( ) = ψ φ ab( )( ) = ψ φa ⋅ φb( ) = ψ φa( ) ⋅ ψ φb( ) = ψφ( )a ⋅ ψφ( )b .

37. •(closure) ∀a,b ∈U : ∃ ′ a , ′ b ∈R : a ′ a = 1,b ′ b = 1 ⇒ ab( ) ⋅ ′ b ′ a ( ) = ab ′ b ′ a = a ′ a = 1 ⇒ ab ∈U .

•(associativity) by definition of a ring
•(identity) 1 ∈R : 1 ⋅ 1 = 1 ⇒ 1 ∈U .
•(inverse) ∀a ∈U : ∃ ′ a ∈U : a ′ a = 1 ⇒ ′ a ∈U .

so U is a group.
38. a + b( ) a − b( ) = a + b( ) a + −b( )( ) = a + b( )a + a + b( ) −b( ) = a ⋅ a + b ⋅ a + a ⋅ −b( ) + b ⋅ −b( ) = a2 − b 2 + b ⋅ a − a ⋅ b

= a2 − b 2 ⇔ b ⋅ a − a ⋅ b = 0 ⇔ a ⋅ b = b ⋅ a
39. Clearly this multiplication is associative and distributive, and hence forms a ring.
40. 2� has an element such that a ⋅ a = a + a (for a = 2), while 3� does not.  � has an element of multiplicative order 

4 (i), while � does not.

41. Since �p  is distributive and commutative, the binomial expansion holds: a + b( )n
= +i

n
i

 

 
 

 

 
 aib n −i .  So 

a + b( )p
= +0 ≤i≤p

p
i

 

 
 

 

 
 aib p −i = ap + b p +0 <i<p aib p −i .  Now since p is prime, 

p
i

 

 
 

 

 
 =

p !
p − i( )!i!  is always a multiple of p 

for 0 < i < p , so that any such term is always zero.
42. A field is some closed collection of units of a ring, and by Exercise 37 forms a group under multiplication, so the 

identity of any of its subgroups is its identity.
43. By Exercise 37, U ,⋅  is a group, which has unique inverses.

44. a. ∀a,b ∈R : a2 = 1,b 2 = 1 : ab( )2
= ab( ) ab( ) = abab = aabb = a2b2 = 1 .

b. 0,1,3,4{ }, 0,1,4,9{ }( ) .

45.

46. ∀a,b ∈R : ∃n,m ∈�
+ : an ,b m = 0 ⇒ ab( )nm

=
commutative

anmbnm = 0m0n = 0  is easy.  How about a + b ?

47. ⇒ ∃x ≠ 0 : x 2 = 0 ⇒ x is nilpotent
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⇐ ∃x ≠ 0 : x is nilpotent ⇒ ∃minimal n ≠ 0,x n = 0 ⇒
n even : x

1
2 n 

 
  

 
 

2

= 0, x
1
2 n ≠ 0

n odd : x n + 1 = x nx = 0 ⇒ x
1
2 n + 1( ) 

 
  

 
 

2

= 0,x
1
2 n + 1( ) ≠ 0

 

 
  

 
 
 

48. ⇒(additive identity) 0 ∈ S
•(additive inverse) ∀a,b ∈S : a − b ∈S ⇒ 0 − b = 0 + −b( ) = −b ∈ S

•(additive closure) ∀a,b ∈S ⇒ −b ∈ S ⇒ a − −b( ) = a + b ∈S

So S is a subgroup.
•(multiplicative closure) ∀a,b ∈S : ab = S
•(multiplicative associativity, distributivity) follow because R is a ring.

So S is a subring.
49. a. Let R1, 2 ⊆ R  be subrings.  From Exercise 48,

0 ∈R1,0 ∈R2 ⇒ 0 ∈R1 ∩ R2

∀a,b ∈R1 ∩ R2 ⇒ a,b ∈R1 ∧ a,b ∈R2 ⇒ a − b ∈R1 ∧ a − b ∈R2 ⇒ a − b ∈R1 ∩ R2

⇒ ab ∈R1 ∧ ab ∈R2 ⇒ ab ∈R1 ∩ R2

so R1 ∩ R2 is a subring.
b. If R is a field, then it is multiplicatively commutative and every element has a multiplicative inverse.  Obviously, 

multiplication remains commutative in R1 ∩ R2 and becuase it is closed, every element has an inverse in R1 ∩ R2.  
So it is a subfield.

50. Using Exercise 48.  ∀x , y ∈Ia ,
a0 = 0 ⇒ 0 ∈Ia

ax,ay = 0 ⇒ a x − y( ) = ax − ay = 0 ⇒ x − y ∈Ia

a xy( ) = ax( ) ⋅ y = 0y = 0 ⇒ xy ∈Ia

so Ia ⊆ R  is a subring.
51.
52. Consider the isomorphism from Example 15 φ : �rs → �r × �s : x a x 1,1( ) .  Obviously 

π 0φ : �rs → �r : x a x modr  and π 1φ : �rs → �s : x a x mod s .  So the problem amounts to finding x such that 
π 0φx = m modr , π 1φx = n mod s , i.e. φx = m modr ,n mod s( ) ∈ �r × �s .  Since φ is an isomorphism and thus 
surjective, such an x exists.

53. a. For a set S = i s i{ }  of relatively prime positive integers.  By the Fundamental Theorem of commutative groups, 

�⋅i s i
≅ ×i �s i

 are group isomorphic.  Since they are generated by 1 and i 1( )  respectively, with Theorem 4.5.12 

φ : �⋅i s i
→ ×i �s i

: x a x i 1( )  is a group isomorphism.  Multiplicative isomorphism follows from 

∀x , y ∈�⋅i s i
: φ xy( ) = xy( ) ⋅ i 1( ) = i xy( ) = i x( ) ⋅ i y( ) = x i 1( ) ⋅ y i 1( ) = φx ⋅ φy .  So φ is a ring isomorphism.

b. Let ri , si ∈�
*  with ri  relatively prime, show that ∃x ∈ �

+ : ∀i : x =s i
r i .  Consider the isomorphism of (a.), 

φ : �⋅i s i
→ ×i �s i

.  Obviously π iφ : �⋅i s i
→ �s i

: x a x mod si , so the problem amounts to finding x such that 

π iφx = ri mod s i , i.e. φx = i ri mod s i( ) ∈ ×i �s i
.  Since φ is an isomorphism and thus surjective, such an x exists.

54. •(additively commutative) ∀a,b ∈S :

1 + 1( ) a + b( ) =
1 + 1( )a + 1 + 1( )b = a + a + b + b

1 a + b( ) + 1 a + b( ) = a + b + a + b

 
 
 

  
⇒ a + a + b + b = a + b + a + b ⇒ a + b = b + a

so S is a commutative group.
•(multiplicative associativity) Even though we haven't shown S is a ring, the proof of Theorem 8 shows that 

multiplication is associative when either of the operands is 0, so multiplication is associative over all of S * (that is, 
including the additive identity).
Distributivity holds by axiom, so S is a ring.

•(multiplicative identity and inverse) Since S * is a group, it has an identity not the same as the additive identity, and 
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each element has an inverse.
So S is a division ring.

55. Since every element is idempotent, ∀a ∈R:

a + 1( ) a + 1( ) =
a + 1

a2 + a + a + 1 = a + a + a + 1

 
 
 

⇒ a + 1 = a + a + a + 1 ⇒ a + a = 0 ⇒ a = −a

so then ∀a,b ∈R

a + b( ) a + b( ) =
a + b

a2 + ab + ba + b 2 = a + ab + ba + b

 
 
 

⇒ a + b = a + ab + ba + b ⇒ ab + ba = 0 ⇒ ab = − ba( ) = ba

so R is commutative.
56. S = a,b{ }, PS = ∅,{a},{b},{a,b}{ } .

a.  + ∅ a b ab
∅ ∅ a b ab
a a ∅ ab b
b b ab ∅ a
ab ab b a ∅

⋅ ∅ a b ab
∅ ∅ ∅ ∅ ∅
a ∅ a ∅ a
b ∅ ∅ b b
ab ∅ a b ab

b. We show that PS ≅ �
S  by φ : �

S → PS : i b i( ) a s i ∈S |b i = 1{ } .

•(additively homomorphic) ∀x , y ∈�
S :

φ x + y( ) = si ∈S | x + y( )i = 1 ⇒ x i + y i = 1 ⇒ x i = 1 ∨ y i = 1 ∧ x i ≠ y i{ }
= si ∈S | x i = 1{ } ∪ si ∈S | y i = 1{ } \ si ∈S | x i = 1{ } ∩ si ∈S | y i = 1{ }
= si ∈S | x i = 1{ } + si ∈S | y i = 1{ } = φx + φy

•(multiplicatively homomorphic) ∀x , y ∈�
S :

φ xy( ) = si ∈S | xy( )i = 1 ⇒ x iy i = 1 ⇒ x i = 1 ∧ y i = 1{ }
= si ∈S | x i = 1{ } ∩ si ∈S | y i = 1{ }
= si ∈S | x i = 1{ } ⋅ si ∈S | y i = 1{ } = φx ⋅ φy

So φ is a ring homomorphism.  Clearly φx = ∅ ⇒ x = 0 ⇒ kerφ = E  and ∀S ∈ PS : ∃x ∈ �
S :φx = S , so φ is 

injective and surjective, so φ is a ring isomorphism.

Now ∀b ∈ �
n : b 2 = b ⋅ b = i bi ⋅ b i( ) = i bi( ) = b  so �

S ,PS  are boolean rings.

§5.2  Integral Domains
1. x 3 − 2x 2 − 3x = x x 2 − 2x − 3( ) = x x − 3( ) x + 1( ) ∈ �12 .  This holds if any of the factors is 0, or the product 

contains the factors of 12 = 2 ⋅ 2 ⋅ 3.  It seems easier to just try x ∈ 0,3,5,8,9,11{ } .

2. 3x =7 2 ⇐ x =7 2 3 =7 2 ⋅ 3−1 =7 2 ⋅ 5 =7 10 =7 3 .  Since 3 does not divide 7, there are no other solutions.

3x =23 2 ⇐ x =23 2 3 =23 2 ⋅ 3−1 =23 2 ⋅ 8 =23 16 .  Since 3 does not divide 23, there are no other solutions.

3. x 2 + 2x + 2 =6 0 ⇐ x =
−2 ± 4 − 4 ⋅ 2 ⋅ 1

2
=

−2 ± 2 i
2

 has no integer solutions.

4. x 2 + 2x + 4 = x + 2( )2
=6 0 ⇒ x =6 −2 =6 4 .  There are no other solutions.

5. char2� = 0 ;  6. char� × � = 0;  7. char�3 × 3� = 0 ;  8. char�3 × �3 = 3;  9. char�3 × �4 = 12;  
10. char�6 × �15 = 30.

11. a + b( )4
= a4 + 4a3b + 6a2b2 + 4ab3 + b 4 = a4 + 2a2b2 + b 4 .

12. a + b( )9
= a + b( )3 

 
  

 
 

3

= a3 + 3a2b + 3ab2 + b 3( )3
= a3 + b 3( )3

= a3( )3
+ 3 a3( )2

b 3( ) + 3 a3( ) b 3( )2
+ b 3( )2

= a9 + b 9 .
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13. a + b( )6
= a + b( )3 

 
  

 
 

2

= a3 + 3a2b + 3ab2 + b 3( )2
= a3 + b 3( )2

= a3( )2
+ 2 a3b3( ) + b 3( )2

= a6 + 2a3b3 + b 6 .

14. det
1 2
2 4

 

 
 

 

 
 = 0  so the row vectors are linearly dependent: 

1 2
2 4

 

 
 

 

 
 ⋅

2 2
−1 −1

 

 
 

 

 
 =

0 0
0 0

 

 
 

 

 
 .

15. “If a,b ∈R  are elements of a ring R…”
16. “If n is the least positive integer…”
17. a. false (n� does not have a multiplicative identity for n > 1)

b. true (Theorem 9)
c. false (they all have characteristic 0)
d. false (� has multiplicative inverse but 2� doesn't)
e. true (Definition 6 and Theorem 5)
f. true (if it was finite n ⋅ a = 0 for some n ∈ �)

g. false (Example 7)
h. true ( ∀a : ∃b : ab = 0 : ∃c : ac = 1 ⇒ ab + ac = 1 ⇒ a b + c( ) = 1  and because the inverse is unique, b + c = c ⇒ b = 0 

so a would not be a divisor of 0)
i. false (n� does not have a multiplicative identity for n > 1)
j. false (� is not a division ring or a field)

18. ring

ring with unity

commutative ring

field strictly skew fieldintegral domain

+ commutative 
multiplication

+ no divisors of 0

+ multiplicative identity

+ not multiplicatively 
commutative

Mn 2�

2�

division ring

Mn �

+ multiplicative inverses

Mn �| det ≠ 0

� �

19. The matrix is not invertible, has a zero determinant, linearly dependent row or column vectors.  (Book says 
something about eigenvalues.)

20.

commutative 
ring ring with unity

integral domain

field strictly skew 
field

21. ∀a ∈R* : a2 = a ⇒ aa = a ⇒ aaa−1 = aa−1 ⇒ a1 = 1 ⇒ a = 1 .  Also, for 0 ∈R : 02 = 0.  So the additive 
and multiplicative identities are the only idempotent elements of a division ring.

22. By Exercise 1.49a, an intersection of rings is a ring, and therefore an intersection of commutative rings is again a 
commutative ring.  Since the multiplicative identity is unique, it is contained in each of the domains and hence in 
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their intersection.  Finally, none of the domains have divisors of zero so neither does the intersection.  Therefore, 
the intersection is itself an integral domain.

23. It remains to be shown that each element has a multiplicative inverse.  Let R* = i 1,ai{ } , and consider 

aR* = i a1,aai{ } .  Each of these elements is distinct, because aai = aaj ⇒
cancellation

ai = aj ⇒ i = j  and 

a1 = aai ⇒
cancellation

ai = 1 .  Now R has no divisors of zero, so / ∃ ai : aai = 0 .  Thus aR = R, and either 

a1 = 1 ⇒ a = 1 ⇒ a−1 = 1  or aai = 1 ⇒ a−1 = ai .  Suppose ∃aj : aj a = 1 ⇒ aj aai = ai ⇒ aj = ai , so the ‘left 
multiplicative inverse’ is also the ‘right multiplicative inverse’.

24. a. Suppose ∃a ∈R* : ∃b ∈R : ab = 0 ⇒ aba = 0a = 0 ≠ a , so R cannot have divisors of 0.

b. ∀a ∈R* : ∃b ∈R : aba = a ⇒ abab = ab ⇒ abab − ab = 0 ⇒
cancellation

a bab − b( ) = 0 ⇒

no divisors
of 0

bab = b .  If 

b = 0 ⇒ a = aba = a0a = 0 , so b ∈R*.
c.

d. ∀a ∈R* : ∃b ∈R* : aba = a ⇒ aba − a = a ba − 1( ) = 0 ⇒ ba = 1 ⇒ a−1 = b .

25. Using Theorem 15, the smallest n such that n ⋅ 1 = 0 must be the same in any subdomain.
26. n ∈� n ⋅ 1{ } ⊆ D  is a commutative ring with unity and no divisors of 0, so is itself an integral domain.  Since any 

subdomain of D contains unity and is closed under addition, it must certainly contain n ∈� n ⋅ 1{ } .

27. We know that char� = 0.  Suppose that ∃D : ∃n,m ∈�
+ : charD = n ⋅ m .  Then

n ⋅ 1( ) m ⋅ 1( ) = +i<n 1( ) +i<m 1( ) =
distributive

+i<n 1 ⋅ +i<m 1( ) =
distributive

+i<nm 1 ⋅ 1 = +i<nm 1 = 0
and (Theorem 15) n ⋅ 1,m ⋅ 1 ≠ 0 , which would show that D has divisors of 0.  So the characteristic has to be prime 
or 0.

28. a. It is fairly obvious that multiplication is closed on S, and we know that S is a commutative group because R and �n  
are.  Multiplicative associativity follows directly from the definition by observing that swapping indices yields the 
same expression.  Multiplicative distributivity obviously holds for the second component.  For the first, 
∀ r1,n 1( ), r2 ,n2( ), r3,n 3( ) ∈R × �n :

r1 ,n1( ) ⋅ r2,n 2( ) + r3,n 3( )( ) = r1 ,n1( ) ⋅ r2 + r3 ,n2 + n 3( )
= r1 r2 + r3( ) + n 1 ⋅ r2 + r3( ) + n 2 + n 3( ) ⋅ r1 ,n1 n 2 + n3( )( )
= r1r2 + r1r3 + n 1r2 + n1r3 + n2r1 + n 3r1,n 1n2 + n 1n3( )
= r1r2 + n 1r2 + n2r1 ,n1n2( ) + r1r3 + n 1r3 + n3r1 ,n1n3( )
= r1 ,n1( ) r2,n 2( ) + r1 ,n1( ) r3,n 3( )

Surely right distributivity follows similarly.  So S is a ring.
b. ∃ r1,n 1( ) : ∀ r2 ,n2( ) : r1,n 1( ) ⋅ r2 ,n2( ) = r2,n 2( ) ⇒ r1r2 + n 1r2 + n 2r1,n 1n2( ) = r2,n 2( )

⇒
n 1 = 1

r1r2 + r2 + n 2r1 = r2 ⇒ r1r2 + n 2r1 = r1 r2 + n21( ) = 0 ⇒ r1 = 0

 
 
 

so 1S = 0,1( ) .

c. The characteristic of S is the minimal n such that n ⋅ 1S = 0 ⇔ n ⋅ 0,1( ) = 0 ⇔ n ⋅ 1�n
= 0 , which is the characteristic 

of �n  by axiom.

d. Show that φ is a ring isomorphism so that φR ⊆ S  is a ring.  ∀r1,r2:
φr1 = φr2 ⇒ r1,0( ) = r2,0( ) ⇒ r1 = r2 (injective)

φ r1 + r2( ) = r1 + r2,0( ) = r1,0( ) + r2,0( ) = φr1 + φr2  (group homomorphism)

φ r1 ⋅ r2( ) = r1 ⋅ r2,0( ) = r1 ⋅ r2 + 0 ⋅ r2 + 0 ⋅ r1 ,0( ) = r1,0( ) ⋅ r2,0( ) = φr1 ⋅ φr2  (ring homomorphism)

29. There are �3
4

= 34 = 81  code words and �3
2

= 9  message words.  (Note that the terminology used in this 
exercise appears to be inconsistent with that in §2.5).
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30. There are F
4

= 164 = 216 = 65536  code words and F
2

= 162 = 28 = 256  message words.

§5.3  Fermat's and Euler's Theorems
1.

    
3 3 1 3 3 3 2 3 6 3 4 3 5 3 10

7
1

7
2

7
3

7
4

7
5

7
6

7 7= = = = = = = ={ } =, , , , , ,
*

�

2. 4 4 1 4 4 4 5 4 9 4 3 4 1

3 3 1 3 3 3 9 3 5 3 4 3 1

2 2 1 2 2 2 4 2 8 2

0
11

1
11

2
11

3
11

4
11

5
11 11

0
11

1
11

2
11

3
11

4
11

5
11 11

0
11

1
11

2
11

3
11

4
11

= = = = = = ={ } ≠

= = = = = = ={ } ≠

= = = = = =

, , , , ,

, , , , ,

, , , ,

*

*

�

�

55 2 10 2 9 2 7 2 3 2 6 2 15
11

6 7 8
11

9
11

10
11 11, , , , , ,

*
= = = = = ={ } = �

3.

    

2 2 1 2 2 2 4 2 8 2 16 2 15 2 13 2 9 2 1

3 3 1 3 3 3 9 3 10 3 13 3 5 3 15 3 11

3

0
17

1
17

2
17

3
17

4
17

5
17

6
17

7
17

8
17 17

0
17

1
17

2
17

3
17

4
17

5
17

6
17

7
17

8
17

= = = = = = = = = ={ } ≠

= = = = = = = ={
=

=

, , , , , , , ,

, , , , , , , ,

*
�

1616 3 14 3 8 3 7 3 4 3 12 3 2 3 6 3 19
17

10
17

11
17

12
17

13
17

14
17

15
17

16
17 17, , , , , , , ,

*
= = = = = = = = } = �

4.
  
3 3 3 1 3 27 447

23
22

2
3

23
2 3

23 23= ( ) = ⋅ = = .

5. 37 37 37 1 37 37 249
7

6
8

1
7

8 1
7 7= ( ) = ⋅ = = .

6.

    

2 2 2 2 1 2 2 2 2 3 4 27 4 11 4 44 6

2 18 2 9

2 2 2 1 2 7 2 14

2 1

2
19

18 14
19

18 14
19

14
19

14
19

4
3

2
19

3
19 19 19 19

17 16 1
2

16
9

6
2

4
9

2 4
9

17
18

2

17

17

= = ( ) = = = ( ) = −( ) = − ⋅ = ⋅ = =

⇐ = ⋅ + ⇒ = ⋅ +

= ( ) ⋅ = = ⇒ =

+

⋅ +n
n

n

a b a b

== + =19 196 1 7
7.

0x 1x 2x 3x
x0 4 8 8
x1 1 10 12
x2 1 4 10
x3 2 12 22
x4 2·1 = 2 6 8
x5 4 8 5·4 = 20
x6 2 8 12
x7 6 16 18
x8 4 6 12
x9 3·2 = 6 18 28

8. ϕp p p2 1= −( ).
9.

    
ϕ pq pq p q p q( ) = − − + = −( ) −( )1 1 1 .

10.
  
7 7 7 1 11000

24
8

125

24
24

125

24
125= ( ) = ( ) = =ϕ .

11. 2 6 3 3 2 44 2 0 1x x x kk= ⇒ = ⇒ ∈ + ⋅( ) +{ }∈{ }, � .

12.

      

22 5 7 5 7 5 55 10

7 1 2 4 7 8 11 13 14 7 14 13 4 11 2 1 8 7 11

10 15

15 15 15
1

15 15

15
1

15

x x x= ⇔ = ⇒ = = =

⋅ ( ) = ( ) ⇒ =

+

−

−, , , , , , , , , , , , , ,

�
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13.
    
36 15 36 12 12 15 3 024 15 12x = ( ) = = ≠; gcd , , .

14.

      

45 15 15 5 7 5 7 5 7 5 35 3

7 1 3 5 7 7 21 35 49 7 5 3 1 7 7

3 3 8

24 8 8 8
1

8 8

8
1

8

x x x x

x

⇒ = ⇒ = ⇒ = = ⋅ = =

⋅( ) = ( ) = ( ) ⇒ =

∈ +{ } +

−

−, , , , , , , , ,

� �

15.
    
39 125 39 9 3 125 1 09 3x = ( ) = = ≠; gcd , , .

16.

      

41 125 5 8

5 1 2 4 5 7 8 5 10 20 25 35 40 5 1 2 7 8 4 5 2

5 8 2 8 16 7

7 9

9 9

9
1

9

9
1

9 9

x x

x

x

= ⇒ =

⋅( ) = ( ) = ( ) ⇒ =

= ⋅ = ⋅ = =
∈ +{ }

−

−

, , , , , , , , , , , , , , ,

�

17. 155 75 31 15 5 2

5 8 40 1 5 8

5 2 8 2 16 3

3 13

65 13 13

13
1

13

13
1

13 13

x x x

x

x

= ⇒ = ⇒ =

⋅ = = ⇒ =

= = ⋅ = =
∈ +{ }

−

−

�

18. 39 52 3 4

3 7 21 1 3 7

3 4 7 4 28 8

8 10

130 10

10
1

10

10
1

10 10

x x

x

x

= ⇒ =

⋅ = = ⇒ =

= = ⋅ = =
∈ +{ }

−

−

�

19. By Exercise 26, p p p p pp p−( ) = − ⇒ −( ) −( ) = − = − ⇒ −( ) =1 1 1 2 1 1 2 1! ! ! .

20. 37 2 35 35 34 1 34 35 5 7 5 7 15 16 240 18

5 15 75 1 5 15

7 16 112 1 7 16

37 37 37 37
1 1 1 1

37 37

37
1

37

37
1

37

−( ) = = ⋅ = ⇒ = = ⋅( ) = = ⋅ = =

⋅ = = ⇒ =

⋅ = = ⇒ =

− − − −

−

−

! ! ! !

21.

  

51 51 50 49 1 49 51 50 6 9

51 50 2550 430 6

9 6 54 1 6 9

53 53
1

53
1

53 53

53
1

! ! != ⋅ ⋅ = ⇒ = ⋅( ) = =

⋅ = = =

⋅ = = ⇒ =

− −

−

(Ex 19)

22. 29 2 27 27 26 25 24 1 24 27 26 25 17 8

27 26 25 27 650 27 2 54 17

8 17 136 1 17 8

29 29
1

29
1

29

27 27

53
1

−( ) = = ⋅ ⋅ ⋅ = ⇒ = ⋅ ⋅( ) = =

⋅ ⋅ = ⋅ = ⋅ = =

⋅ = = ⇒ =

− −

−

! ! ! !
(Ex 19)

23. a. false ( a p ap≠ ⇔0  does not divide )

b. true
c. true (by definition)
d. false (  ϕ1 1 1 1 0= /≤ − = )
e. true
f. true (a product of two relatively prime numbers is still relatively prime)

g. false (the product will not be relatively prime)
h. true
i. false ( if a p ax px bp p= ⇒ = = ≠0 )

j. true (what is an “incongruent solution?”)
24. The units of �12 are 1, 5, 7, and 11.
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1 5 7 11
5 1 11 7
7 11 1 5

11 7 5 1
Its multiplicative group is isomorphic to the Klein 4-group.

25. Let 
      
x x x x x x x x x x x xp∈ = ⇒ − = ⇒ + − − = +( ) − +( ) = −( ) +( ) =� : 2 2 21 1 0 1 1 1 1 1 0

(ring) (ring)

.  By Corollary 2.4,     �p  

has no divisors of 0, so     x x pp p= ∨ = − = −1 1 1.

26. Since p is odd,     p −1 is even, so 
    

2 2, ,… −{ }p  is also even.  Since by Exercise 25, 1 and   p −1 are the only elements 

who are their own inverses, the even number elements in 
  
2 2, ,… −{ }p  each have their inverses in that same subset, 

so     ⋅ = ==i
p

pi p2 1!  (cf. Exercise 19), so 
  
p p p p p−( ) = −( ) −( ) = −( ) = −1 1 2 1 1! ! .

27.

    

383838 37 19 13 7 3 2

0

0

0

0

0

37 36
1

37 18
2

37 12
3

37 6
6

37 2
18

37

= ⋅ ⋅ ⋅ ⋅ ⋅

− = ( ) − = − =

− = ( ) − = − =

− = ( ) − = − =

− = ( ) − = − =

− = ( ) − = − =

−

n n n n n n n

n n n n n n n

n n n n n n n

n n n n n n n

n n n n n n n

n

p

p

p

p

p

nn n n n n n

n n

p= ( ) − = − =
























⇒ − =

1
36

37
383838

0

0.

28. n n n n n n n n n n n np p
37 4

9
5 1

9
37

19191900 383838 5 1919190 0− = ( ) − = ( ) − = − = ⋅ = ⇒ − =− ; .

§5.4  The Field of Quotients of an Integral Domain
1. In the same way that the field of quotients  � �×  was reinterpreted as  � , this field of quotients   D D×  can be 

interpreted as     � �× i .

2.     � �+ 2 ?
3. A field is a division ring, in which by definition every nonzero element is a unit.  Since the zero of D is the zero of F, 

that last part of the definition is redundant.
4. a. true

b. false (  2  is not a quotient of �)

c. true (    � � �* ⊆ )
d. false (i is not a quotient of   �)
e. true
f. true (otherwise + and · could not be defined)

g. false (see h.)
h. true (every nonzero element of a division ring is a unit, and a field is a division ring)
i. true
j. true (Corollary 9)

5.     2� �⊂  is an integral domain.  Its field of quotients includes 
  

2 4,( )[ ] , and 

  
2 4 2 4 2 4 4 2 4 4 16 16 16 1 16 1 1 1, , , , , ,( )[ ] + ( )[ ] = ⋅ + ⋅ ⋅( )[ ] = ( )[ ] = ⋅ ⋅( )[ ] = ( )[ ], so its field of quotients is at least a subset 

of   � �× .  Similarly, for any element 
      

a b a b, , , *( )[ ] ∈ ∈� �  in the field of quotients of  �, 
    

2 2 2 2a b, , ,( )[ ] ( )[ ]  are in the 
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field of quotients of     2� and 
    

2 2 2 2 2 2 2 2 4 4a b a b a b a b, , , , ,( )[ ] ⋅ ( )[ ] = ⋅ ⋅( )[ ] = ( )[ ] = ( )[ ] , so the fields of quotients of   � 

and     2� are equal.
6. Prove that addition in F is associative.

    

a b c d e f ad bc bd e f

ad bc f bd e bd f

adf bcf bde bdf

a df b cf de b df

a b cf de df

a

, , , , ,

,

,

,

, ,

,

( )[ ] + ( )[ ]( ) + ( )[ ] = +( )[ ] + ( )[ ]
= +( ) + ( ) ( )[ ]
= + +( )[ ]
= ( ) + +( ) ( )( )[ ]
= ( )[ ] + +( )[ ]
= bb c d e f( )[ ] + ( )[ ] + ( )[ ]( ), ,

7.
  

0 1,( )[ ]  is an additive identity in F: 
    
∀ ( )[ ] ∈ ( )[ ] + ( )[ ] = ⋅ + ⋅ ⋅( )[ ] = ( )[ ]a b F a b a b b a b, : , , , ,0 1 1 0 1 .

8.
    

−( )[ ]a b,  is an additive inverse in F.  
  
∀ ( )[ ] ∈a b F, :

−( )[ ] + ( )[ ] = − ⋅ + ⋅ ⋅( )[ ] = − +( ) ⋅ ⋅( )[ ] = ⋅ ⋅( )[ ] = ⋅( )[ ] = ( )[ ]
⇐ ⋅ = ⋅( ) ⋅ ⇔ =

a b a b a b b a b b a a b b b b b b b b

b b

, , , , , , ,0 0 0 1

0 1 0 0 0

9. Multiplication in F is associative.  
    
∀ ( )[ ] ( )[ ] ( )[ ] ∈a b c d e f F, , , , , :

    

a b c d e f ac bd e f ac e bd f

a ce b df a b ce df a b c d e f

, , , , , ,

, , , , , ,

( )[ ] ⋅ ( )[ ]( ) ⋅ ( )[ ] = ( )[ ] ⋅ ( )[ ] = ( ) ( )( )[ ]
= ( ) ( )( )[ ] = ( )[ ] ⋅ ( )[ ] = ( )[ ] ⋅ ( )[ ] ⋅ ( )[ ]( )

10. Multiplication in F is commutative.  ∀ ( ) ( )[ ] ∈a b c d F, , , :

a b c d ac bd ca db c d a d, , , , , ,( )[ ] ⋅ ( )[ ] = ( )[ ] = ( )[ ] = ( )[ ] ⋅ ( )[ ].
11. Distribution laws hold in F.  

    
∀ ( )[ ] ( )[ ] ( )[ ] ∈a b c d e f F, , , , , :

a b c d e f a b cf de df a cf de b df ba cf de bb df

bacf bade bbdf ac bf bd ae bd bf ac bd ae bf

, , , , , , ,

, , , ,

( )[ ] ⋅ ( )[ ] + ( )[ ]( ) = ( )[ ] + +( )[ ] = +( ) ( )( )[ ] = +( ) ( )( )[ ]
= +( )[ ] = ⋅ + ⋅ ⋅( )[ ] = ( )[ ] + ( )[[ ] = ( )[ ] ⋅ ( )[ ] + ( )[ ] ⋅ ( )[ ]a b c d a b e f, , , ,

12. a. ∀ ∈ ( )[ ]t T t t: ,  is unity.

b.
    
∀ ′ ∈ ′( )[ ] ⋅ ′( )[ ] = ′ ′( )[ ] =t t T t t t t tt t t, : , , , 1.

13. By Exercise 12, 
    
Q ,R a( )  is a commutative ring with unity.

14. Q , , , , ,�4
0
1

0
3

1
1

3
3

2
1

6
3

2
3

3
1

9
3

1
3

1 3{ }( ) = = = = = = ={ }  has 4 elements.

15.
      
Q ,�

�n
n

∈ +{ }



2  are all 

      n m
mn∈ ∈ +{ }� �, 2 .

16.
      
Q ,3 6�

�n
n

∈ +{ }



  are 3 6 3 6 6 61 1

2
1n n nn n n{ } = ⋅{ } = { } = …− −  all fractions n om p2 3+ .

17.

§5.5  Rings of Polynomials
♥ R x[ ] is the set of formal polynomials with coefficients in R and indeterminate x.  ‘Formal’ means that the 

indeterminate is to be seen as purely a symbol with no algebraic interpretation.  A polynomial is an infinite sum 
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f x f xi i

i[ ] = +  with a finite number of nonzero coefficients.  
  
R R x⊂ [ ] are the constant polynomials.  The 

finiteness enables or simplifies some kinds of operations (see for example     Phigh in the section on ordered rings) but 
isn't necessary for the polynomial ‘concept’ itself.  In fact, that same section defines power series rings and 
Laurent series fields which modify this restriction in different ways.

♥ The evaluation homomorphism assigns a value from some superfield E to the indeterminate:

  φa i i
i

i i
if x f a+ = + .

1. f x x g x x x[ ] = − [ ] = − +4 5 2 4 22,  in �8 x[ ] :

    
f x g x x x x x x x[ ] + [ ] = −( ) + − +( ) = + −( ) + − +( ) = +4 5 2 4 2 2 4 4 5 2 2 52 2

8
2 .

    

f x g x x x x x x x x x

x x x x x x x x x x

[ ] ⋅ [ ] = −( ) − +( ) = − +( ) − − +( )
= − + − + − = − + − = + +

4 5 2 4 2 4 2 4 2 5 2 4 2

8 16 8 10 20 10 8 26 28 10 6 4 6

2 2 2

3 2 2 3 2
8

2

2.
    
f x x g x x[ ] = + [ ] = +1 1,  in 

      
�2 x[ ]:

f x g x x x x[ ] + [ ] = +( ) + +( ) = + =1 1 2 2 02
2

    
f x g x x x x x x x x x[ ] ⋅ [ ] = +( ) +( ) = +( ) + +( ) = + + = +1 1 1 1 1 2 1 12

2
2 .

3. f x x x g x x x[ ] = + + [ ] = + +2 3 4 3 2 32 2,  in �6 x[ ] :

f x g x x x x x x x x x[ ] + [ ] = + +( ) + + +( ) = + + = + +2 3 4 3 2 3 5 5 7 5 5 12 2 2
6

2

    

f x g x x x x x

x x x x x x x x

x x x x x x x x

x x x x

[ ] ⋅ [ ] = + +( ) ⋅ + +( )
= + +( ) + + +( ) + + +( )
= + + + + + + + +

= + + +

2 3 4 3 2 3

2 3 2 3 3 3 2 3 4 3 2 3

6 4 6 9 6 9 11 8 12

6 13 24 17

2 2

2 2 2 2

4 3 2 3 2 2

4 3 2 ++

= +

12

56
3x x

4.
    
f x x x x g x x x[ ] = + + − [ ] = + +2 4 3 2 3 2 43 2 4,  in 

   
�5 x[ ]:

f x g x x x x x x x x x x x x x[ ] + [ ] = + + +( ) + + +( ) = + + + + = + + +2 4 3 2 3 2 4 3 2 4 5 6 3 2 4 13 2 4 4 3 2
5

4 3 2

    

f x g x x x x x x

x x x x x x x x x x x

x x x x x x x

[ ] ⋅ [ ] = + + +( ) ⋅ + +( )
= + +( ) + + +( ) + + +( ) + + +( )
= + + + + + + +

2 4 3 2 3 2 4

2 3 2 4 4 3 2 4 3 3 2 4 2 3 2 4

6 4 8 12 8 16 9

3 2 4

3 4 2 4 4 4

7 4 3 6 3 2 5 66 12 6 4 8

6 12 9 10 16 22 16 8

2 4 2 3

2 4

7 6 5 4 3 2

5
7 6 5 3 2

x x x x

x x x x x x x

x x x x x x

+ + + +

= + + + + + + +

= + + + + + +

5. �2
3 1 42 16

+
= = .

6.
    
�5

2 1 35 225
+

= = .

7.
    
φ2

2 2
73 2 3 4 3 7 0x +( ) = + = + = = .

8.
    
φ0

3 2 3 2 1
72 3 2 2 0 0 3 0 2 2 2x x x− + +( ) = ⋅ − + ⋅ + = = .
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9.

    

φ φ φ

φ φ

3 3 3

3
4

3
3 2

4 3 2

7 7

2 3 3

3 2 3 3 3 3 3 81 6 27 27 3

3 3 9 2

f x g x f x g x

x x x x

[ ] ⋅ [ ]( ) = [ ] ⋅ [ ]
= +( ) ⋅ − +( )
= + ⋅( ) ⋅ − ⋅ +( ) = +( ) ⋅ − +( )
= ⋅ = =

homomorphism

10.

    

φ φ φ φ5
3 2 7 2

5
3

5
2

5
7 2

3 2 7 2

5 5 5

2 4 3 3 1 2 4 3 3 1

5 2 4 5 3 5 3 5 1

127 103 5 75 1 2 3 1 6 1

x x x x x x x x+( ) +( ) + +( )



 = +( ) ⋅ +( ) ⋅ + +( )

= +( ) ⋅ ⋅ +( ) ⋅ + ⋅ +( )
= ⋅ ⋅ + +( ) = ⋅ + = =

11.

    

φ φ4
106 99 53

4 4
4 3 5

4 3 5

4

3 5 2 3 5 2

3 4 5 4 2 4 3 256 5 64 2 1024
3 0 5 0 2 0 0

x x x x x x+ +( ) = + +( )
= ⋅ + ⋅ + ⋅ = ⋅ + ⋅ + ⋅
= ⋅ + ⋅ + ⋅ =

12. φ 0 1
2

2
21 1 2 1 0 1 1, , , Ker( ) +( ) = ( ) = = ( ) ⇒ +( ) = { }x x .

13.
    
φ 0 6

3
7

32 2 2 5 14 35 74 137 230 2 5 0 0 4 4 6 2 2 2 3, , , , , , , , , , , , , , Ker ,…( ) + +( ) = ( ) = ( ) ⇒ + +( ) = { }x x x x .

14.

    

φ φ0 4
5 3 2

0 4
3 2

5

3 2

3 2 3 3 0 7 34 99 220 0 2 4 4 0

3 3 0 4

, , , , , , , , , , , ,

Ker ,

…( ) …( )+ + +( ) = + +( ) = ( ) = ( )
⇒ + +( ) = { }
x x x x x x x

x x x

15.

    

φ φ φ0 6 0 6

7

5 0 8 5 21 16 50 33 101 56 230 85 293 110

5 0 1 5 0 2 1 5 3 0 6 1 5 5

0 5 0 5 0

, , , , , , , ,

, , , , , ,

, , , , ,

…( ) ∈ …( )[ ] ⋅ [ ]( ) = [ ] ⋅ [ ]



 = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅( )

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅( )
=

f x g x f x g xi i i

66 25 0 5 0 5 0 6 4

0 2 4

7, , , , , , ,

Ker , ,

( ) = ( )
⇒ [ ]⋅ [ ]( ) = { }f x g x

16.
    
φ φ φ3

231 117 53
5 3

3 1 1
3

3
53 2 1 3 2 1 1 27 3 1 31 1x x x x x x x x+ − +( ) = + − +( ) = + +( ) = + + = = .

17.

    

2 3 2 3 2 3 2 3

2 3 2 3 0 10 35 90 187 0 0 0 0 2

2 3 2 3 0 1 2 3

219 74 57 44
5

3 2 1 0

0 4
3 2 1 0

5

219 74 57 44

x x x x x x x x

x x x x

x x x x

+ + + = + + +

+ + +( ) = ( ) = ( )
+ + +( ) = { }

…( )φ , , , , , , , , , ,

Ker , , ,

18. Replace “coefficients ai ” and “ ai ≠ 0 for a finite number of i”.
19. Seems okay.

20.

    

3 2 6 1 2 3 2

3 2 6 2 3 2

1 3 3 2 6 2

3 3 2 2 4 4 2

3 3 3 2 2 2 2 4 4 2

4 3 3 2 2 3 2

x x y x x y x x y x x

x y xy x y xy y x y xy x x

y x y x y x y y y

+( ) + − +( ) + −( ) + − +( )
= + + − + + − + − +

= +( ) + ( ) + −( ) + − −( )) + +( )x y 2 2

21.
      i

i ix x x∈
+ −{ } ⊆ [ ] →� � �1

5
1

5Ker :φ .

22. 1 is unity in     �4 ⇒1 is unity in �4 x[ ].  1 2 4+ ∈ [ ]x x�  has 
    
1 2 1 2

1
+( ) = −

−
x x .

23. a. true
b. true (Theorem 2)

c. true (If D has no divisors of zero, then 
  
D x[ ] cannot possibly have them either)

d. true (if   d D∈  is a divisor of zero with ′ ∈ ′ =d D dd: 0 , then   dx d x x⋅ ′ = =0 02 )
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e. false

f. false (
      
2 2 4 03 4 7

4
x x xx⋅ = =[ ]� )

g. true (because 
    
φ φ φ φα αf x g x f x g x g xa a[ ] [ ]( ) = [ ] ⋅ [ ] = ⋅ [ ] =0 0)

h. true (if F is a field it has no divisors of zero, so a product with a polynomial of degree > 0 can never have degree 0)
i. true (because     1 ∈R is never a divisor of zero)

j. false (
      
2 4x x∈ [ ]�  is a divisor of zero, because 2 2 4 02x x x⋅ = = )

24. Theorem 2 says that if F is a commutative ring then 
  
F x[ ]  is also.  Remaining to be proved that if D has no divisors 

of zero, neither does 
  
D x[ ].        ∀ [ ] ∈ [ ] [ ] ≠ ⇒ [ ] = + ∃ ∈ ≠∈f x D x f x f x f x i ai i

i
i, :0 0� �	 .  For any 

g D x g x g xi i
i∈ [ ] [ ] = + ∈, � , let     f gi i,  be the first coefficients of 

    
f x g x[ ] [ ],  such that     f gi j, ≠ 0.  Since D is an 

integral domain,     f gi j ≠ 0, and since this the only term of degree  i j+  of 
    
f x g x f x g x[ ] ⋅ [ ] [ ] ⋅ [ ] ≠, 0.

25. a. Since an integral domain has no divisors of zero, suppose 
  
f x[ ]  is of degree ≥ 1 and 

  
f x f xi i

i[ ] = + , 
  
g x g xi i

i[ ] = + , 

let f gi j,  be the highest coefficients f g i ji j≠ ≠ ≥0 0 1, ; , .  Then 
  
f x g x[ ] ⋅ [ ] will contain a term 

f g f x g xi j ≠ ⇒ [ ]⋅ [ ] ≠0 1.  For every f x[ ]  of degree 0 f x f[ ] = 0 , so f x g x x[ ] ⋅ [ ] = [ ]1  iff f D0 ∈  is a unit.  If the 

degree of f x[ ] /≥ 0, then f x f x g x x[ ] = ⇒ [ ]⋅ [ ] ≠ [ ]0 1 .  So the units of D x[ ] are exactly the units of D.

b. The only units of � are 1 and –1, so by (a.) 1 1x x[ ] − [ ],  are the only units of � x[ ] .

c. By Corollary 2.12, �7  is a field so all i ∈�7
*
 are units, so by (a.) all 

i
i x

∈ [ ]{ }�7
*  are units.

26. ∀ [ ] [ ] [ ] ∈ [ ]f x g x h x R x, , :

    

f x g x h x f x g x h x

f x g h x

f g h x

f g f h x

i i
i

i i
i

i i
i

i i
i

i i i
i

i j
i

j i j i j
i

i j
i

j i j j
i

j i j
i

[ ] ⋅ [ ] ⋅ [ ]( ) = + + + +( )
= + ⋅ + +( )
= + + ( )( )
= + + + +( )

= +

= − −

= − = −

definition

definition

Def 5.1R3

0

0 0

ii j
i

j i j
i

j
i

j i j
i

i j
i

j i j
i

i j
i

j i j
i

i i
i

i i
i

i i
i

i i
i

f g x f h x

f g x f h x

f x g x f x h x

f x g x f x

+( ) + +( )





= + +( ) + + +( )
= + ⋅ + + + ⋅ +

= [ ]⋅ [ ] + [ ]

= − = −

= − = −

0 0

0 0

definition

⋅⋅ [ ]h x

27. a.
  
∀ [ ] [ ] ∈ [ ]f x g x F x, :

    

D f x g x D f x g x D f g x

i f g x i f i g x

i f x i g x D f

i i
i

i i
i

i i i
i

i i i
i

i i i
i

i i
i

i i
i

i i

[ ] + [ ]( ) = + + +( ) = + +( )
= + ⋅ +( ) = + ⋅ + ⋅( )

= + ⋅( ) + + ⋅( ) = +

+
−

+
−

+
− −

1
1

1
1

1
1 1

5.1R3

definition

xx D g x

Df x Dg x

i
i i

i+ +

= [ ] + [ ]
So D is a group homomorphism.  But     Dx Dx Dx x⋅ = ⋅ = ≠ =1 1 0 22 , so D is not a ring homomorphism.

b. ∀ [ ] ∈ [ ] [ ] = ⇒ + = + = ⇔ ∀ > =+
−f x F x Df x D f x if x i fi i

i
i i

i
i: :0 0 0 01

1 , so 
    
Ker D f x Ff F= { } =∈0 0

0 .
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c. (⇒) 
    
∀ [ ] ∈ [ ] [ ] = + = + ∈ [ ]≥

−f x F x Df x D f x if x F xi i
i

i i
i: 1

1

(⇐) 
    
∀ [ ] ∈ [ ] [ ] = + +

+
= + = + = + = [ ]+

≥
− −

≥ −
−f x F x f x f x D

f
i

x i
f

i
x f x f x f xi i

i
i

i i
i

i i
i i

i
i i

i: :
1

1
1

1 1
1 1

1 .

28. a.
      
φ ααi

n
i i

n
i i

n
i

i

i
n

i i
n

i

i

E i
n

i i
n

i p p i
n

i
p

p p i
n

i
p

F x E f x f x f∈( ) ( ) ( ) ( ) ( )[ ] → [ ] = + ⋅ + ⋅: : a .

b.
    
φ− +



 = −( ) ⋅ + ⋅ −( ) ⋅ = ⋅ + ⋅ ⋅ = + =3 2 1

2
2

2
1

4
2

2 2 4 13 3 2 3 3 2 9 4 3 81 2 36 486 519, x x x x .

c. A zero of a polynomial 
  
f xi

n
i[ ] is an n-tuple 

  i
n

iα( )  such that 
  
φ ααi

n
i

f i
n

i( ) [ ] = 0.

29.
    
R fR

f R R= { }→: .

•(associativity) ∀ ∈ ∀ ∈φ ψ ϕ, , ,R r RR : 
  

φ ψ ϕ φ ψ ϕ φ ψ ϕ φ ψ ϕ φ ψ ϕ+( ) +( ) = +( ) + = + + = + +( ) = + +( )( )r r r r y r r r r .

•(additive identity) 
      
0 0 0 0∈ ∀ ∈ +( ) = + =R r R r r r rR R: ; :a φ φ φ φ .

•(additive inverse) ∀ ∈ ∃ ∈ ∀ ∈ − ⇒ +( ) = + = + −( ) =− − −φ φ φ φ φ φ φ φ φR R r R r r r r r r rR R: : :1 1 1 0a .

•(multiplicative associativity)     ∀ ∈ ∀ ∈φ ψ ϕ, , :R r RR : 

  
φ ψ ϕ φ ψ ϕ φ ψ ϕ φ ψ ϕ φ ψ ϕ⋅( ) ⋅( ) = ⋅( ) ⋅ = ⋅ ⋅ = ⋅ ⋅( ) = ⋅ ⋅( )( )r r r r r r r r r

•(left distributivity) ∀ ∈ ∀ ∈φ ψ ϕ, , :R r RR : 

φ ψ ϕ φ ψ ϕ φ ψ ϕ φ ψ φ ϕ φ ψ φ ϕ φ ψ φ ϕ⋅ +( )( ) = ⋅ +( ) = ⋅ +( ) = ⋅ + ⋅ = ⋅( ) + ⋅( ) = ⋅ + ⋅( )r r r r r r r r r r r r r
R a ring

•(right distributivity) id.

30. •(additive closure) 
    
∀ ∈ ∈ ∃ ∈ [ ] ∀ ∈ = =φ ψ φψ φ ψ, : , , : : ,P P f g F x a F a fa a gaF F

Ex. 29

∀ ∈ ( ) = ⋅ = ⋅ = ⋅( ) ⇒ ∈a F a a a fa ga f g a PF: φψ φ ψ φψ .

•(additive identity)       0 0F
F

F F a∈ : a .  0 0 0 0 0P F i
i

P FF F
FP x a∈ + ⋅ ⇒ =: : a .

•(additive inverse) ∀ ∈ ∃ [ ] ∈ [ ] ∀ ∈ = [ ]φ φP f x F x a F a f x aF : : : :

φ φ φ φ φ φ φ φ φ

φ φ

− − − −

− − −

∈ ∀ ∈ = − ⇒ ∀ ∈ +( ) = + = + −( ) =

⇒ ∈ [ ] ∀ ∈ = − ⇒ ∀ ∈ = ⇒ ∈

1 1 1 1

1 1 1

0F a F a a a F a a a a a

f F x a F f a fa a F a fa P

F

F

: : :

: : :

•(multiplicative closure) ∀ ∈ ∃ ∈ [ ] ∀ ∈ = =φ ψ φ ψ, : , : : ,P f g F x a F a fa a gaF

    
⇒ ∀ ∈ ⋅( ) = ⋅ = ⋅( ) ⋅ ∈ [ ] ⇒ ⋅ ∈a F a a a f g a f g F x PF: ,φ ψ φ ψ φ ψ .

•(left, right distributivity) …
b. It seems obvious that every polynomial can be interpreted as an element of  PF  under the evaluation 

homomorphism, and conversely.  So they can be not isomorphic only considering ‘tricks’ such as letting x 2 and 

−( )x
2
 be ‘different functions’ in F F .

31. a.
    
� �

� �

2 2
22 2 2 4= = = ; 

    
� �

� �

3 3
33 3 3 27= = = .

b.
    

� � �
�

2 2 2
2 , + ≅ × ; 

    
� � � �

�

3 3 3 3
3 , + ≅ × × .

c. It remains to be shown that   ∀ ∈ ⇒ ∈ϕ ϕF PF
F . 

      
f x F x a a a a ai i i F[ ] ∈ [ ] −( ) −( )… −( ) −( )… −



− +: α α α α α αa 1 2 1 1  so that 
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α α

α α

≠ [ ] =

= [ ] = −( ) −( )… −( ) −( )… −









 − +

a f x

a f x a a a a a a a a a a

i i

i i i i i i i i i F

:

:

0

1 2 1 1

Let 

      

f F x x
f x

f x
i
F

i
i

i i

∈ [ ] +
[ ]
[ ]: α ϕ

α

α
a  (exists because F is a field), so

∀ ∈ = +
[ ]
[ ] =

[ ]
[ ] =a F fa a

f x a

f x a
a

f x a

f x a
ai i j

F
j

j i

j j
i

i i

i i
i: ϕ ϕ ϕ  and f P F P F PF

F
F

F
F∈ ⇒ ⊆ ⇒ = .

§5.6 Factorization of Polynomials over a Field
♥1. Let f x[ ] = +i

n f ix
i , g x[ ] = +i

m g ix
i ∈F x[ ]; f n , g m ≠ 0 .  Then f x[ ] = q x[ ] g x[ ] + r x[ ] , where q x[ ],r x[ ] ∈F x[ ]  

are unique and r x[ ] = 0 ∨ deg r x[ ] < deg g x[ ] .  Roughly:

f x[ ]
g x[ ] = q x[ ] +

r x[ ]
g x[ ]

1. x 6 + 3x 5 + 4x 2 − 3x + 2
x 6 + 2x 5 − 3x 4

x 5 + 3x 4 + 4x 2 − 3x + 2
x 5 + 2x 4 − 3x 3

x 4 + 3x 3 + 4x 2 − 3x + 2
x 4 + 2x 3 − 3x 2

x 3 + 7x 2 − 3x + 2
x 3 + 2x 2 − 3x

5x 2 + 2
5x 2 + 10x − 15

−10x + 17 = 4x + 3

x 2 + 2x − 3 x 4 + x 3 + x 2 + x + 5

2. x 6 + 3x 5 + 4x 2 − 3x + 2
x 6 + 3x 5 + 6x 4

x 4 + 4x 2 − 3x + 2
x 4 + 3x 3 + 6x 2

4x 3 + 5x 2 − 3x + 2
4x 3 + 5x 2 + 3x

x + 2

3x 2 + 2x − 3 5x 4 + 5x 2 + 6x

3. x 5 − 2x 4 + 3x − 5
x 5 + 6x 4

3x 4 + 3x − 5
3x 4 + 7x 3

4x 3 + 3x − 5
4x 3 + 2x 2

9x 2 + 3x − 5

2x + 1 6x 4 + 7x 3 + 2x 2 + 10x + 2

9x 2 + 10x
4x − 5
4x + 2

4
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4. x 4 + 5x 3 − 3x 2

x 4 + 2x 3 + 7x 2

3x 3 + x 2

3x 3 + 6x 2 + 10x
6x 2 + x
6x 2 + x + 9

2

5x 2 − x + 2 9x 2 + 5x + 10

5. 2 =5 20 = 1,21 = 2,22 = 4,23 = 3{ } = �5
* , so �5

* = 21 =5 2 = 23 =5 3 ; 2,3{ } .

6. 3 =7 30 = 1,31 = 3,32 = 2,33 = 6,34 = 4,35 = 5{ } = �7
* , so �7

* = 31 =7 3 = 35 =7 5 ; 3,5{ } .

7. 3 =17 30 =17 1,31 =17 3,32 =17 9,33 =17 10,34 =17 13,35 =17 5,36 =17 15,37 =17 11,{
38 =17 16,39 =17 14,310 =17 8,311 =17 7,312 =17 4,313 =17 12,314 =17 2,315 =17 6} = �17

*

, so 

�17
* = 31 =17 3 , 33 =17 10 , 35 =17 5 , 37 =17 11 , 39 =17 14 , 311 =17 7 , 313 =17 12 , 315 =17 6 ; 

3,10,5,11,14,7,12,6{ } .

8. 5 =23 50 =23 1,51 =23 5,52 =23 2,53 =23 10,54 =23 4,55 =23 20,56 =23 8,57 =23 17,58 =23{ 16,

59 =23 11,510 =23 9,511 =23 22,512 =23 18,513 =23 21,514 =23 13,515 =23 19,516 =23 3,

517 =23 15,518 =23 6,519 =23 7,520 =23 12,521 =23 14}
, so �23

* = 51 =23 5 = 53 =23 15 = 55 =23 20 = 57 =23 17 = 59 =23 11

= 513 =23 21 = 515 =23 19 = 517 =23 15 = 519 =23 7 = 521 =23 14

;

5,10,20,17,11,21,19,15,7,14{ } .

9.

    

φ

φ

φ

1
4

5

4
3 2

2
3 2

5 5

3 2
2

3
2

5 5

2

4

4 0
4

1
1

1 3 4 2 1 0
1

2
3 2

3 2 4 4 2 0
3 2

3
1

4

x
x
x

x x x

x x x
x x x

x
x x

x x
x x

x
x

x

+( ) = +
−

= + + +

+ + +( ) = + + + = + + +
−

= + +

+ +( ) = + + = + +
−

= +

⇒ + =

;

;

;

55 1 2 3 4x x x x−( ) −( ) −( ) −( )
10. φ

φ

− + + +( ) = − + = + = + + +
+

= + +

+ +( ) = + + = + +
−

= +

⇒ + + + = +( ) −( ) +( )

1
3 2

7 7

3 2
2

2
2

7 7

2

3 2
7

2 2 1 1 2 2 1 0
2 2 1

1
1

1 4 2 1 0
1

2
3

2 2 1 1 2 3

x x x
x x x

x
x x

x x
x x

x
x

x x x x x x

;

;

11. φ

φ

φ

3
3 2

11 11

3 2
2

3
2

11 11

2

4 11 11

2 3 7 5 1 5 1 5 0
2 3 7 5

3
2 9 9

2 9 9 18 27 9 0
2 9 9

3
2 3

2 3 8 3 0
2 3

x x x
x x x

x
x x

x x
x x

x
x

x
x

x

+ − −( ) = − + + − = + − −
−

= + +

+ +( ) = − + = + +
+

= +

+( ) = + = +
−

−

;

;

;
44

2

2 3 7 5 2 3 3 43 2
11

=

⇒ + − − = −( ) +( ) −( )x x x x x x
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12.

    

φ

φ

2
3

5 5

3
2

1
2

5 5

2

3
5

2

2 3 3 4 3 0
2 3

2
2 1

2 1 1 2 1 0
2 1

1
1

2 3 2 1

x x
x x

x
x x

x x
x x

x
x

x x x x

+ +( ) = + + = + +
−

= + +

+ +( ) = − + = + +
+

= +

⇒ + + = −( ) +( )
−

;

;

13. φ 0 4
3 2

52 2 2 2 2 1 1 4, , , , , ,…( ) + + +( ) = ( )x x x  is irreducible.

14. If 
 
f x[ ]  is reducible over �, then by Theorem 10 it has a zero in �, and by Corollary 12 it has a zero in � that 

divides –2, which should therefore be one of 
 
± ±{ }1 2, .  But 

    
φ ± ±{ } [ ] = − −{ }1 2 7 9 18 16, , , ,f x .  The roots of 

 
f x[ ]  are 

  

− ± − ⋅ ⋅ −
⋅

= − ± +8 8 4 1 2
2 1

4 64 8
2

1
2

, so 
  
f x[ ]  is reducible over � and �.

15.
  
g x[ ] is an Eisenstein polynomial with p = 3, so it is irreducible over �.  Since   D = − ⋅ ⋅ = −6 4 1 12 36 482  it is 

irreducible over � but reducible over �.
16. By Corollary 12, if it is reducible over � then it has a zero in � that divides –8, which should therefore be one of 

± ± ±{ }1 2 4, , .  But 
    
φ ± ± ±{ } + −( ) = − − − −{ }1 2 4

3 23 8 4 6 12 4 104 24, , , , , , ,x x .

17. Likewise, it should have a zero that divides 1, which should therefore itself be 1.  But 

φ ±{ } − +( ) = − −{ }1
4 222 1 20 22x x , .

18. Yes for     p = 3, a a a2 3 1 3 0 31 0 0 12 02= ≠ = = − ≠, , .

19. Yes for     p = 3, a a a a3 3 2 3 1 3 0 38 0 6 0 9 0 24 02= ≠ = = = − = = ≠, , , .

20. No.  Because a3
29 3= − = − , the only possibility is p = 3, but     a0 318 02= − = .

21. Yes for p = 5,     a a a a10 5 3 5 2 5 0 52 0 25 0 10 0 30 02= ≠ = − = = = = − ≠, , , .

22. x ∈ − …{ }5
2

2
3

, ,

    

6 17 7 10
6 2 2 4

6 2 2 4
6 6 6

4 3 2

5
2

3 2

3 2

2
3

2

x x x x

x
x x x

x x x

x
x x

+ + + −
+

= + + −

+ + −
−

= + +

    6 6 6 0 1 0 1 4 1 1 32 2 2x x x x+ + = ⇒ + + = − ⋅ ⋅ = −; , so there are no other roots in �.
23. “nonconstant polynomial.”  Insert “and g, h both of lower degree than f.”
24.
25. a. true (of degree 1, so both factors can't have degree less than 1)

b. true (same reason)
c. true (both roots are in     � �\ )
d. false (because 2 is a zero, so by Theorem 10 is reducible)
e. true (The degree of a product of nonzero polynomials is always the sum of the degrees of the factors, so a nonzero 

polynomial can only have an inverse if it is of degree 1.  The zero polynomial has no inverse.)

f. ? (what is F x( )?)
g. true (Corollary 3)
h. true (Corollary 3)
i. true
j. false (because of the zero polynomial; however, the book gives “true”)

26.     x + 2 is a factor if –2 is a zero, so

    
φ− + + − +( ) = ⇒ −( ) + −( ) + −( ) − −( ) + = − + + + = =2

4 3 2 4 3 2
1 0 2 2 2 2 1 16 8 4 2 1 14 0x x x x p , so 

  
p ∈{ }2 7, .
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27.     x x2 1+ + .

28.     x x x x3 2 31 1+ + + +, .

29.

    

x x
x x x x
x x x x

2 2

2 2

2 2

1 2 2
2 2 1

2 2 2 2 1

+ +
+ + + +
+ + + +

30. x x x x
x x x x
x x x x
x x x x x x
x x x x x x
x x x x
x x x x x

3 3

3 3

3 2 3 2

3 2 3 2

3 2 3 2

3 2 3 2

3 2 3

2 1 2 2
2 2 2 1

2 2 2 1
2 2 2 2 1

2 1 2 2 2
2 1 2 2
2 1 2

+ + + +
+ + + +
+ + + +
+ + + + + +
+ + + + + +
+ + + +
+ + + + 22

3 2 3 2
2 2

2 2 2 2 1
+ +

+ + + + + +
x

x x x x x x
31.

32. By Euler's Theorem, x x a x ap
p

p
p

− = ⇒ + = +1 1 .  Thus, for any a p∈� , –a is a zero of   x ap +  so by the Factor 

Theorem   x a+  is a factor of  x ap + , so it is not irreducible.

33.
    
a a x a a a a a a a a x a xn

a i
n

n i
i n

i
n

n i
i

i
n

n i
n i

i
n

i
i

a i
i

a

a i
n

n i
i⋅ +( ) = ⋅ + = + = + = ( ) = ⇒ +( ) == − = −

−
= −

−
=

≠

= −φ φ φ1 0 0 0 0

0

1 00 0.

34.
  
f x q x x r x[ ] = [ ] ⋅ −( ) + [ ]α .  Then obviously, for x = α : 

  
f q r rα α α α α α= ⋅ −( ) + = .

35. a. σ σm m i i
i

i m i
ix x a x a x: :� �[ ] → [ ] + + ⋅a .  For any f x f x g x g x xi i

i
i i

i[ ] = + [ ] = + ∈ [ ], � :

  

σ σ σ σ

σ σ σ σ

m m i i
i

i i
i

m i j
i

j i j
j

i m j
i

j i j
i

m i j
i

m i i j
i

m i j
i

m i m i j
i

i m i
i

f x g x f x g x f g x f g x

f g x f g x f x

[ ] ⋅ [ ]( ) = + ⋅ +( ) = + +( ) = + +( )
= + +( ) = + + ⋅( ) = +

− −

− − ⋅⋅ + = + ⋅ +

= [ ]⋅ [ ]
i m i

i
m i i

i
m i i

i

m m

g x f x g x

f x g x

σ σ σ

σ σ

b.
      
∀ [ ] ∈ [ ] [ ] = [ ]f x x f x f xm� : deg degσ .  Suppose 

    
σ σm mf x g x h x g x h x f x[ ] = ′[ ] ⋅ ′[ ] ′[ ] ′[ ] < [ ], deg , deg deg .  

Since σm  is a homomorphism, ∃ [ ] [ ] ∈ [ ]g x h x x, � : σ σm mg x g x h x h x[ ] = ′[ ] [ ] = ′[ ], , so 

    
σ σ σ σm m m mf x g x h x g x h x[ ] = [ ] ⋅ [ ] = [ ] [ ]

homomorphism

.  Suppose 
 
f x[ ]  is reducible in 

  
� x[ ]  and by Theorem 11 then in 

    
� x[ ] as 

  
f x g x h x[ ] = [ ] ⋅ [ ] .  Then 

  
σ σ σ σm m m mf x g x h x g x h x[ ] = [ ] [ ] = [ ] ⋅ [ ]  would also be reducible in 

    
�m x[ ]  (  σm  

does not affect the degree).

c. Consider 
    
σ3

3 3 217 36 2 2x x x x x x+ +( ) = + = +( )…

§5.7 Noncommutative Examples
1.

    
2 3 0 4 2 3 1 0 3e a b e a b e a b+ +( ) + + +( ) = + + .

2.
    
2 3 0 4 2 3 2 4 3 3 0 2 2 2 3 4 0 3 2 3 3 2 0 3 2 1 2e a b e a b e a b e a b+ +( ) + +( ) = ⋅ + ⋅ + ⋅( ) + ⋅ + ⋅ + ⋅( ) + ⋅ + ⋅ + ⋅( ) = + + .

3.
    
3 3 3 3 3 3 3 3 3 2 2 2

2
e a b e a b e a b+ +( ) = ⋅ + ⋅ + ⋅( ) +… +… = + +

    
3 3 3 2 2 2 2 2 2 2 2 2 2 2 2

4 2
e a b e a b e a b e a b+ +( ) = + +( ) = ⋅ + ⋅ + ⋅( ) +… +… = + + .

4. i j j k i

j k i j k

+( ) + −( ) = ⋅ − ⋅ − ⋅ − ⋅−( ) + ⋅ + ⋅ + ⋅− − ⋅( )
+ ⋅ − ⋅− + ⋅ + ⋅( ) + ⋅− + ⋅ − ⋅ + ⋅( ) = − + + +

3 4 2 0 4 1 0 3 2 0 1 0 0 1 4 3 1 0 2

0 2 1 1 3 4 0 0 0 1 1 2 3 0 0 4 6 1 13 2
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5.
    
i j kji i j jkj i i jkj i jkji i k j2 3 5 2 2 2

2 2
1 1 1= ( ) = − ⋅ − ⋅ −( ) = = ⋅ − = .

6.
    
i j i i i j j i j j k k i j

i j
i j
i j

i j
i j+( ) = ⋅ + ⋅ + ⋅ + ⋅ = − + − − = − ⇒ +( ) =

+
⋅ +

+
= +

−
= +( )−2 1 1

2
1 1 2

1
2

.

7.

    

1 3 4 3 1 4 1 3 3 4 3 3 4 3 12 9 5 15 5 3

5 3 3 3 3 1 3 3 9 10

1 3 3

2

+( ) +( ) = ⋅ + ⋅ + ⋅ + ⋅ = + + − = − + = − +( )
− +( ) = − ⋅ − − ⋅ + ⋅ − + ⋅ = − − + − = −

⇒ +( )

i j k j k i j i k j k k j j k j k

j k j j j k k j k k i i

i j ++( )( ) =
− +( ) =

− +
⋅ − +

− +
= − +

−
= −( )−

3
1

5 5

1
3

3
3

3
10

3
1

1
5

1
5

1
50

k
j k j k

j k
j k

j k
j k

8. 0 1 0 0 1 1 1 1 0 1 0 1

0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0

0 1 2 1 2 3 0 1 2 1 2 3

0 1 2 1 2 3 1 2 0 3 1 2 0 1 2

ρ ρ ρ µ µ µ ρ ρ ρ µ µ µ

ρ ρ ρ µ µ µ ρ ρ ρ µ µ µ ρ ρ ρ µ

+ + + + +( ) + + + + +( )
= + + + + +( ) + + + + + +( ) + + + + 11 2 3

0 1 2 1 2 3 2 3 1 2 0 1 3 1 2 1 2 0

0 1 2 1 2 3

0 0

0 0 0 0 0 0 1 1 0 1 0 1 1 1 0 1 0 1

1 1 0 1 0 1

+ +( )
+ + + + + +( ) + + + + + +( ) + + + + + +( )
= + + + + +

µ µ

ρ ρ ρ µ µ µ µ µ µ ρ ρ ρ µ µ µ ρ ρ ρ

ρ ρ ρ µ µ µ
9. � 
⊂  is commutative, so Z� �= .  Now consider     
 �\ , that is all the quaternions that are nonzero in at least one 

of i, j, or k.  Considering just these three components, we can show that they form a group isomorphic with     �3 
under vector cross product: ∀ ∈g h, \
 � :

φ φ

φ

φ

gh g i g j g k h i h j h k

g h g h k g h j g h k g h g h i g h j g h i g h

g h g h

i j k i j k

i i i j i k j i j j j k k i k j k k

j k k j

( ) = ⋅ ⋅( ) ⋅ ⋅ ⋅( )( )
= − + −( ) + − − +( ) + − −( )( )
= …( ) + −(

1 1 1

1 )) + − +( ) + −( )( )
= − − −[ ]
= [ ] × [ ]
= ⋅

i g h g h j g h g h k

g h g h g h g h g h g h

g g g h h h

g h

i k k i i j j i

j k k j k i i k i j j i

i j k i j k

φ φ
This shows that for any       g ∈
 �\  we can find an h which is noncolinear under its vector interpretation.  Since 

  g h h g× ≠ ×  for     g h 0, ≠  and not colinear, we have that for any 
  
g g g gi j k1[ ],   

g h h hi j k1[ ]  will not 

commute.  So 
      
Z \
 �( ) = E , and     Z * *
 �= .

10. Let 
 
 
1 1j k, ⊂  such that 
      

1 0 11j h h i j ki k

h h i h j h k= + + +{ }=,  and 
1 0 11k h h i j ki j
h h i h j h k= + + +{ }=, .  In the 

following, consider j, k as quaternions but let i be the complex root of –1.  Show that the field of complex numbers 
is isomorphic to one of these subsets of the quaternions under a simple projection 
π1 1 1 11 0 0j j j jh i h j k h h i: :
 � 
→ + + +( ) +a .  Then ∀ ∈ = + = +g h g g g i h h h ii i, : ,� 1 1 :

•

  

π π π π

π

1
1

1
1

1
1

1 1
1

1

1 1

1 1

1
1

1 1

1 0 0 1 0 0

1 0 0

j j j i j i

i i

i i

j i

g h g g i h h i

g i g j k h i h j k

g h i g h j k

g h g h

− − − −

−

+ = +( ) + +( )
= + + +( ) + + + +( )
= +( ) + + +( ) +( )
= +( ) + + ii ji g h( )( ) = +( )−

π1
1

• π π π π1
1

1
1

1
1

1 1
1

1

1 1

1 1 1 1

1 1

1 0 0 1 0 0

1 1

1

j j j i j i

i i k i i k

i i i i

i i

g h g g i h h i

g g g j g h h h j h

g h g h j g h j g h

g h g h

− − − −
⋅ = +( ) ⋅ +( )

= + + +( ) ⋅ + + +( )
= + + −( )
= −( ) + 00 01 1

1
1

1 1 1 1 1
1

i g h g h j k

g h g h g h g h i g h

i i

j i i i i j

+ +( ) +( )
= −( ) + +( )( ) = ⋅( )− −

π π
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so     π1
1

j
−

 is a ring homomorphism.  Obviously 
   Kerπ1

1
0j

−
= �  and 

   π1
1

1j j
−

=� 
 , so it is an isomorphism and 

      � 
≅ 1j .  Similarly,       � 
≅ 1k .  Obviously 
      
 
1 1j k≠ .

11. a. false (Example 2.8)

b. false (for       A ∈M2 2�  to have an inverse, 
    
A ≠ 0)

c. false (    EndE  has only one element and can therefore not have a nonzero multiplicative identity)
d. false (    End� has nonzero multiplicative identity)
e. false (isomorphisms under addition are generally not again isomorphisms, e.g.     f x x: :� �→ −a ,       f f− = →0� � )

f. false (
      
R �, +  as a group ring has elements that are formal sums that can't be combined under   +�  and is therefore 

infinite-dimensional)

g. true (by the definition, 
    
+ ⋅ + = + +( ) = + +( ) = + ⋅ += =i i i i i i i j k g g g g j k i i j k g g g g k j i i i i i i ia g b g a b g b a g b g a g

i i j k i i j k, , : , , :  iff 

R is commutative)
h. false (  
 is not commutative)
i. true (

    ⋅
*  is associative by the definition of a ring, generates inverses because the field of quaternions is strictly skew 
by Theorem 9, and thus commutative with multiplicative identity 1 by definition; and thus meets all of the 
requirements for a group)

j. false (  � 
⊂  is a field)

12. a. In   
,     x 2 1 0+ =  has solutions   i j k2 2 21 0 1 0 1 0+ = + = + =, , .
b. Consider the multiplicative subgroup of   
.  This is indeed a group because it is associative by definition of a ring, 

and each element has an inverse because it is strictly skew.  None of the elements of this group are generators: 

±( ) = ±( ) = − ±( ) = − ±( ) = −1 1 1 1 1
2 2 2 2

, , ,i j k .

13. φ φ∈ × ( ) = +( )End : , ,� � m n m n 0 , and let χ χ∈ × ( ) = −( )End : , ,� � m n m m .  Then 

    
φχ φ χ φ( )( ) = ( )( ) = −( ) = + −( ) =m n m n m m m m, , , 0, so φ is a left divisor also.

14. Since F is a field, 0 1, ∈F .  An element of     M2 F  has a multiplicative inverse iff its determinant is nonzero, which 

includes 
1 0
0 1









 , 

1 0
1 1









 , 

1 1
0 1









 , 

0 1
1 0









 , 

1 1
1 0









 , 

0 1
1 1









 .

15. Characterize all the endomorphisms φ of �.  First, φ0 0= .  Second, let φ1 = n , then φi n i= ⋅  and this fully 

determines φ.  So       φn n, ∈� are all the endomorphisms.  Also, if       n ∈�*  then   φn  is an automorphism.  Now consider 
the map ψ φ: End :� �→ n na .  Then ∀ ∈φ φn m, End �  and ∀ ∈i �:

• φ φ φ φ φ φ ψφ ψφ ψφ ψ φ φn m n m n m n m n m n m n mi i n i m i n m i i n m+ = ⋅ + ⋅ = +( ) ⋅ = ⇒ + = ⇒ + = + = = +( )+ + + .

• φ φ φ φ φ φ φ φ φ ψφ ψφ ψφ ψ φ φn m n m n n m n m n m n m n m n mi i m i n m i i n m⋅( ) = ( ) = ⋅( ) = ⋅( ) ⋅ = ⇒ ⋅ = ⇒ ⋅ = ⋅ = = ⋅( )⋅ ⋅ ⋅ .

so ψ is a homomorphism.  Furthermore,       ∀ ∈ ∃ ∈n n� �* : Endφ  so ψ is surjective, and   Kerψ φ= 1 so ψ is injective 
and bijective, so ψ is an isomorphism.

16.

17. ∀ + ∈ [ ]i i
ia x F x :

    

YX XY a x YX a x XY a x

Y X a x X Y a x

Y a x X ia x

i a x ia x a x

i i
i

i i
i

i i
i

i i
i

i i
i

i i
i

i i
i

i i
i

i i
i

i i
i

−( ) +( ) = ( ) +( ) − ( ) +( )
= +( )



 − +( )





= +( ) − +( )
= + +( ) − + = +

+ −1 1

1

so YX XY− = 1.

18. If 
  
G E e= = { } , then by definition 

  
RE r er ee R

= { }∈
.  Let       φ : :RE R r e re e→ a , then ∀ ′ ∈re r e RE, :
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φ φ φ φre r e r r e r r re r e+ ′( ) = + ′( )( ) = + ′ = ( ) + ′( ) and 

  
φ φ φ φre r e rr e rr re r e⋅ ′( ) = ′( )( ) = ′ = ( ) ⋅ ′( ),

so φ is a homomorphism.  Since     ∀ ∈ ∃ ∈ =r R re RE rg r: : φ , φ is surjective and because 

    
φ rg r rgR RG( ) = = ⇒ =0 0  we have that 

    
Kerφ = { }0RG  so φ is injective and bijective, so φ is an isomorphism and 

  RE R≅ .
19.

      ∀ ∈ = + + + = … = …a b c a a a i a j a k b ci j k, , : , ,
 11 :

    

a b c a aii a j j akk b bi i b j j bkk c ci i c j j ckk

a b a bi i a b j j a bk k aib i aibi aib j

⋅( ) = + + +( ) ⋅ + + +( )



 ⋅ + + +( )

= ( ) + ( ) + ( ) + ( ) + ( ) − ( ) +

11 11 11

1 1 1 1 1 1 1 1 (( ) − ( )


+( ) − ( ) − ( ) + ( ) + ( ) + ( ) − ( ) − ( ) 
 ⋅ + + +( )

= − − −

k aibk j

a j b j a j bi k a j b j a j bk i akb k akbi j akb j i akbk c ci i c j j ckk

a b aibi a j b j akb

1 1 1 1 11

1 1 kk a bi aib a j bk akb j i a b j aibk a j bi akbi j a bk aib j a j bi akb k c ci i c j j ckk

a b aibi a j b j akbk

( ) + + + −( ) + − + +( ) + + − +( )



 ⋅ + + +( )

= − − −(
1 1 1 1 1 1 11

1 1 )) + − − −( ) + − − −( ) + − − −( )
+ + + −( ) − + +

c a b aibi a j b j akbk ci i a b aibi a j b j akbk c j j a b aibi a j b j akbk ckk

a bi aib a j bk akb j c i a bi aib a

11 1 1 1 1 1 1

1 1 1 1 1 jj bk akb j ci a bi aib a j bk akb j c j k a bi aib a j bk akb j ck j

a b j aibk a j b akbi c j a b j aibk a j b akbi cik a

−( ) + + + −( ) − + + −( )
+ − + +( ) − − + +( ) −

1 1 1 1 1

1 1 1 1 1 1bb j aibk a j b akbi c j a b j aibk a j b akbi cki

a bk aib j a j bi akb c k a bk aib j a j bi akb ci j a bk aib j a j bi akb

− + +( ) + − + +( )
+ + − +( ) + + − +( ) − + − +

1 1 1 1

1 1 1 1 1 1 11 1 1 1

1 1 1 1 1 1 1 1 1 1

( ) − + − +( )
= − − − − − − + − + − − −

c j i a bk aib j a j bi akb ck

a b c aibic a j b j c akbkc a bici aib ci a j bkci akb j ci a b j c j aibkc j a j b c j akbic j aa bkck aib j ck a j bick akb ck

a b ci aibici a j b j ci akbkci a bic aib c a j bkc akb j c a b j ck aibkck a j b ck akbick a

1 1 1

1 1 1 1 1 1 1 1 1 1

− + −( )
+ − − − + + + − + − + + − 11 1

1 1 1 1 1 1 1 1 1 1 1

bkc j aib j c j a j bic j akb c j i

a b c j aibic j a j b j c j akbkc j a bick aib ck a j bkck akb j ck a b j c aibkc a j b c akbic a

− + −( )
+ − − − − − − + + − + + + bbkci aib j ci a j bici akb ci j

a b ck aibick a j b j ck akbkck a bic j aib c j a j bkc j akb j c j a b j ci aibkci a j b ci akbici a b

+ − +( )
+ − − − + + + − − + − − +

1

1 1 1 1 1 1 1 kkc aib j c a j bic akb c k

a b c bici b j c j bkck ai bici b c bkck b j c j i a j b j c j bkck b c bici j ak bkck b j c

1 1 1 1 1

1 1 1 1 1 1 1 1

+ − +( )
= − − −( ) + − + − −( ) + − − + −( ) + − − jj bici b c k

a b ci bic b j ck bkc j i ai bic b ci bkc j b j ck a j b j ck bkc j b ci bic k ak bkc j b j ck bic b ci j

− +( )
+ + + −( ) − + − +( ) − − + +( ) + − + + +( )
+

1 1

1 1 1 1 1 1 1 1 1 1

aa b c j bick b j c bkci j ai bick b c j bkci b j c k a j b j c bkci b c j bick ak bkci b j c bick b c j i

a b ck bic j b j c

1 1 1 1 1 1 1 1 1 1

1 1

− + +( ) + − + + +( ) − + + −( ) − + − +( )
+ + − ii bkc k ai bic j b ck bkc b j ci j a j b j ci bkc b ck bic j i ak bkc b j ci bic j b ck

a aii a j j akk b c bici b j

+( ) − + + −( ) + − + + +( ) − − + +( )
= + + +( ) ⋅ − −

1 1 1 1 1 1 1 1

11 1 1 cc j bkck b ci bic b j ck bkc j i b c j bick b j c bkci j b ck bic j b j ci bkc k

a aii a j j akk b c b ci

−( ) + + + −( ) + − + +( ) + + − +( )





= + + +( ) ⋅ ( ) + ( )
1 1 1 1 1 1 1

11 1 1 1 1 ii b c j j b ck k b c i bici bic j k bick j

b j ci j b j ci k b j c j b j ck i bkc k bkci j bkc j i bkck

+ ( ) + ( ) + ( ) − ( ) + ( ) − ( )


+( ) − ( ) − ( ) + ( ) + ( ) + ( ) − ( ) − ( ) 
1 1 1 1 1

1 1 1

= + + +( ) ⋅ + + +( ) ⋅ + + +( )



 = ⋅ ⋅( )a aii a j j akk b bi i b j j bkk c ci i c j j ckk a b c11 11 11

§5.8 Ordered Rings and Fields
1.     x a P a x x x P x x− ∈ ⇒ < − ∈ ⇒ <high high; 2 1 1 2 ; so     a x x< < < …1 2 .

2.     x x P x xi i i i− ∈ ⇒ <+ +1 1
low ; so … < < < = < < < …− − −x x x x x x x3 2 1 0 1 2 31 .

3. All the positive elements of � 2




:

      

n m P n m P n m P n m

n m

n m n

m n m

+ ∈ ′ ⇔ +



 ∈ ⇔ − ∈ ⇔ − > ⇒ ∨

> ∧ <

> ∧ <

> ∧ <










2 2 2 2 0

0 0

0 2

0 2

2 2

2 2

φ inv
� .

4. i. a c d e b ii. d b a e c
5. i. a c e d b ii. e c b a d
6. i. c a b e d ii. e c a b d
7. i. d a b c e ii. d c e a b
8. i. e a c b d ii. c d a e b
9. i. c a e d b ii. e c b a d
10. b d a c e

11. a: 
1

1
1 2

−
= + + + …

x
x x ;  b: 

x
x

x x x
2

2 3 4

1+
= − + + …;  c: 

    

1
1

2
1

x x
x x

−
= + + + …− ;  d: 

  

−
+

= − + − + …x

x
x x x

1 2
3 5 ;  
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e: 
    

3 2

4 3
3
4

1 1
2

−
+

= − + …−x

x x
x .  d b a e c.

12. a: 
    

5 7

3
5 22

2 3
2 1−

+
= − + …− −x

x x
x x ;  b: 

  

− +
−

= − + + …2 4
4 3

1
2

5
8

x
x

x ;  c: 
    

7 2
4 3

7
4

+
−

= + …x
x

;  d: 
  

9 3
2 6

2
9
2

−
+

= + …x
x

;  

e: 
    

3 5
6 2

1
2

4
6

−
− +

= − + + …x
x

x .  a b e c d.

13. a: 
    

1
1

1 2
−
+

= − + …x
x

x ;  b: 
    

3 5
3 5

1 10
3

−
+

= − + …x
x

x ;  c: 
    

1

4 2
1
4

1 1
16x x

x
+

= − + …− ;  d: 
    

1

3 2
1
3

1 1
9− +

= − − + …−

x x
x ;  

e: 
    

4
1

4 5
2

2x x
x

x x
+
−

= + + ….  d e b a c.

14. The smallest subfield of the field of complex numbers containing   23  is   23 ⊆ �  and hence has the induced 

ordering from the field of real numbers.  By Theorem 10, a subfield of � containing 
    

2
1 3

2
3 ⋅ − + i

 has an ordering 

induced from the isomorphism.
15. a. true (discussion after Example 2)

b. true (id.)
c. false (?)
d. true
e. true (both     Plow  and Phigh)

f. false (even in �, if a < 0 there is no such n)
g. true (if b ≤ 0 it's always true; if b > 0 it's a restatement of Definition 7)

h. false (
  
− −( )1  is positive)

i. false (neither 0 0, −  are positive)
j. true (Theorem 3)

16. With the ordering     Phigh, ∀ ∈ <q q� : π .

17.
      
∀ ′ ′ ∈ + ′ + ′ ∈ 





m n m n m n m n, , , : ,� �2 2 2 :

φ φ

φ φ

m n m n m m n n

m m n n

m n m n

m n m n

+



 + ′ + ′









 = + ′( ) + + ′( )





= + ′( ) − + ′( )
= −



 + ′ − ′





= +



 + ′ + ′





2 2 2

2

2 2

2 2

φ φ

φ φ

m n m n mm nn mn m n

mm nn mn m n

m n m n

m n m n

+



 ⋅ ′ + ′









 = ′ + ′( ) + ′ + ′( )





= ′ + ′( ) − ′ + ′( )
= −



 ⋅ ′ − ′





= +



 ⋅ ′ + ′





2 2 2 2

2 2

2 2

2 2

18.     a P a P a∈ ⇒ − ∈ ⇒ <0 0
Theorem 5

.

19. Lemma: ∀ ∈ ∈ =a c P b R ab c, ; ; : 

    

∨
∈ ⋅ ∈ ⇒ ∈

− ∈ ⋅ − ∈ ⇒ − ∈ ⇒ − ∈
⋅ = ∉ ⇒ ∉













⇒ ∈
b P a b P c P

b P a b P ab P c P
b a b P c P

b P
:

:
:

Definition 1

 (contradiction)
=  (contradiction)0 0

.
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•   c ac bd d
b P b

= ⇒ = ⇒ = ⇒ =
∈ ⇒ ≠

0 0 0 0
0

.

•   c P ac P bd P d P cd P∈ ⇒ ∈ ⇒ ∈ ⇒ ∈ ⇒ ∈
Lemma

.

•
  
− ∈ ⇒ ⋅ −( ) ∈ ⇒ −( ) ∈ ⇒ −( ) ∈ ⇒ ⋅ −( ) ∈ ⇒ − ∈ ⇒ − ⋅ − = ⋅ ∈c P a c P ac P bd P b d P d P c d c d P

Lemma

.

20.
  
a b b a P b a P a b P b a< ⇒ − ∈ ⇒ − −( ) − ∈ ⇒ −( ) − −( ) ∈ ⇒ − < − .

21.
a a P a P

b b P b P
ab P ab P ab

< ⇒ − ∈ ⇒ − ∈
< ⇒ − ∈ ⇒ ∈





⇒ − ∈ ⇒ − ∈ ⇒ <
0 0

0 0
0 0.

22.     b b b P b P a b ab P⋅ = ∈ ⇒ ∈ = ∈− − −1 1 11 1; , ;

Lemma
from Ex.19 Definition 1

23.

    

a a P

a a a P a P
a a P a P a

< ⇒ − ∈

< ⇒ − = ∈ ⇒ ∈






⇒ −( ) ∈ ⇒ − ∈ ⇒ <

−

−
1 1

0 0
1 1 1

1

1
Lemma

.

24. − < ⇒ + ∈

< ⇒ − = − ∈ ⇒ −( ) ∈ ⇒− ( ) ∈






⇒

⇒ −( ) +( ) ∈ ⇒ − − = − − ∈ ⇒ < − ⇒ < −

− −

− − − − −

1 1

0 0

1 1 1 1 1

1 1

1 1 1 1 1

a a P

a a a P a P a P

a a P a a a a P a a

?

25. First, show that   ′P  defines positive numbers as per Definition 1:

•(closure)     ∀ ′ ′ ∈ ′ ∃ ∈ = ′ = ′a b R a b R a a b b, : , : ,φ φ .  Because P is positive, a b ab P+ ∈,  so 
    
φ φa b ab P+( ) ( ) ∈ ′, .  

Because φ is a ring isomorphism, φ φ φa b a b a b P+( ) = + = ′ + ′ ∈ ′  and φ φ φab a b a b P( ) = ⋅ = ′ ⋅ ′ ∈ ′.

•(trichotomy)     ∀ ′ ∈ ′ ∃ ∈ = ′a R a R a a: : φ .  Because P is positive:

    

∨

∈ ⇒ ′ = ∈ ′

− ∈ ⇒ − ′ = − = −( ) ∈ ′
= ⇒ ′ = = ′











a P a a P

a P a a a P

a a a

φ

φ φ
φ

?

0 0

Then, show that the ordering induced by   ′P  is the same as <:
∀ ′ ′ ∈ ′ ∃ ∈ = ′ = ′a b R a b R a a b b, : , : ,φ φ :

  
a b b a P b a P b a b a b a P a b< ⇔ − ∈ ⇔ −( ) ∈ ′ ⇔ −( ) = − = ′ − ′ ∈ ′ ⇔ ′ < ′φ φ φ φ .

26. •(closure)     ∀ ∈ ∈a b S a b P, : , :

a b S a b P a b P S

a b S a b P a b P S

+ ∈ ∧ + ∈ ⇒ + ∈ ∩

⋅ ∈ ∧ ⋅ ∈ ⇒ ⋅ ∈ ∩

ring Definition 1

ring Definition 1

•(trichotomy) ∀ ∈a S :

    

a R

a P a P S

a P a S a P S
a

∈ ⇒

∈ ⇒ ∈ ∩

− ∈ ⇒ − ∈ ⇒ − ∈ ∩
=













group

0

27. Let P be such that   p P∈  if and only if   0 < p .  Show that P is a well-defined set of positive numbers:
•(closure)     ∀ ∈a b P, :

0 0 0

0 0 0 0

< ⇒ < + ⇒ < < + ⇒ < + ⇒ + ∈

< ⇒ ⋅ < ⋅ ⇒ < ⇒ < < ⇒ < ⇒ ∈

a b b a b b a b a b a b P

a b a a b a ab a ab ab ab P

,

,

isotonicity transitivity

isotonicity transitivity
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•(trichotomy) ∀ ∈a P :

    

∨
<
=
<









⇒ ∨
− ∈
=
= ∈









⇒ ∨
− ∈

=
∈









a
a

a

a P
a
a P

a P
a
a P

0
0

0

0
0
0

0

Now     ∀ ∈ < ⇔ < − ⇔ − ∈ ⇔ <a b R a b b a b a P a bP, : 0 , so P implies the same relation.
28. For all a, b:

∨
=
= −





⇒ ∨
− =
+ =





⇒ +( ) −( ) = − = ⇒ =

∧
≠
≠ −





⇒ ∧
− ≠
+ ≠





⇒ +( ) −( ) = − ≠ ⇒ ≠

a b
a b

a b
a b

a b a b a b a b

a b
a b

a b
a b

a b a b a b a b

0
0

0

0
0

0

2 2 2 2

2 2 2 2

so a b a b2 2= ⇔ = ± .  So 
    
a b a a b b a bn n

n n
2 1 2 1 2 2+ += ⇒ ( ) = ( ) ⇒ = .

29. Ordering the following elements of     R x y[ , ] : 

    

x y y xy
x x
x y y xy

− − − −

−

−

1 1 1 1

1

1
1 :

  
R x y[ ][ ]
low low     xy x xy y y x y x x y< < < < < < < <− − − − − −1 1 1 1 1 11

low high xy x xy y y x y x x y− − − − − −< < < < < < < <1 1 1 1 1 11

high low     x y x x y y y xy x xy− − − − − −< < < < < < < <1 1 1 1 1 11

high high x y x x y y y xy x xy− − − − − −< < < < < < < <1 1 1 1 1 11

  
R y x[ ][ ]
low low xy y x y x x xy y x y< < < < < < < <− − − − − −1 1 1 1 1 11

low high     x y y xy x x x y y xy− − − − − −< < < < < < < <1 1 1 1 1 11

high low     xy y x y x x xy y x y− − − − − −< < < < < < < <1 1 1 1 1 11

high high x y y xy x x x y y xy− − − − − −< < < < < < < <1 1 1 1 1 11

§6.1 Homomorphisms and Factor Rings
♥ The concepts of normal and ideal didn't accidentally result in factor groups and rings— their requirements were 

defined precisely so that the resulting groups and rings would be well-defined:
N a normal group: ∀ ∈ + = +g G g N N g:  (Definition 3.1.19)
N an ideal ring:     ∀ ∈ + ⊆ + ⊆r R r N N N r N: ,  (Definition 6.1.10)

1. A ring endomorphism φ of � by Theorem 3 has to have   φ0 0= , and   φ1 1=  iff  φR has unity   1 1≠  or else   φ1 0= .  So 

  
φ 0 0 0 0, ,( ) = ( )  and:
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φ φ

φ φ

φ φ

φ φ

φ φ

1 0 1 0 0 1 0 1

1 0 1 0 0 1 0 0

1 0 0 1 0 1 1 0

1 0 0 1 0 1 0 0

1 0 1 1 0 1 0

, , , ,

, , , ,

, , , ,

, , , ,

, , , ,

( ) = ( ) ( ) = ( )
( ) = ( ) ( ) = ( )
( ) = ( ) ( ) = ( )
( ) = ( ) ( ) = ( )
( ) = ( ) ( ) = 00

1 0 0 0 0 1 0 1

1 0 0 0 0 1 1 0

1 0 0 0 0 1 1 1

1 0 0 0 0 1 0 0

( )
( ) = ( ) ( ) = ( )
( ) = ( ) ( ) = ( )
( ) = ( ) ( ) = ( )
( ) = ( ) ( ) = ( )

φ φ

φ φ

φ φ

φ φ

, , , ,

, , , ,

, , , ,

, , , ,

completely define the only possibilities.

2. For all even n there is a       � � � �n m n m≅ = 2 , whereas for all odd n there is no element i such that i 2 0=  and so 

will never have a coset such that i H H+( ) =
2

 or a subring isomorphic to �2 .

3. The ideals and their isomorphic subrings are:

    

12 12
6 6
4 4
3 3
2 2
1 1

1 12 12 1 12

2 12 12 2 6

3 12 12 3 4

4 12 12 4 3

6 12 12 6 2

12 12 12 12 1

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

⊂ ≅
⊂ ≅
⊂ ≅
⊂ ≅
⊂ ≅
⊆ ≅

4. 2 4 2 0 2 4 8 16 8 0 8 16 2 8 0 8 2 8 4 8 6 8� � � � � � � �= … − − …{ } = … − − …{ } = + + + +{ }, , , , , , , , , , , , , ; , , ,

+     0 8+ �     2 8+ �     4 8+ �     6 8+ �

  0 8+ �

2 8+ �

4 8+ �

6 8+ �

    0 8+ �

2 8+ �

4 8+ �

6 8+ �

    2 8+ �     4 8+ �     6 8+ �

4 8+ � 6 8+ � 0 8+ �

6 8+ � 0 8+ � 2 8+ �

0 8+ � 2 8+ � 4 8+ �

⋅     0 8+ �     2 8+ �   4 8+ �     6 8+ �

  0 8+ �

2 8+ �

4 8+ �

6 8+ �

    0 8+ �

4 8+ �

0 8+ �0 8+ �

4 8+ �

0 8+ �

0 8+ �

0 8+ �

    0 8+ �   0 8+ �     0 8+ �

0 8+ �

0 8+ �

0 8+ �

4 8+ �

4 8+ �

    2 8 4� � �/≅  because while     �4  has a multiplicative identity,    2 8� �  does not.
5. Insert “is a ring homomorphism”.
6. Change “additive subgroup” to ‘subring’.

7. Change to 
    

r R r∈ = ′{ }φ 0 .

8.     ∀ ∈f g F, : 
  
δ δ δf g f g f g+( ) = ′ + ′ = + ; 

  
δ δ δf g f g g f f g g f⋅( ) = ⋅ ′ + ′ ⋅ = + , so δ is a group but not a ring 

isomorphism.  The subring C of Example 12 is the kernel of δ.  If δ would have been an homomorphism, then C 
would have been an ideal in F.

9. Let φ : : ,� � �→ × ( )n na 0 , then φ1 1 0 1 1 1= ( ) ∉( ) = ×, , � � but ∀( ) ∈m,0 φ�: m m, , ,0 1 0 0( ) ⋅ ( ) = ( )  so 1 0,( )  is the 

multiplicative identity of   φ� .
10. a. true (Theorem 17)

b. false (cf. last paragraph of the section)
c. true (Corollary 6)

d. false (      ∀ ∈ ⋅ ∉q q� �: 2 )
e. true (Definition 10)
f. false (Example 12)

g. true (because multiplication is defined by means of multiplication of representatives, which is commutative)
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h. true (Example 8)
i. true (Obviously, if   N R=  then   1 ∈N .  Conversely, if   1 ∈N  then   ∀ ∈ = ⋅ ∈ ⇒ =r R r r N R N: 1 )
j. true

11. No. (See discussion after Example 2.4)
12. See Example 2.1.
13. See Example 2.4.
14. See Example 2.2.

15.
    

1 1,( ) ⊂ ×� � , but from 
  
1 0 1 1 1 0 1 1, , , ,( ) ⋅ ( ) = ( ) ∉ ( )  is not ideal.

16. a. Because the expression “  rs sr= ” is a statement about the ring R and not about the quotient ring.

b. “Then 
  
r N s N s N r N+( ) +( ) = +( ) +( )  for all     r s R, ∈ ”

c. Suppose   R N  is commutative.      ∀ ∈r s R, :

    
r N s N s N r N r N s N s N r N NR N+( ) +( ) = +( ) +( ) ⇒ +( ) +( ) − +( ) +( ) = =0 ,

so     ∀ ′ ′ ∈ ∃ ∈n n n n N n Nr s r s, , , : :

r n s n s n r n rs rn n s n n sr sn n r n n n

rs sr n rn n s n n sn n r n n N

r s s r s r r s r s s r

s r r s r s s r

+( ) +( ) − + ′( ) + ′( ) = + + +( ) − + ′ + ′ + ′ ′( ) =

⇒ − = − + +( ) + ′ + ′ + ′ ′( ) ∈

because N is ideal.  Conversely, suppose that ∀ ∈ − ∈r s R rs sr N, : .  Then ∀ ′ ′ ∈n n n n Nr s r s, , , :

r n s n s n r n rs sr rn n s n n sn n r n n Nr s s r s r r s r s s r+( ) +( ) − + ′( ) + ′( ) = … = −( ) + + +( ) − ′ + ′ + ′ ′( ) ∈
so

    
r N s N s N r N N r N s N s N r NR N+( ) +( ) − +( ) +( ) = = ⇒ +( ) +( ) = +( ) +( )0

and R N  is commutative.

17. First, show that 
      
R a aa a= + ′{ }′∈, � 2  is well-defined as a ring.  Additive closure, associativity, identity, and 

inverse follow fairly obviously and directly from those properties in �, so R is a group.  Multiplicative closure and 
additive commutativity are similarly obvious.  Additive associativity follows from ∀ ′ ′ ′ ∈a a b b c c, , , , , �:

a a b b c c ab a b ab a b c c

abc a b c ab c a bc ab c a bc abc a b c

+ ′



 ⋅ + ′









 ⋅ + ′



 = + ′ ′( ) + ′ + ′( )



 ⋅ + ′





= + ′ ′ + ′ ′ + ′ ′( ) + ′ + ′ + ′ + ′ ′ ′( )
2 2 2 2 2 2

2 2 2 2 2

== + ′



 ⋅ + ′ ′( ) + ′ + ′( )





= + ′



 ⋅ + ′



 ⋅ + ′











a a bc b c bc b c

a a b b c c

2 2 2

2 2 2

Left distributivity follows from ∀ ′ ′ ′ ∈a a b b c c, , , , , �:

    

a a b b c c a a b c b c

a b c b c a b c b c

a a b

+ ′



 ⋅ + ′



 + + ′









 = + ′



 ⋅ +( ) + ′ + ′( )





= +( ) + ′ + ′( )



 + ′ +( ) + ′ + ′( )





= + ′



 + ′

2 2 2 2 2

2 2 2

2 bb a a c c2 2 2



 + + ′



 + ′





Right distributivity follows similarly.  Therefore R is a ring.  Now, showing that 
      

′ =
′

′






















′∈R

a a
a aa a, �

2
 is a ring.  

Again, additive associativity, additive identity, and the additive inverse follow fairly directly from their corresponding 
properties in     M2 � and �, so  ′R  is a group.  Additive closure follows from ∀ ′ ′ ∈a a b b, , , � :

a a
a a

b b
b b

a b a b

a b a b
R

2 2 2′
′









 +

′
′









 =

+( ) ′ + ′( )
′ + ′( ) +( )













∈ ′

and multiplicative closure ∀ ′ ′ ∈a a b b, , , � :
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a a
a a

b b
b b

ab a b ab a b
a b ab a b ab

ab a b a b ab

a b ab ab a b
R

2 2 2 2 2
2

2 2

2
′

′









 ⋅

′
′









 =

+ ′ ′ ′ + ′
′ + ′ ′ ′ +









 =

+ ′ ′( ) ′ + ′( )
′ + ′( ) + ′ ′( )













∈ ′ .

Additive commutativity is again similarly obvious, and although multiplicative associativity follows directly from 

    M2 � and �, it is derived in analogy to the additive property:       ∀ ′ ′ ′ ∈a a b b c c, , , , , �:

    

a a
a a

b b
b b

c c
c c

a a
a a

bc b c bc b c
b c bc b c bc

a bc b c a b c

2 2 2 2 2 2 2
2

2 2

′
′









 ⋅

′
′









 ⋅

′
′



















 =

′
′









 ⋅

+ ′ ′ ′ + ′
′ + ′ ′ ′ +











=
+ ′ ′( ) + ′ ′ + bbc a bc b c a b c bc

a bc b c a b c bc a bc b c a b c bc

abc ab c a b c a bc abc ab

′( ) ′ + ′( ) + ′ ′ ′ +( )
′ + ′ ′( ) + ′ + ′( ) ′ ′ + ′( ) + ′ ′ +( )













=
+ ′ ′ + ′ ′ + ′ ′ ′ + ′

2 2 2 2

2 2 2 2

2 2 2 2 2 cc a b c a bc
a bc a b c ab c abc a bc a b c ab c abc

ab a b c a b ab c a b ab c ab a b c

a b

+ ′ ′ ′ + ′
′ + ′ ′ ′ + ′ + ′ ′ ′ + ′ ′ + ′ ′ +











=
+ ′ ′( ) + ′ + ′( ) ′ ′ ′ +( ) ⋅ ′ + ′ + ′( )
′

4 2
2 2 2 2

2 2 2 2 2 2 2

++ ′( ) + + ′ ′( ) ′ ′ + ′( ) ⋅ ′ + ′ ′ +( )












=
+ ′ ′ ′ + ′

′ + ′ ′ ′ +








 ⋅

′
′











=
′

′











ab c ab a b c ab a b c a b ab c

ab a b ab a b
a b ab a b ab

c c
c c

a a
a a

2 2 2

2 2 2
2

2

2
⋅⋅

′
′



















 ⋅

′
′











b b
b b

c c
c c

2 2

Distributivity follows directly from     M2 �, so   ′R  is a ring.  Let 
   
φ : :R R a a

a a
a a

→ ′ + ′
′

′









2

2
a .  Then:

•(additive homomorphy) ∀ ′ ′ ∈a a b b, , , � :

    

φ φ

φ

a a b b a b a b

a b a b

a b a b
a a
a a

b b
b b

a a

+ ′



 + + ′









 = +( ) + ′ + ′( )





=
+( ) ′ + ′( )

′ + ′( ) +( )












=
′

′









 +

′
′











= + ′





2 2 2

2 2 2

2 ++ + ′



φ b b 2

•(multiplicative homomorphy)       ∀ ′ ′ ∈a a b b, , , � :

φ φa a b b ab a b ab a b

ab a b ab a b

ab a b ab a b
a a
a a

b b
b

+ ′



 ⋅ + ′









 = + ′ ′( ) + ′ + ′( )





=
+ ′ ′( ) ′ + ′( )
′ + ′( ) + ′ ′( )













=
′

′









 ⋅

′
′

2 2 2 2

2 2

2
2 2

bb

a a b b











= + ′



 ⋅ + ′



φ φ2 2

•(isomorphy) ∀ ′ ∈a a, �: 
    
φ φa a

a a
a a

a aR R+ ′



 = ⇒

′
′









 =









 ⇒ ′ = ⇒ =′2 0

2 0 0
0 0

0 0, Ker

so φ is a ring isomorphism, and   R R≅ ′ .
18. Following Theorem 2.5, if   N R⊆  is ideal and contains any nonzero element of R, it contains a unit and therefore 

unity, and then   N R= .  So a field contains no proper nontrivial ideals, and by the Fundamental Homomorphism 
Theorem any field homomorphism is either trivial or identity.

19. Exercise 3.1.49 already shows that ψφ is a group homomorphism.  ∀ ∈g h R, :

ψφ ψ φ ψ φ φ ψφ ψφ
φ ψ

gh gh g h g h( ) = ( )( ) = ⋅( ) = ⋅
 homomorphism  homomorphism

.

20.     ∀ ∈a b R, :
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φ a b a b
p
i

a b
p

p i i
a b

p
p

a b p
p

p i i
a b

p
p

a b

p
i p

p i i
i p

p i i

p
i p

p i i p

+( ) = +( ) = +






= +

−( )
= + + ⋅

−( )
−( )











+

=

≤ ≤
−

≤ ≤
−

< <
−

0 0

0
0

0

0

1

0

!

! !

!
! !

!

! !

!
! !

aa b a bp
i p

p p p+ +( ) + = +< <0 0

The middle terms vanish because p is the characteristic of the ring.

    
φ φ φab ab a b a b

p p p( ) = ( ) = = ⋅
commutative

.

¿Why does it matter that p is prime?

21. Suppose that   φ1 1≠ ′ .  Then     ∀ ∈r Rφ *: 
  
φ φ1 1 1 1 0− ′( ) = ⋅ − ′ ⋅ = − =r r r r r , where     r ,φ1 1 0− ′ ≠ ′  so that   ′R  has 

divisors of zero.  Consequently, if   ′R  has no divisors of zero, then   φ1 1= ′ .  (Due to Doug Rosenberg)
22. a.     ∀ ′ ∈ ′ ∈ ∃ ∈ ∈ = ′ = ′a R n N a R n N a a n nφ φ φ φ, : , : , :

  
an N an N a n N a n N a N N∈ ⇒ ( ) ∈ ⇒ ⋅ ∈ ⇒ ′ ⋅ ′ ∈ ⇒ ′ ⋅ ⊆φ φ φ φ φ φ φ φ .

Similarly,   φ φN a N⋅ ′ ⊆ , so     φ φN R< .

b. 2� �< .  Let φ : : ,� � �→ × ( )n n na .  Then 
      
φ2� �= ( ){ }∈n n n, , but 1 0 1 1 1 0 2, , ,( ) ⋅ ( ) = ( ) ∉φ �  so φ2� � �/ ×< .

c. If ′ ′N R< , then also ′ ∩N R Rφ φ< , so we only need to consider the case of ′N R< φ .  Consider the isomorphism 

µ φ: R N R→  from the Fundamental Homomorphism Theorem.  By isomorphism µ µ φinv inv′ ≅N R R M< , so any 

element   r M R M+ ∈  multiplied by   µ
inv ′N  is again in   µ

inv ′N .  Then obviously any element  r R∈  multiplied by 

γ µ φinv inv inv′ = ′N N  is again in φ inv ′N , so φ inv ′N R< .

23. ∀ ∈ ∈ [ ]f N g F xS i i, : ∀ ∈ ( ) = ⋅ = ⋅ = ⇒ ∈ ⇒ [ ]s S fg f g g fg N N F xs s s s S S i i: φ φ φ φ0 0 < .

24. By Exercise 18, any homomorphism from a field is either an isomorphism or trivial.  Since every ideal subring gives 
rise to a homomorphism, the only ideals of a field are the field itself or the trivial field, so the only factor rings of a 
field are trivial or the field itself.

25. If   N R⊂  then   R N E⊃  has more than one element.  Since R has multiplicative identity, 1 multiplies any such 
element to itself, and since in the factor ring multiplication happens by representatives, 1 must be a representative of 
a multiplicative identity in the factor ring.

26.
    
∀ ∈ = ={ }∈a R I x axa x R: 0 .  So ∀ ∈ ∈x I r Ra , :  a rx r ax r rx Ia⋅ = ⋅ = ⋅ = ⇒ ∈

commutative

0 0 , and I Ra < .

27. Any element multiplied by either ideal is again that same ideal, so the subset must multiply to itself: 
    ∀ ∈ ∈ ∩ ′ ∈ ∧ ∈ ′ ⇒ ∈ ∧ ∈ ′ ⇒ ∈ ∩ ′r R n N N n N n N rn N rn N rn N N, : .

28. Lemma.  A ring homomorphism/isomorphism induces a ring homomorphism/isomorphism on any of its quotient 
rings.  Let     R R, ′  be rings, N R< , and φ : R R→ ′ .  By Exercise 22a, φN R< ′ .  Let γ γ, ′  be the canonical 

homomorphisms     γ γ φ: , :R R N R N→ ′ ′ .  Then   φ γ φγ φ φ* := ′ →inv R N R N  is a homomorphism.  Furthermore, 

if φ is an isomorphism then Ker Ker Ker*φ γ φγ γφ γ γφ φ γ= ′ = ′ = = = =inv inv inv N N N ER N  and   φ* is an 
isomorphism.
Back to the Exercise.      φ : R R→ ′  induces a homomorphism     φ φ* : R N R N→ ′ .  Because     ′ ′N R< , under the 

canonical homomorphism     γ φ: ′ → ′R R N , γ γ
φ φ

′ ′ ⇔ ′ ′
N R

N
N

R
N

< <  so there exists a canonical homomorphism 

    
β

φ
φ
φ* :

′ → ′
′

≅ ′
′

R
N

R N
N N

R
N

 by the Third Isomorphism for rings (proved in Exercise 38).  So 

      φ β α* * * := → ′ ′o R N R N  is a ring homomorphism.
29. Suppose there is a unit of R in the kernel of φ, then ′0  would have a multiplicative inverse in ′R , but then the 

multiplicative identity in   ′R  would be   ′0 , which is counter to the definition of unity of Definition 1.16 and   φu 
cannot therefore have a multiplicative inverse in ′R .  Conversely, suppose no unit of R is in the kernel of φ.  Since 
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    u u, ,−1 1 are units of R, 
    
φ φ φu u, ,−( ) ≠1 1 0  and 

    
φ φ φ φ1 1 1= ( ) = ⋅− −uu u u , so φu is a unit in   ′R .

30. Let A be the set of all nilpotent elements of R.  First, A is a subring because 0 is obviously nilpotent and 

      ∀ ∈ ∃ ∈ = =+a b A n m a bn m, : , : ,� 0 0:

•(additive closure) Consider 
    
a b

n m
i

a b
n m

i n m
n m i i+( ) = +

+





+

≤ ≤ +
+( )−

0 .  Since the sum of the powers of a and b in 

each of the terms is always n m+ , either the power of a is at least n or that of b is at least m, so that the terms all 
vanish and   a b+  is nilpotent.

•(multiplicative closure) 
    
ab a b a a b b a b

n m n m n m n m n m m n( ) = = = + =
+ + +

commutative

0 0 0 , so ab is nilpotent.

Then       ∀ ∈ ∀ ∈ ∃ ∈ =+a A r R n an, : :� 0, so 
  
ar a r r

n n n n( ) = = =
commutative

0 0  and ar is nilpotent.  So A is ideal.

31. The elements in the nilradical of     �n  are those that contain all the prime factors of n:

�

�

� �

12
2

32
5

12 2 3 0 6

32 2 0 2 4 30

0

: ,

: , , , ,

“ ”

= { }
= …{ }

≅ { }∞

 has 

 has 

 has 

32. Obviously,     0 + N  is nilpotent in   R N .  Since multiplication in the factor ring occurs by representatives in N, and no 
elements in     R N\  are nilpotent, it is also the only nilpotent element of  R N .

33. Let   r R∈ .  Since the nilradical of   R N  is itself, there is an   rN  such that   r r NN∈ +  and   rN  nilpotent, and there is 
an n N∈  such that r r nN= +  and n nilpotent.  By the proof of additive closure of nilpotents in a commutative ring 
in Exercise 30, r is also nilpotent.  Therefore R is its own nilradical.

34. First, show that the radical in fact forms a subring.  ∀ ∈ ∃ ∈ ∈+a b N n m a b Nn m, : , : ,� :

•(identity) Since N is an ideal and a subring,     0 ∈N  and because  ′ =0 0,   0 ∈ N .

•(additive closure) Consider a b
n m

i
a b

n m
i n m

n m i i+( ) = +
+





+

≤ ≤ +
+( )−

0 .  Since the sum of the powers of a and b in 

each of the terms is always   n m+ , either the power of a is at least n or that of b is at least m, so each of the terms is 

of the form     a a b b a n b n a b n n a b nj n k m j
a

k
b

j k
a b

j k
ab= = =

commutative

, where   n n n Na b ab, , ∈ .  Because  nab  is an element 

of the ideal, a b n Nj k
ab ∈  so each of the terms is as well.  Because the ideal is a subring and closed under addition, 

the entire sum is in the ideal.

•(multiplicative closure) 
  
ab a b a a b b n a b n

n m n m n m n m n m
a

m n
b( ) = = + = +

+ + + , where   n n Na b, ∈ .  Similarly, 

    n a b na
m m

b,  and the sum is in the ideal.

So N  is a subring.        ∀ ∈ ∃ ∈ = ∈+n N i n n Ni
n: :� .  Then   ∀ ∈r R: 

    
rn r n r n N

i i i i
n( ) = = ∈

commutative

, so N N< .

35. a. � � � �< ; ,i i∈ ∉ .

b.    2 2 2� � � �< , = .

36. The radical of N is the set of all the elements that by some power end up in N.  The nilradical of R N  is the cosets 

of N that by some power equal the coset     0 + N .  So N  is precisely the elements of R that are representatives of an 
element of the nilradical of R N .
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37.

  M

 N

  M N+

 

M N
N
+

  M

  M N∩

  

M
M N∩

First, show that   M N+  is a ring.    ∀ + ′ + ′ ∈ +m n m n M N, :
•(identity) 0 0 0= + ∈ +M N ;

•(additive closure) m n m n m m n n M N+( ) + ′ + ′( ) = + ′( ) + + ′( ) ∈ + ;

•(multiplicative closure) 
  
m n m n mm mn nm nn m m n n m n M Nm n m n mn mn+( ) ⋅ ′ + ′( ) = ′ + ′ + ′ + ′ = + + + = + ∈ + , 

where     m m m M n n n Nm n mn m n mn, , , , ,∈ ∈ .

Then show that     M N R+ < :  ∀ + ∈ + ∀ ∈m n M N r R, : r m n rm rn m n M Nr r+( ) = + = + ∈ + , where 

m M n Nr r∈ ∈, .

Now, follow the proof of Theorem 4.1.5.  Let γ : R R N→  be the canonical homomorphism.  Under γ, then, 

M R M R N⊆ ⇒ ⊆γ .  First, consider the restriction 
  
γ γ

H
M M: →  which is a homomorphism with 

    
Kerγ

H
N M= ∩ .  By the Fundamental Homomorphism Theorem there exists an isomorphism 

    
µ γ1 :

M
N M

M
∩

→ .  

Second, consider the restriction γ γ
M N

M N M N
+

+ → +( ): .  Now     ∀ ∈ = =n N n N R N: γ 1 , so 
  
γ γM N M+( ) =  and 

    
γ γ

M N
M N M

+
+ →:  with 

    
Kerγ

M N
N

+
=  and there similarly exists an isomorphism µ γ2 :

M N
N

M
+ → .  Therefore, 

M
N M

M N
N∩

≅ +
.

38. Follow the proof of Theorem 4.1.7.   Let 
      
φ : :R

R M
N M

r r M N M→ +( ) +a .  First, show that φ is a ring 

homomorphism.      ∀ ∈a b R, :

•(addition) 
    
φ φ φa b a b M

N
M

a M b M
N
M

a M
N
M

b M
N
M

a b+( ) = +( ) +( ) + = +( ) + +( )( ) + = +( ) +






+ +( ) +







= +

(*) (*)

, where 

“(*)” holds because coset addition in a ring is well-defined.

•(multiplication) 
  
φ φ φab ab M

N
M

a M b M
N
M

a M
N
M

b M
N
M

a b( ) = +( ) + = +( ) ⋅ +( )( ) + = +( ) +






⋅ +( ) +






= ⋅ , where 

“(*)” holds because coset multiplication in a ring is well-defined.

The identity element in 
  

R M
N M

 is 0 +( ) +M
N
M

 and Kerφ = N , so by the Fundamental Homomorphism Theorem 

  

R
N

R M
N M

≅ .

39. Show that 
        
φ : M :

'
� �→ + ′

− ′









2 a a i

a a
a a

a  is an isomorphism.        ∀ + ′ + ′ ∈a a i b b i, �:

•(addition)
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φ φ φ φa a i b b i a b a b i

a b a b
a b a b

a a
a a

b b
b b

a a i b b i+ ′( ) + + ′( )( ) = +( ) + ′ + ′( )( ) =
+ ′ + ′

− ′ − ′ +








 =

′
− ′









 +

′
− ′









 = + ′( ) + + ′( )

•(multiplication)
φ φ

φ φ

a a i b b i ab a b ab a b i

ab a b ab a b
ab a b ab a b

a a
a a

b b
b b

a a i b

+ ′( ) ⋅ + ′( )( ) = − ′ ′( ) + ′ + ′( )( )
=

− ′ ′ ′ + ′
− ′ − ′ − ′ ′









 =

′
− ′









 ⋅

′
− ′









 = + ′( ) ⋅ + ′bb i( )

40. a.
  
∀ ∈ +x y R, , : 

    
γ γ γa a bx y a x y ax ay x x+( ) = ⋅ +( ) = + = +

ring

.

b. Show that it is a ring:      ∀ ∈ ′γ γa b R, :

•(identity)       γ 1 1: :R R x x x→ ′ ⋅ =a  is the identity of 
    
End ,R + ;

•(additive closure): 
    
∀ ∈ +( ) = + = ⋅ + ⋅ = +( ) ⋅ = +x R x x x a x b x a b x xa b a b a b: γ γ γ γ γ , so   γ γ γa b a b R+ = ∈ ′+ ;

•(multiplicative closure) 
    
∀ ∈ ⋅( ) = ( ) = ⋅( ) = ⋅ ⋅( ) = ⋅( ) = ⋅x R x x b x a b x a b x xa b a b a a b: γ γ γ γ γ γ  so  γ γ γa b a b R⋅ = ∈ ′⋅ .

c. Let φ γ: :R R a a→ ′ a .      ∀ ∈a b R, :

•(addition) 
    
φ λ λ λ φ φa b a ba b a b+( ) = = + = ++

(b.)

;

•(multiplication) 
    
φ λ λ λ φ φa b a ba b a b⋅( ) = = ⋅ = ⋅⋅

(b.)

;

•(isomorphy) The identity of ′R  is λ1, so 
  
Kerφ = { }1 .

So R R≅ ′ .  λa  is a permutation, and every ring R is thus isomorphic to a ring of permutations.

§6.2 Prime and Maximal Ideals
♥ 9 As a proof of concept, restate Theorem 9 in a format that shows the hierarchial top-down structure of the proof.  

This is truer to the 1 1
2 -dimensional nature of a proof than the flattened linear text, and more consistent than the 

alternating bidirectional ‘imply/infer’ logic of the text stream.  Because it obviates mentally reconstructing the true 
structure of the proof and permits the reader to selectively ignore details of the proof, it should theoretically be 
easier to understand.
M is a maximal ideal of R ⇔   R M  is a field
( R M  is a field ⇐ M is a maximal ideal) ( ⇐

R M  is a commutative ring with unity ( ⇐
R is a commutative ring with unity
)

  R M  has multiplicative inverses ( ⇐
Let 

    
∀ ∈ = +{ }∈ ∈a R N ra ma r R m M: , .

  Na  is a group under addition ( ⇐

  Na  is closed ( ⇐
∀ + ′ + ′ ∈ra m r a m Na, : ra m r a m r r a m m Na+( ) + ′ + ′( ) = + ′( ) + + ′( ) ∈
) ∧

  Na  has identity ( ⇐
∀ + +( ) + +( ) = +( ) + +( ) = +ra m a ra m r a m ra m: 0 0 0 0

) ∧

  Na  has inverses ( ⇐

  ∀ + ∈ra m Na : 
    

−( ) + −( )( ) + +( ) = − +( ) + − +( ) = + =r a m ra m r r a m m a N a
0 0 0

)
),
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    N Ra <  ( ⇐

  ∀ + ∈ra m Na :

    
∀ ∈ +( ) = ( ) + ∈g R g ra m gr a gm Na:  ( ⇐

 gr R∈ ,

 gm R∈  ( ⇐
    M R<
)

)
),

  N Ra =  ( ⇐

  N Ma ⊃  ( ⇐

 N Ma ⊇  ( ⇐

    ∀ ∈ = + ∈m M m a m Na: 0
)

 N Ma ≠  ( ⇐

  a Na∈  ( ⇐

    a a Na= + ∈1 0
) ∧

a M∉  ( ⇐

    a M R M+ ≠ 0
)

)
) ∧

M maximal
) ⇒

    1 ∈Na  ⇒

    ∃ + ∈ + =ba m N ba ma : 1 ⇒
ba M b M a M M+ = +( ) +( ) = +1

)
) ∧

(M is a maximal ideal ⇐   R M  is a field) ( ⇐
Suppose M is not maximal:       ∃ ⊃ ⊃N R R N M< :
R M  is not a field ( ⇐

  R M  contains a proper nontrivial ideal ( ⇐
Let     γ : R R M→  be the canonical homomorphism:
    N R<  ⇒
γ γN R R M< =  ⇒

    
R M N M⊃ ⊃ +{ }γ 0

)
)

)
We can compact the presentation with a few simple heuristics.  Roughly, let ‘⇒’ or ‘ ∧ ’ be implied between two 
lines at the same indentation level, and ‘⇐’ at increasing indentation:
M is a maximal ideal of R ⇔ R M  is a field
( R M  is a field ⇐ M is a maximal ideal)

R M  is a commutative ring with unity
R is a commutative ring with unity

  R M  has multiplicative inverses

Let ∀ ∈ = +{ }∈ ∈a R N ra ma r R m M: , .

Na  is a group under addition
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closed:     ∀ + ′ + ′ ∈ra m r a m Na, : 
 
ra m r a m r r a m m Na+( ) + ′ + ′( ) = + ′( ) + + ′( ) ∈

identity: 
    
∀ + +( ) + +( ) = +( ) + +( ) = +ra m a ra m r a m ra m: 0 0 0 0

inverses:   ∀ + ∈ra m Na : 
  

−( ) + −( )( ) + +( ) = − +( ) + − +( ) = + =r a m ra m r r a m m a N a
0 0 0

    N Ra <

  ∀ + ∈ra m Na : 
    
∀ ∈ +( ) = ( ) + ∈g R g ra m gr a gm Na:

  gr R∈ ,    gm R M R∈ ⇐ <

  N Ra =

  N Ma ⊃

  N Ma ⊇

    ∀ ∈ = + ∈m M m a m Na: 0

  N Ma ≠

    a N a a Na a∈ ⇐ = + ∈1 0

    a M a M R M∉ ⇐ + ≠ 0
M maximal

1 1∈ ⇒ ∃ + ∈ + =N ba m N ba ma a :

ba M b M a M M+ = +( ) +( ) = +1

(M is a maximal ideal ⇐   R M  is a field)
Suppose M is not maximal:       ∃ ⊃ ⊃N R R N M< :
R M  is not a field

R M  contains a proper nontrivial ideal
Let γ : R R M→  be the canonical homomorphism:

N R N R R M R M N M< <⇒ = ⇒ ⊃ ⊃ +{ }γ γ γ 0

♥ 11 R is a field ⇔ R has no proper nontrivial ideals
R is a field ⇒ R has no proper nontrivial ideals

Corollary 6
R is a field ⇐ R has no proper nontrivial ideals

R R E≅  is a field   ⇐
Theorem 9

 E R<  maximal ⇐ R has no proper nontrivial ideals

♥ 15 N is prime ⇔ ab N a N b N∈ ⇒ ∈ ∨ ∈( ), so a prime ideal is such that the corresponding factor ring has no divisors 

of 0.  In other words,     N R<  prime iff   R N  is an integral domain.
♥ 16 Maximal and prime in factor rings correspond to field and integral domain.
♥ 18 Let       φ : � → R  be the homomorphism from Theorem 17.

R Rn contains a subring isomorphic to � ⇐ >( )char 1

      Kerφ = n�

      Kerφ < �

N s N s< � � �⇒ ∃ ∈ =:
n is the smallest integer such that     n ⋅ =1 0 ⇐ Theorem 5.2.15

    φ� � � �≅ ≅n n

R R contains a subring isomorphic to � ⇐ =( )char 0

    Kerφ = E

∀ ∈ ⋅ ≠ ⇐ =m m R�* : char1 0 0
φ� � �≅ ≅E

♥ 24 If F is a field, then every ideal in F x[ ]  is principal

N N F x principal ⇐ [ ]( )<
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N N E F x principal ⇐ = = { } ⋅ [ ]0

    N N E principal ⇐ ⊃
Let   g N∈  be of minimal degree.

    
deg g N F x= ⇒ = [ ]( )0 1

    
deg g g F N F x F x= ⇒ ∈ ⇒ = [ ] = [ ]0 1

Theorem 5

    
deg g N gF x> ⇒ = [ ]( )0

  ∀ ∈f N

  f gq r= +  where     r r g= ∨ <0 deg deg  ⇐ Theorem 5.6.1
    r = 0

 r N∈
  gq N∈

  f N∈
g N gq N gq r N∈ ⇒ ∈ ⇒ + ∈

  g N g∈ > is of minimal degree deg 0

  f gq=

♥ 25
    
pF x p F x[ ] ⇔ [ ] maximal  irreducible over 

⇒

    
∀ ∈ [ ] = ⇒ ≥ ∨ ≥f g F x p fg f p g p, : deg deg deg deg

f pF x g pF x∈ [ ] ∨ ∈ [ ]
pF x pF x[ ] ⇐ [ ] prime  maximal

 
p pF x∈ [ ]

⇐
Let 

      
N F x F x N pF x< [ ] [ ] ⊃ ⊃ [ ]:

    
∃ ∈ = [ ]g N N gF x:

      
N N F x principal 

Theorem 24

⇐ [ ]<

    
∃ ∈ [ ] =q F x p gq:

  
p N p F x N∈ ⇐ ∈ [ ] ⊂

    deg degg q p= ∨ = ⇐0 0  irreducible

    
deg g N F x= ⇒ = [ ]( )0

N gF x F x g F F x= [ ] = ⋅ [ ] ⇐ ∈ [ ]1  is a unit of 

deg q N pF x= ⇒ = [ ]( )0

  
g pF x gF x pF x∈ [ ] ⇒ [ ] = [ ]

  g p q q F= ∈,
contradiction.

♥ 27 rs r sp p p= ⇒ = ∨ =0 0 0

    
rs pF x rs r∈ [ ] ⇐ = 0

pF x pF x[ ] ⇐ [ ] is prime  is maximal

1. 1 By Example 2.7.
3 Not a division ring because it doesn't have a multiplicative inverse.
4 By Theorem 2.11.
5 Not an integral domain because it has a divisor of zero
6 By Theorem 2.9.
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† and isomorphic subrings
subring factor ring int dom? field? prime? normal? subring

    1 6�     � � �6 6 11 ≅ no3 no6 no no

    2 3�     � � �6 3 22 ≅ yes1 yes4 yes yes
 
0 2 4, ,{ }

    3 2�     � � �6 2 33 ≅ yes1 yes4 yes yes
 
0 3,{ }

6 1� � � �6 1 66 ≅ no1 no6 no no
2. subring factor ring int dom? field? prime? normal? subring

    1 12�     � � �12 12 11 ≅ no3 no6 no no

    2 6�     � � �12 6 22 ≅ yes1 yes4 yes yes
 
0 2 4 10, , , ,…{ }

    3 4�     � � �12 4 33 ≅ yes1 yes4 yes yes
 
0 3 6 9, , ,{ }

    4 3�     � � �12 3 44 ≅ no1 no6 no no

    6 2�     � � �12 2 66 ≅ no1 no6 no no

12 1� � � �12 1 1212 ≅ no1 no6 no no
3. subring factor ring int dom? field? prime? normal? subring

    1 12 2� �× � �

� �
�2 2

2 2
11 1

×
×

≅ no3 no3 no no

1 22 1 2� � �× ≅ †
    

� �

� �
�2 2

2 1
21 2

×
×

≅ yes1 yes4 yes yes 0 1 0,{ } × { }

    2 21 1 1� � �× ≅ � �

� �
� �2 2

1 1
2 22 2

×
×

≅ × no5 no6 no no

4. subring factor ring int dom? field? prime? normal? subring

    1 12 4� �×     � � �1 1 1× ≅ no3 no6 no no

1 22 2� �× � � �1 2 2× ≅ yes1 yes4 yes yes 0 1 0 2, ,{ } × { }
    1 42 1� �×     � � �1 4 4× ≅ yes1 yes4 yes yes

 
0 1 0,{ } × { }

    2 11 4� �×     � � �2 1 2× ≅ yes1 yes4 yes yes
 
0 0 1 2 3{ } × { }, , ,

2 21 2� �× � �2 2× no5 no6 no no

    2 41 1� �×     � �2 4× no5 no6 no no

5.
      
�3

2x x c[ ] +  is a field iff 
        

x c x2
3+ [ ]< �  is maximal iff   x c2 +  is irreducible in 

   
�3 x[ ] .  If     x c2 +  is reducible, 

then it has at least one (i.c., actually two) factors of degree one x a−  and by the Factor Theorem then has a zero 
for   x a= .  By calculation, the sets   Ac  of zeroes a for given c are: 

  
A0 0= { } ,   A1 = ∅ , 

  
A2 1 2= { }, .  So the 

polynomial is irreducible and the factor ring a field for c = 1.

6. Following the procedure of Exercise 5— if     x x c3 2+ +  is reducible, it has to have at least one factor of degree one 
and a corresponding zero: 

    
A0 0 2= { }, , 

    
A1 1= { },   A2 = ∅ .  So the factor ring is a field for   c = 2.

7.
    
A0 2= { }, 

    
A1 1= { },     A2 = ∅ ;     c = 2.

8.
    
A0 0 4= { }, ,     A1 = ∅ ,     A2 = ∅ , 

    
A3 1 3= { }, , 

    
A4 2= { } ; c = 1 2, .

9.
    
A0 2 3= { }, ,     A1 = ∅ , 

    
A2 4= { } , 

    
A3 1= { } ,     A4 = ∅ ; c = 1 4, .

10. “is a proper ideal”
11. The given definition is valid only if     R = � because prime elements have not been defined elsewhere.
12. Comparing to Definition 20, �p  and �  can contain no nontrivial proper subfields, and any other field properly 

contains either of these fields— so the definition is indeed equivalent.
13. Since a principal ideal consists of all products of the field with the geneator, it is certainly the smallest ideal 

containing the generator.  Since this defines minimal ideals for every element, all minimal ideals are principal— 
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therefore the definition is equivalent.
14. a. false (should find a counterexample of a factor ring that is an integral domain but not a field)

b. true (Corollary 16)
c. true (by Theorem 19 because the characteristic of � is zero)
d. false (by Theorem 19 the characteristic of � is zero, so � is the prime subfield)
e. true (Theorem 19)
f. true ( � � �⊂ × )

g. true (Theorem 19)

h. true (if F has no divisors of zero then 
  
F x[ ]  and 

 
F x N[ ]  don't either, so N is prime)

i. true (Theorem 24)
j. false (by Theorem 25, only if the generating polynomial is maximal)

15.       2� � � �× ×< .        � � � � � �× × ≅ × ≅2 2 2E  is a field, so     2� �×  is maximal.

16.       � � �× ×E < .      � � � �× × ≅ ×E E  is not a field, so   � �× ≅E  is not maximal.  Since � has no divisors of zero, 
    � × E  is prime.

17.       4� � � �× ×< .        � � � � � �× × ≅ × ≅4 4 4E  has divisors of zero, so       �4 × E  is not prime.

18.
      
� x x x[ ] − +2 5 6  is a field iff 

    
x x2 5 6− +  is maximal iff     x x2 5 6− +  is irreducible in � x[ ].  By the Factor 

Theorem it is irreducible iff it has no zeroes in �.  The roots are

x =
− −( ) ± −( ) − ⋅ ⋅

⋅
= ± = ∈

5 5 4 1 6

2 1
5 1

2
2 3

2

, �,

so the factor ring is not a field.
19. Following the procedure of Exercise 18:

      
x =

− −( ) ± −( ) − ⋅ ⋅

⋅
= ± = ± ∉

6 6 4 1 6

2 1
6 12

2
3 3

2

�

and the factor ring is therefore a field.
20. Since R is finite, so is   N R⊂  and  R N .  Since R is prime,   R N  is an integral domain.  By Theorem 5.2.11,  R N  

is a field, therefore N is maximal.
21. � �n m×  is a ring with multiplicative identity containing � �n nE× ≅  and E m m× ≅� �  as subrings.
22. Idem.
23. If a ring contains subrings isomorphic to       � �p q, , then it should contain a subring isomorphic to     �pq , which is not 

an integral domain.  So any containing ring cannot be an integral domain either.
24.
25.       N R R N<  maximal  simple⇔

    
suppose  not maximal  not simpleN R N⇒( )

∃ ⊃ ⊃M R M N M R: , <

Let γ : R R N→  be the canonical homomorphism

    
γ

M
M R N: →

      M R M R N M R N< <⇒ ⊂γ γ and 

suppose  not simple  not maximalR N N⇒( )
Let γ be some canonical homomorphism.

      R N M R N M N M R R M N not simple  and inv inv⇒ ∃ ′ ⊃ ′ ⊃ + ⇒ ′ ⊃ ′ ⊃< <0 γ γ .
26.
27.
28.
29.

30. A B a ba A b B+ = +{ }∈ ∈, .
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a. Show that   A B R+ ⊆  is a subring:
•(additive identity)     0 0 0 0∈ ⇒ = + ∈ +A B A B, .

•(additive inverse) 
    
∀ + ∈ + − ∈ − ∈ ⇒ −( ) + −( ) ∈ +a b A B a A b B a b A B: , : 

    
a b a b a a b b+( ) + −( ) + −( )( ) = + −( )( ) + + −( )( ) = + =0 0 0

•(additive closure)     ∀ ′ ∈ ′ ∈a a A b b B, ; , : 
  
a b a b a a b b A B+( ) + ′ + ′( ) = + ′( ) + + ′( ) ∈ + , where     a a A b b B+ ′ ∈ + ′ ∈,

•(multiplicative closure)     ∀ ′ ∈ ′ ∈a a A b b B, ; , : 

      
a b a b aa ab ba bb a a b b a b A B

A B R

+( ) ⋅ ′ + ′( ) = ′ + ′ + ′ + ′ = ′′ + ′′′ + ′′′ + ′′ = ′′′′ + ′′′′ ∈ +
, <

 where     ′′ = ′ ∈ ′′′ = ′ ∈a aa A a ab A,  

and similarly in B.

Now show that     A B R+ <  is an ideal:  ∀ + ∈ +a b A B :   ∀ ∈r R: 
      
r a b ra rb a b

A B R

⋅ +( ) = + = ′ + ′
, <

, where   ′ ∈ ′ ∈a A b B,

.
b. Because A, B are ideals they are subrings and contain the additive identity.  Then  ∀ ∈a A : 

a a A B A A B= + ∈ + ⇒ ⊆ +0  and similarly  B A B⊆ + .

31.
      
AB a bn i a A b B

n
i i

i i
= +{ }∈ ∈ ∈+� , ,

.

a. Show that AB R⊆  is a subring.

•(additive identity)     0
0= + ∈i i ia b AB .

•(additive inverse)       ∀ ∈ ∈ ∈ + ∈+n a A b B a b ABi i i
n

i i� , , : : 
 
− ∈ ⇒ + −( ) = + − ∈a A a b a b ABi i

n
i i i

n
i i :

+( ) + + −( ) = + + −( )( ) = + =i
n

i i i
n

i i i
n

i i i i i
na b a b a b a b 0 0

•(additive closure) The sum of both sums of terms is just a larger single sum of terms.

•(multiplicative closure)       ∀ ′ ∈ ′ ∈ ′ ∈+n n a a A b b Bi i i i, ; , ; ,� :

      
+( ) ⋅ + ′ ′( ) = + + ⋅ ′ ′ = + + ′′⋅ ′′ = + ′′ ′′ ∈′ ′ ′ ⋅ ′

i
n

i i i
n

i i i
n

j
n

i i j j

A B R

i
n

j
n

i j k
n n

k ka b a b a b a b a b a b AB
, <

, where  ′′ =a a bi i  and  ′′ = ′ ′b a bj j j .

Then show that AB R<  is ideal.  ∀ ∈ ∈ ∈+n a A b Bi i� ; ; : ∀ ∈ ⋅ + = + ⋅ = + ′′ ∈r R r a b r a b a b ABi
n

i i i
n

i i

A R

i
n

i i:
<

, where 
′′ = ⋅a r ai i .

b. For any   + ∈i
n

i ia b AB ,     + = + ′′∈i
n

i i

A R

i
n

ia b a A
<

 and   + = + ′′∈i
n

i i

B R

i
n

ia b b A
<

 where   ′′ ′′=a b a bi i i i, .  So  + ∈ ∩i
n

i ia b A B  and 

  AB A B⊆ ∩ .

32.
    
A B r b B rb Ar R: := ∀ ∈ ∈{ }∈ .

a. First, show that A B R: ⊆  is a subring.
•(additive identity) 0 0 0 0∈ ∀ ∈ ⋅ = ∈ ⇒ ∈R b B b A A B: : : .

•(additive inverse) ∀ ∈r A B: , ∀ ∈ −( ) ⋅ = −( ) ∈ ⇒ − ∈b B r b rb A r A B: : .

•(additive closure)     ∀ ′ ∈r r A B, : : ∀ ∈ + ′( ) = + ′ = + ′ ∈b B r r b rb r b a a A: , where a rb A= ∈ , ′ = ′ ∈a r b A .  So 

    r r A B+ ′ ∈ : .

•(multiplicative closure)     ∀ ′ ∈r r A B, : : ∀ ∈ ′( ) = ′( ) = ′ = ′′b B rr b r r b ra a
A R

:
<

, where ′ = ′ ∈a r b A  and ′′ = ′a ra .  So 

    r r A B⋅ ′ ∈ : .

Show that A B R: <  is ideal.  ∀ ∈r A B: : ∀ ∈s R: ∀ ∈ ( ) = ( ) = ′ = ′′ ∈ ⇒ ∈b B rs b rb s a s a A rs A B: :
commutative

, where 

  ′ = ∈a rb A  and   ′′ = ′a a s .
33. Show that     S F⊆ M2  is a subring:

115



•(additive identity) 
    

0 0
0 0









 ∈S .

•(additive inverse) 
    
∀









 ∈ − − ∈

− −







 ∈









 +

− −







 =











a b
S a b F

a b
S

a b a b
0 0 0 0 0 0 0 0

0 0
0 0

: , : : .

•(additive closure) follows directly from the closure of F and     M2 F .

•(multiplicative closure) ∀










′ ′







 ∈









 ⋅

′ ′







 =

′ + ′ +
′ + ′ +









 =

′ ′







 ∈

a b a b
S

a b a b aa b ab b
a b

aa bb
S

0 0 0 0 0 0 0 0
0 0

0 00 0 00 0 0
, : .

Now 
    
∀









 ∈ ∀









 ∈

a b
S

f f
f f

F
0 0

00 01

10 11
2; M :

    

a b f f
f f

af bf af bf
f f f f

af bf af bf
S

0 0 0 0 0 0 0 0
00 01

10 11

00 10 01 11

00 10 01 11

00 10 01 11







 ⋅









 =

+ +
+ +









 =

+ +







 ∈

but

    

f f
f f

a b f a f f b f
f a f f b f

af bf
af bf

00 01

10 11

00 01 00 01

10 11 10 11

00 00

10 100 0
0 0
0 0









 ⋅









 =

+ +
+ +









 =









 ,

which is not necessarily in S.

34. Enumerate all the possible elements that could be contained in an ideal of M2 2� .  
0 0
0 0 2 2









 = EM �  is the trivial 

ideal.  Consider a matrix with one non-zero element:

    

1 0
0 0

1 0 1 0
0 0 0 0 0 0

00 01

10 11

00 10 01 11

00 10 01 11

00 01







 ⋅









 =

+ +
+ +









 =











n n
n n

n n n n
n n n n

n n

which we know from Exercise 33 is not an ideal.  By symmetry we know that neither are any of the other principals 
generated by matrices with one non-zero component or with two non-zero components along a row or column.  As 

to the other two matrices with two non-zero components, obviously 
1 0
0 1

0 1
1 0 2 2









 =









 = M � , and this 

implies that neither are the ideals generated by matrices with three non-zero elements proper.

§6.3 Gröbner Bases for Ideals
♥ The discussion after Example 2 states in essence that i

n
i r R i i if r f

i
= +{ }∈  are the ‘principal ideals’ with multiple 

generators, and that they are 
 i

r
i i

r
if f= ∩  the intersection of the individually-generated ideals.

♥ 4 The common zeros of 
  i if{ }  are the common zeros of 

 i if .

♥ 5 This is just a generalization of Theorem 2.24 to multiple indeterminates: every ideal of 
    
F x[ ] is principal 

 i if .

♥ 7 Let     f x y z1 3 8 0: + − − =  and   f x y z2 2 5 0: + + + = , then     f y z3 7 21 0: − + + =  can be formed from
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f f f f f f

f f f
f
f

f
f

3 2 1 2 1 3

3 2 1
3

1

2

1

2 2

2 2

= − ⇔ = +

= − ⇔ = −

remainder quotient

  

product
divisor

    “ ”f gq r= +

♥ 11 Keep in mind that the algebraic variety of an ideal is equal to that of any basis.  In the left figure are plotted the 
zeros of the two original polynomials of the Example.  Disregarding some plotting artifacts, it can be seen that they 
intersect in one point.  The right figure shows the zeros of the Gröbner basis calculated in Example 13, and it can 
be seen that they intersect in the same point.

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

1. Write out the exponents of the power products, and sort them lexicographically like words:

    “135, 213, 221,300” “300, 221, 213,135”→ − + − +: 3 7 5 23 2 2 2 3 3 5x x y z x yz xy z .

2. “025,100,033,007” “100,033,025,007”→ − + + −: 4 5 3 83 3 2 5 7x y z y z z .

3.     “010,100,003,122, 212” “212,122,100,010,003”→ − − + +: 2 2 7 3 102 2 2 2 3x yz xy z x y z .

4. “000,101,011,110,013” “110,101,013,011,000”→ − − + + +: 8 4 3 2 383xy xz yz yz .
5. Write out the exponents in reverse order:

“531,312,122,003” “531,312,122,003”→ − + −: 2 5 7 35 3 3 2 2 2 3z y x z yx zy x x .

6.     “520,001,330,700” “700,520,330,001”→ − + + −: 8 3 5 47 5 2 3 3z z y z y x .

7. “010,001,300, 221, 212” “300, 221, 212,010,001”→ − + + −: 10 2 2 3 73 2 2 2 2z z y x z yx y x .

8. “000,101,110,011,310” “310,110,101,011,000”→ + − − +: 3 2 4 8 383z y zy zx yx .
9.

    

1
2 2 2

3 2 2 3 2 2 2 2 3

< < <

< < < < < <

< < < < < < < < < <
< …

z y x

z yz y xz xy x

z yz y z y xz xyz xy x z x y x

10. Write the sum of the exponents as an exponent and sort by degree first:

    “135 , 213 , 221 ,300 ” “135 , 213 , 221 ,300 ”9 6 5 3 9 6 5 3→ − + −: 2 5 7 33 5 2 3 2 2 3xy z x yz x y z x .

11. “025 ,100 ,033 ,007 ” “025 ,007 ,033 ,100 ”7 1 6 7 7 7 6 1→ − + −: 3 8 5 42 5 7 3 3y z z y z x .

117



12.     “010 ,100 ,003 ,122 , 212 ” “212 ,122 ,003 ,100 ,010 ”1 1 3 5 5 5 5 3 1 1→ − + − +: 2 2 10 7 32 2 2 2 3x yz xy z z x y .

13.     “000 ,101 ,011 ,110 ,013 ” “013 ,110 ,101 ,011 ,000 ”0 2 2 2 4 4 2 2 2 0→ − − + +: 3 8 4 2 383yz xy xz yz .
14.

    xy x2 2−     x y xy2 4+     xy y− 2

x y y x2 2−   ← ⋅ x

    4
2xy y x+

maximum-order term

leaving 
    

xy x xy y x xy y2 2 22 4− + −, , .

15.     xy y+ 3
    y z3 +     x y− 4

xy y− 5 ← ⋅ y

    y y5 3+

leaving 
    

y y y z x y5 3 3 4+ + −, , .

16. Can't be reduced as required, because x 3  can't be divided by any of the 1p f i( ).
17.     y z2 3 3+     y z z3 2 2−     y z2 2 3+

    y z y3 2 3+ ← ⋅ y

− −3 2y z

leaving 
    

y z y z y z2 3 2 23 3 2 3+ − − +, , .

18. w x y z w x y z w x y z
w x y z

x y z
w x y z

x y z
x y z

y z
x y z

w

+ − + − + + − + + − + −
⋅ → + − + −

− + = +
⋅ → + − + −

− − −
⋅ − → − + −

− +
− + − ← ⋅ −

+

4 3 2 2 4 3 3 5
2 2 2 2 8 6

3 10 10
1 4 3

2 2 3 2
2 2 6 20 20

4 23 18
3 10 10 1

22 6 7
2 9

2

3

2 11 4 4 29 14

23
2

1
2

11
2

69
4

27
2

3
4

29
4

7
2

y z
y z

w z

y z

x z

w z x z

− +
− + ← ⋅

+ −

− + ← ⋅

− + −

+ − − + −

leaving 2 11 4 4 29 14 4 23 18w z x z y z+ − − + − − +, , .  Every   Sij  has a leading term containing at least a nonzero 

power of w, x, or z and can thus be divided by the leading term of one of the basis polynomials.  We have thus 
found a Gröbner basis.
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19.

    

w x y z w x y z w x y z
w x y z

x y
w x y z

x y

− + − + − + − + − + − −
⋅ → − + − +

− +
⋅ → − + − +

− + −

4 3 2 2 2 2 5 10 8 1
2 2 8 6 2 4

6 5 1
1 4 3 2

6 5 3

leaving 
    

w x y z x y x y− + − + − + − + −4 3 2 6 5 1 6 5 3, , .  Since the second and third polynomials have no common 

zeros, the Gröbner basis is 
  
1 .

20.

    

x x x x x x x
x x x x x

x
x x x

x

4 3 2 3 2

4 3 2

2

3

2

3 4 4 4 4
4 4

4
4
4

+ − − − + − −
+ − − ← ⋅

−
⋅ → −

−

leaving 
    

x 2 4− , which is a single-element basis and thus a Gröbner basis.

21.

    

x x x x x x x x x
x x x x x

x x x
x x x

x x
x x

x x
x x

x x x x

4 3 2 3 2 3

4 3 2

2 2

3 2

2

2

3

2

3 2

4 5 2 4 4 3 2
4 4

3 9 6
3 3 12 12 3

6 18 12
3 2

3 2 1
2

2

− + − − − + − +
− − + ← ⋅

− + −
− + + − ← ⋅ −

− +
− +

− + ← ⋅
− − +

⋅ − → + −
−− − +

+ − ← ⋅ −
− +

−
⋅ − → − +

− +
−

x x

x x
x

x
x x x

x
x

2

2

2

2

2 1
4 4

1

2 2
1

leaving just 
    

x − 1 .
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22. x x x x x x
x x x x x

x x x x
x x x x x

x x
x x x x

x x
x x

x
x

x x

5 2 3 2

5 4 3 2 2

4 3 2

4 3 2

2

3 2

2

2

2 7
6

2 5 1

2 2 5

3 5
3 5

4 6 1
4 4 12 20

18 21
6 7

+ + − − + −
− + − ← ⋅

− + + −
− + − ← ⋅

+ −
⋅ → + −

− + −
⋅ − → − − +

−
−

− ← ⋅⋅

−

⋅ → −

1
6

25
6

36
25

36
5

1
5

5

6

x

x

x

leaving 
  
1 .

23. x y x xy y
x y xy x x

xy x
xy x

xy x

x y
x y

xy y y

x y y

x y

y y

y y

2

2

1
2

2 5
2

1
2

2 5
2

1
2

2 9
2

2

2 2 9
2 9

2 8 2
4 1

1 4 1

4 2 10
2 5

2

4 1

4 2 10 2

9

9

− − + −
+ − ← ⋅

− + −
− +
⋅ → − +

+ −
+ −

+ − ← ⋅ −

− − + +

− − + ← ⋅ −

− + −

− ++ 18

y has zeros 
    
y = + ± − ⋅ ⋅

⋅
= ± − = ± = ± =9 9 4 1 18

2 1
9 81 72

2
9 9

2
9 3

2
3 6

2

,  and from 

    
2 5 0 2 5 51

2
x y x y x y+ − = ⇒ = − + ⇒ = − +( ) the corresponding algebraic variety is 1 3 61

2
, , ,( ) −( ){ } .  In the left 

figure are plotted the zeros of the two original polynomials, in the right figure the zeros of the corresponding 
Gröbner basis.  Again, the common zeros of the Gröbner basis are the same as those of the original, but the basis is 
as simple as it could possibly be.
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0

2.5

5

7.5

 
-7.5 -5 -2.5 0 2.5 5 7.5

-7.5

-5

-2.5

0

2.5

5

7.5

24.

    

x y x xy y

S y x y x x xy y

x y xy x y xy
xy

x y x

x
xy y

y
y xy

y

2 2

12
2 2

2 2 2 2

2 1
2

2 1
2

2

2 2

0

+ −
= +( ) − −( )
= + − +
=

← ⋅

← ⋅

−
⋅ →

leaving x y,  which is obviously a Gröbner basis.  The corresponding algebraic variety is 
  

0 0,( ){ }.

25.

    

x y x xy y

S y x y x x xy y

x y xy y x y xy x
x y

x y xy xy

xy x
xy y y

x y
x y

y y
xy y y

y y

2 2

12
2 2

2 2 2 2

2 2

2

2 3 2

3

3

2 3 2

3

1 1

1 1

1

1
1

1

+ + + −
= + +( ) − + −( )
= + + − − +
= +

+ ← ⋅

− + +
− − ← ⋅ −

+ +
+ ← ⋅

− +
+ ← ⋅

− + −−
− +

1
13y y

leaving y y x y3 1− + +, .
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-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

 -3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

26.

    

x y xy xy x
x y x x

x xy

S y x xy x xy x

x y xy x y x

xy x
y xy xy

x xy
x xy

xy xy y

x xy
xy x

x x

2 2

2 2

2 2

12
2 2

2 3 2 2

3 2

2 3 2

2 2

2 2

2

2

2

1

0

1

+ −
− ← ⋅

+

= +( ) − −( )
= + − +

= +
⋅ → −

+
⋅ → +

− ← ⋅

+
− ← ⋅

+

leaving 
    

x x xy x2 + −, .

27. a. true (Theorem 5, the Hilbert Basis Theorem)
b. false (a fractal for example has infinite complexity, or � �×  has infinitely many disjoint subsets, and neither can be 

described by a finite-basis ideal)

c. true (
  
V 1 )

d. true (every point in     �2  is the intersection of   �2  and a line perpendicular to   �2)

e. true (corresponding to the intersection of two planes in   �3)

f. true (every line is the intersection of �2  and a plane perpendicular to �2  in �3)
g. true
h. true (finding solutions to systems of linear equations)
i. false

j. false (the algebraic variety is only a property of the basis, not the basis itself— notably, x x y∈ ,  but 
    
x x y∉ 2 2, )

28. y x<  but y x≠ 0.

29. ∀ + ∈ ∀ ∈ +( ) = + = + ′ ∈i i i i i i i i i i i ic f I r R r c f rc f c f I: :  where ′ =c rci i .  ¿So why does the ring need to be 

commutative with unity?

30. ⇒Let s F∈ [ ]x  be a common divisor of f and g, f sf g sg= ′ = ′, .  Then 

f gq r r f gq sf sg q s f g q= + ⇒ = − = ′ − ′ = ′ − ′( ) so s is also a divisor of r.
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⇐Let 
    
s F∈ [ ]x  be a common divisor of g and r,   g sg r sr= ′ = ′, .  Then 

  
f gq r sg q sr s gq r= + = ′ + ′ = ′ + ′( ) so s is also a 

divisor of f.

31.

    

xy y y

S y xy x y y

xy xy y y
xy x

y y

y
y

2

2

2 2

2

0

1

0

−
= ( ) − −( )
= − + =

← ⋅

← ⋅
−
− ← ⋅ −

Since the only possible S is reducible to 0, the given basis must be a Gröbner basis.

32. First, show that I f S f FS f F= ∀ ∈ ={ } ⊆ [ ]∈ [ ]x s s x: 0  is a subring:

•(additive identity) 0 0 0 0F F F SS Ix x xs s[ ] [ ] [ ]∀ ∈ = ⇒ ∈: : ;

•(additive inverse) ∀ ∈ ∀ ∈ −( ) = −( ) = − = ⇒ − ∈f I S f f f IS S: :s s s 0 0 ;

•(additive closure) ∀ ∈ ∀ ∈ +( ) = + = + = ⇒ + ∈f g I S f g f g f g IS S, : :s s s s 0 0 0 ;

•(multiplicative closure) ∀ ∈ ∀ ∈ ( ) = ⋅ = ⋅ = ⇒ ∈f g I S fg f g fg IS S, : :s s s s 0 0 0 .

Next, show that I FS < x[ ] :

      
∀ ∈ ∀ ∈ [ ] ∀ ∈ ( ) = ⋅ = ⋅ = ⇒ ∈f I g F s S fg f g g fg IS S: : :x s s s s0 0 .

33. ∀ ∈ ∈ ⇒ ∀ ∈ =x x xF I f I fn
S S: V : : 0 and this is obviously true by definition for all s ∈S , so S IS⊆ V .

34. Let 
      
S x y x yx y= ( ) + ={ } ( ){ }∈, , \ ,�

2 2 1 1 0  be the unit circle about the origin except for the single point on the 

positive x-axis.  Then   IS  is the ideal generated by   x y2 2 1+ −  of all polynomials intersecting that circle.  Because of 

the continuity of   �, obviously 
    
1 0, V( ) ∈ IS .

The following figures demonstrate some elements (polynomials) in that ideal and how they each intersect the unit 
circle:

-1

0

1
-1

0

1

-1

0

1

-1

0

1

-1

0

1
-1

0

1

-1

0

1

-1

0

1

-1

0

1
-1

0

1

-1

-0.5

0

-1

0

1  

    x y2 2 1+ −
    

x y y x2 2 1+ −( ) −( )
  
x y x2 2 21+ −( ) −( )

35. Obviously any polynomial in N is zero-valued for any element of VN, so     N I N⊆ V .

36. Let 
    
N x= 2 , so N is every polynomial in � x y,[ ] in which every term is divisible by x 2.  Obviously the y–axis 

      y y N∈ ( ){ } ⊆� 0, V .  Also, any point a b,( ) not on the y-axis cannot be in VN because x N2 ∈  and 
    
φ a b x a,( ) = ≠2 2 0

, so VN is precisely the y-axis.  Now     I NV  are all the polynomials that are zero-valued for the y-axis, which obviously 
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includes N.  But also     x I N∈ V  and 
    
x x∉ 2 .

§7.1 Unique Factorization Domains
♥ By definition, a reducible can be factored into irreducibles but not vice versa.  The key characteristic of a Prinicpal 

Ideal Domain is that every element can be identified with an ideal.  Since the infinite union of an infinite sequence 
of properly contained ideals is 

  
1 , this terminates the sequence of ideals, and correspondingly therefore every 

element has a finite factorization.  In a Prinicpal Ideal Domain an irreducible is prime, so the factorization is unique.

♥ 7
    D PID     D UFD7.1.16

    
F x[ ] PID

    
D x[ ] UFD

7.1.28

    F field

6.2.24
5.6.20

♥ 28     D UFD

    F field of quotients

    
D x[ ] UFD

    
F x[ ] UFD

recover a factorization of 
f D x∈ [ ]  from one in F x[ ]

5.6.20

1. Since 5 is prime, the only factorization up to associates of     5 ∈� is   5 1 5= ⋅  where 1 is a unit, so 5 is irreducible.
2. Since 17 is prime, the only factorization up to associates of   − ∈17 �  is   − = − ⋅17 1 17 where –1 is a unit, so –17 is 

irreducible.
3.   14 2 7= ⋅  is reducible.
4. Is a primitive polynomial and irreducible.

5.
    
2 10 2 5x x− = −( )  is reducible.

6.     2 3x −  is of degree 1 and 
    
∀ ≠ − = − ⋅a x

x
a

a0 2 3
2 3

:  where a is a unit, so irreducible.

7. Idem, irreducible.
8. Irreducible.

9.

      

�

�

�

x x x

x x x x x

x x x x x

[ ] − − +{ }
[ ] − − − −{ }

[ ] − − + −{ }

: ,

: , , ,

: , , ,

2 7 2 7

2 7 4 14 6 21 8 28

2 7 4 3 6 1 10 211

10. The roots of the polynomial are 

      
x =

− −( ) ± −( ) − ⋅ ⋅

⋅
= ± − = ± − = ± = ± − ∉

4 4 4 4 8

2 4
4 16 128

8
4 112

8
4 4 7

8
7

2

1
2

1
2

�.

So in � x x x[ ] ⋅ ⋅ − +( ): 2 2 22 , in 
      
� x x x[ ] − +: 4 4 82 .  In     �11 the polynomial has roots     x = 5 7,  so in 

      
�11 2 2 5 7x x x[ ] ⋅ ⋅ −( ) −( ): .
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11.

  

234 2 3 13

3250 2 5 13

1690 2 5 13

2 13 26

1 2 1

1 3 1

1 1 2

1 1

= ⋅ ⋅

= ⋅ ⋅

= ⋅ ⋅










⇒ = ⋅ =gcd

12. 784 2 7

1960 2 5 7

448 2 7

2 7 56

4 2

3 1 2

6 1

3 1

= ⋅

= ⋅ ⋅

= ⋅










⇒ = ⋅ =gcd

13.

  

2178 2 3 11

396 2 3 11

792 2 3 11

594 2 3 11

2 3 11 198

1 2 2

2 2 1

3 2 1

1 3 1

1 2 1

= ⋅ ⋅

= ⋅ ⋅

= ⋅ ⋅

= ⋅ ⋅













⇒ = ⋅ ⋅ =gcd

14.
    
6 3 2 82⋅ − +( )x x .

15.     18 12 482x x− + .

16.     2 3 62x x− + .

17. 2 3 62x x− + .

18.     a b ab= −1 is only well-defined if b has an inverse.  But even elements without an inverse can be associates, e.g. 
26 26 1= − ⋅ − .  So “if and only if a bu= , where u is a unit.”

19. Insert “without one of the factors being a unit.”
20. “Smaller” is not defined.  “if and only if any divisor divides at least one of the factors in any factorization.”
21. a. true (a field does not have any nonzero nonunit elements)

b. true (by Corollary 6.2.6 a field has only the trivial and nonproper ideals, which are both principal)
c. true (Theorem 16)
d. false (Example 30)

e. true (by Corollary 17 � is a UFD, and by Theorem 28 � x[ ]  is also)

f. false (    5 7, ∈�  are irreducible but not associates)

g. false (
    
� x[ ]  is a PID but 

      
� �x y x y[ ][ ] = [ ],  is not)

h. true (Theorem 28)
i. false (an associate of p could appear)
j. true (by Definition 5 a UFD is only defined for an integral domain, which cannot have divisors of zero)

22. By Lemma 26.  The irreducibles of D x[ ] are the irreducibles of D and the irreducibles in F x[ ]  that are primitive in 

  
D x[ ].

23. Again following Lemma 26, a nonprimitive polynomial in 
 
D x[ ] is reducible in 

  
F x[ ]  but irreducible in 

  
D x[ ], for 

example 
    
2 2 2 1x x+ = ⋅ +( ) is reducible in 

    
� x[ ]  but irreducible in 

    
� x[ ].

24. With divisors of zero, factorizations are no longer unique.  For example, 
  
1 0 1 0 1 3 1 0 1 5, , , , ,( ) = ( ) ⋅ ( ) = ( ) ⋅ ( ) .

25. Suppose   p ab=  is reducible where a b,  are not units.  Then     a b p, ≠ 0  are not divisible by p, for suppose without 

loss of generality that a p= 0 then     a c a abcab= ⇒ ∃ =0 : .  Since an integral domain has no divisors of zero and 

    p ≠ 0, then a ≠ 0.  Since cancellation holds in an integral domain we have 1 1= ⇒ = −bc c b  but b is not a unit.  So p 
is not prime.  So if p is prime, it is irreducible.

26. Let   p ab=  be a factorization of an irreducible p.  Then without loss of generality, a is a unit.  Since this 
factorization is unique up to associates and ab bp p= ⇒ =0 0, so p is prime.

27. •(reflexive)     a a= ⋅1 so a a~ ;

125



•(symmetric)     ∀ ∈ ⇒ ∃ ∈ = ⇒ = ⇒−a b D a b u D a bu b au b a, : ~ : ~1 , where     u u, −1 are units;

•(transitive) 
    
∀ ∈ ⇒ ∃ ∈ = = ⇒ = = ( ) = ( ) ⇒a b c D a b b c u v D a bu b cv a bu cv u c vu a c, , : ~ , ~ , : , ~ , where   vu  is 

also a unit.

28. Let     a b D U, *∈ −  be two nonzero nonunits.  Since D is an integral domain, it has no divisors of zero so   ab ≠ 0.  

Suppose ab was a unit, then 
    
ab ab a b ab a b ab( ) ⋅ ( ) = ⇒ ( )





= ⇒ = ⋅ ( )− − − −1 1 1 1
1 1  and a would be a unit.  So 

D U* −  is closed.  It is not a group because it does not contain the identity 1.

29. Let 
  
f D x∈ [ ]  be primitive, and let 

    
g h D x f gh, :∈ [ ] = .  Suppose  g cg= ′  is not primitive.  Because 

  
D x[ ] is a UFD, 

  f cg h= ′  and f is thus not primitive.

30. Lemma 9 shows that every principal ideal is contained in a finite chain of ideals that terminates in 
  
D = 1 .

31.     x y3 3−  has a root for   x y= , so 
    
x y x y x xy y3 3 2 2− = −( ) ⋅ + +( ).  The quotient has roots 

    
x

y y y y y y y=
− ± − ⋅ ⋅

⋅
=

− ± −
= − ± −2 2 24 1

2 1

3

2
3

2
 that are not in �.

32. •  ACC MC⇒
By ACC, any chain of strictly increasing ideals is finite, therefore there is a last ideal in this chain that is not properly 
contained in any other ideal.

• MC FBC FBC MC⇒( ) ⇐ ⇒( )
Suppose there is an ideal N that has no finite basis set.  Surely it has at least an infinite one.  Then we can construct 
an infinite set of ideals by iteratively adjoining one element from theis basis set, with each new ideal containing the 
pervious ideal.  This set therefore does not satsify MC.

•  FBC ACC⇒
If every ideal has a finite basis, then we can construct a finite chain of ideals by iteratively adjoining an element from 
the basis set to the previous ideal.  Since every ideal in any chain can be constructed from a finite chain of ideals, the 
chain must be of finite length. (shaky…)

33. •
  
DCC mC mC DCC⇒( ) ⇐ ⇒( )

Suppose S was a set of ideals in which every ideal contains some other ideal of S.  Then an infinitely long decreasing 
sequence of ideals would exist.

•  mC DCC⇒
If any strictly decreasing sequence of ideals has an ideal that does not properly contain any other ideal in that 
sequence, the sequence must be finite.

34. ACC holds in �, but for any finite-basis ideal n < � there is always another relative prime that can be adjoined to 

the basis to construct a new ideal properly contained in it.

§7.2 Euclidean Domains
♥ The valuation gives a measure by which we can guarantee that a factorization will at some point terminate.

♥ 9 Let D be a Euclidean domain with valuation ν.  Then for     r r D0 1, *∈ :

      

r r q r r r r
r r q r r r r

r r q r r r ri i i i i i i

0 1 2 2 2 2 1

1 2 3 3 3 3 2

1 1 1 1 1

0
0

0

= + = ∨ <
= + = ∨ <

= + = ∨ <− + + + +

ν ν
ν ν

ν ν
M

If     r r r r r qi d i d i i i i d− + − += = ⇒ = − =1 1 1 10 0 0,  and if     r r r r q ri d i d i i i i d+ − + += = ⇒ = + =1 1 1 10 0 0, , so the 
common divisors of     r ri i−1,  are the same as those of   r ri i, +1.  So when   rs  is the first remainder equal to zero, a 
greatest common divisor of     r rs s− −2 1,  is also one of   r0 and     r1.  And since     r r q r r qs s s s s s− − −= + =2 1 1 , a greatesst 
common divisor of     r rs s− −2 1,  is     rs −1.

1. On �, the q and r of Condition 1 do exist by Theorem 1.5.3 and   0 ≤ <r b .  From   r b<  and   r b, ≥ 0 we have 
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    r b r b2 2< ⇒ <ν ν .  Then 
    
∀ ∈ ≤ ( ) = ⇐ ≤ ⇐ ≥a b D a ab a b b b, :* 2 2 2 2 1 1.

2. We know by Theorem 5.6.1 that on the ring of polynomials over a field the quotient and remainder q and r in 

  a bq r= +  are unique, so a solution may not exist in 
  
� x[ ]  and Condition 1 is not satisfied.  For example, 

    
2 1 2 01

2
x x−( ) = ( ) ⋅ −( ) + ( ) .

3. Again, the quotient and remainder are unique but if the remainder is nonzero we cannot guarantee that ν νr b<  and 
satisfy Condition 1.  For example, 

    
1 7 1 1 7x x+( ) = ( ) ⋅ ( ) + ( ) where 

  
ν ν7 1 7 1/< ( ) ⇐ /<x .  The problem is that the 

process of division does not necessarily reduce ν.
4. In a field, for any     a b F b, ,∈ ≠ 0,   a bq=  always has a solution so Condition 1 is satisfied.  But in �, for   0 1< <b  

and any       a ∈�*: 
    
ν ν ν νa ab ab a a b ab a b b/≤ ( ) ⇐ ( ) < ⇐ = ( ) < ⇐ < ⇐ < <2 2 2 2 2 1 0 1.

5. From Exercise 4, Condition 1 is satisfied.  Also,       ∀ ∈a b, *� : 
  
ν νa ab= ( ) .

6. 23 3 138 391

3 3266 391 8 391 3 3266 24 391 3 3266 25 391

3 3266 25 7 3266 1 22471 3 3266 175 3266 25 22471

172 3266 25 22471

= ⋅ −
= ⋅ − ⋅( ) − = ⋅ − ⋅ = ⋅ − ⋅

= ⋅ − ⋅ ⋅ − ⋅( ) = ⋅ − ⋅ + ⋅

= − ⋅ + ⋅
7. 49349 15555 3 2684

15555 2684 6 549
2684 549 5 61
549 61 9

49349 15555 61

= ⋅ +
= ⋅ −

= ⋅ −
= ⋅











⇒ ( ) =gcd ,

8.

  

61 5 549 1 2684

5 6 2684 1 15555 1 2684 29 2684 5 15555

29 1 49349 3 15555 5 15555 29 29349 92 15555

= ⋅ − ⋅
= ⋅ ⋅ − ⋅( ) − ⋅ = ⋅ − ⋅

= ⋅ ⋅ − ⋅( ) − ⋅ = ⋅ − ⋅

9. By polynomial long division:

    

x x x x x x x x x x

x x x x x x x x x x x x

x x x x x x

10 9 8 7 6 5 4 3 2

4 6 5 4 3 2 4 3 2

6 5 4 3 2

3 3 11 11 11 19 13 8 9 3

2 3 3 9 5 5 2 3 2 5 3

3 3 9 5 5 2

− + − + − + − + − +( )
= −( ) ⋅ − + − + − +( ) + − − − − +( )

− + − + − +(( ) = − + −( ) ⋅ − − − − +( ) + − − +( )
− − − − +( ) = +( ) ⋅ − − +( )

x x x x x x x x

x x x x x x x

2 4 3 2 3

4 3 2 1
59

3
59

3

6 19 3 2 5 3 59 118 59

3 2 5 3 59 118 59

so 
    
59 2 13⋅ − − +( )x x  and     x x3 2 1+ −  are greatest common divisors.

10. Calculate 
    
d a di i i+ = ( )1 gcd , , where     d a0 0= .

11.

    

2178 396 5 198
396 198 2 2178 396 198

792 198 4 792 198 198

726 198 4 66
198 66 3 726 198 66

1

2

3

= ⋅ +
= ⋅ = ( ) =

= ⋅ = ( ) =

= ⋅ −
= ⋅ = ( ) =

d

d

d

gcd ,

gcd ,

gcd ,

12. a. Yes, because � is a UFD by the Fundamental Theorem of Arithmetic and 
    
� x[ ]  is a UFD by Theorem 1.28.

b. This is the subset of 
    
� x[ ]  with even constant term.  It is fairly obvious that it is in fact closed and a subring.  Now 

consider any g x g xg g g x g∈ [ ] = ′ + +( ) ′ ∈ [ ] ∈� � �: , ,0 01 2  polynomial with odd constant term and any 

f xf f f x f= ′ + ′ ∈ [ ] ∈0 0 2, ,� �  in the subring.  Then
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f g xg g xf f

x f g f xg g xf g f

x f g f g g f x g f f

⋅ = ′ + +( )( ) ⋅ ′ +( )
= ′ ′ + ′ + +( ) ′ + +( )
= ′ ′ + ′ + +( ) ′( ) + +( )

0 0

2
0 0 0 0

2
0 0 0 0 0

1

1 1

1

It is obvious that the constant term     g f f0 0 0+  is again even, so the subring is indeed ideal.
c. No.  Any generator of the ideal in (b.) would have to have even constant term, but this wouldn't then generate 

polynomials with odd coefficients on nonconstant terms.  For example, there is no polynomial that will generate 
both 2 and x.

d. No, by Theorem 4.
13. a. true (Theorem 4)

b. false (by the discussion after Corollary 5)
c. true (Corollary 5)
d. false (by the discussion after Corollary 5 and Exercise 12)
e. true (in a field, every nonzero element is a greatest common divisor of any set of nonzero elements)
f. true

g. true (Theorem 6)
h. false (by Theorem 6 every unit u has ν νu = 1, not only the multiplicative identity)
i. true (Theorem 6)
j. true (Example 3)

14. No, because the arithmetic structure of a domain D is defined by its operations and is independent of any particular 
choice of valuation.

15. If a and b are associates then there exists a unit u such that  a bu= .  By Condition 2 of Definition 1, 

ν ν ν νa bu bu u b= ( ) ≤ ⋅( ) =−1 , and conversely, so ν νa b= .

16. If b is a unit, then a and ab are associates and by Exercise 15 ν νa ab= ( ) .  Conversely …

17. This is the set of all elements with valuation greater than that of a unit.  Condition 2 shows that the set is closed 
under multiplication, but it is not closed under addition and hence not a group.  For example, for   3 2, − ∈� , 

ν ν3 2 1, −( ) >  and 
  
ν ν3 1 1+ −( )( ) = .

18. In any field, Condition 1 holds with zero remainder always.  If ν is the identity 
  
i D* , Condition 2 holds as well.

19. a. Since ν is minimal for ν1, η has minimum value     η ν1 1 0= + >s , so       η : *D → +� .  Also, if Condition 1 holds for ν 
then it also holds for η because   η η ν νr b r b< ⇐ < , and if Condition 2 holds for ν it also holds for η because 
η η ν νa ab a ab≤ ( ) ⇐ ≤ ( ).

b. Since ν is minimal for   ν1 and   r > 0, l has minimum value   r ⋅ ≥ν1 0 , and since ν maps to integers and     r ∈ +� , 

      λ : *D → +� .  If Condition 1 holds for ν then it also holds for λ because   λ λ ν νr b r b< ⇐ < , and if Condition 2 
holds for ν it also holds for λ because λ λ ν νa ab a ab≤ ( ) ⇐ ≤ ( ) .

c. Let ν be any valuation.  Then 
        
µ ν ν: :*D a a→ −( ) ⋅ ++� a 1 100 1 is a Euclidean valuation by (a.) and (b.), with 

  
µ ν ν1 1 1 100 1 1= −( ) ⋅ + = .  Since ν has minimum value ν1, ν νa ≥ +1 1 for any nonzero nonunit, and 

    
µ ν νa ≥ +( ) −( ) ⋅ + = >1 1 1 100 1 101 100.

20. For any     a b D, *∈ , a b,  are their principal ideals, that is, all their multiples.  Then a b∩  is an ideal by 

Exercise 6.1.27 of all the common multiples of a and b.  Since D is a Euclidean domain it is a PID, so 
∃ ∈ ∩ =c D a b c: .  Since     ab ≠ 0 and ab c∈  we know that c E≠  and   c ≠ 0.  Since c divides every element 

of 
  
c , it is a least common multiple.

21. If a and b are relatively prime, then by Theorem 9 
    
∃ ∈ + = ( ) =λ µ λ µ, : gcd ,D a b a b 1, so a and b generate 

    
1 = � .  
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Conversely, let 
    
d a b= ( )gcd , .  Every element generated by a and b is of the form 

  
λ µ λ µ

a b d
a

d
b

d
d+ = +







⊇ , so to 

generate � we must have     d = 1, which is to say that a and b must be relatively prime.
22. If a and n are relatively prime, then by Theorem 9     ∃ ∈λ µ, � : 

    
λ µ λ µ λ µ λ λa n b a n b b a b n b b a b x bn+ = ⇒ +( ) = ⇒ ( ) + ( ) = ⇒ ( ) = ⇒ =1 .

23. Let 
    
d a n= ( )gcd , .  By Theorem 9       ∃ ∈ + =λ µ λ µ, :� a n d .  Since d divides b,       ∃ ∈ =α α� : b d .  Then 

  
α λ µ α αλ αµ αλ αλa n d b a n b a b xn+( ) = = ⇒ ( ) + ( ) = ⇒ ( ) = ⇒ = .  Conversely, if   ax bn=  then 

      ∃ ∈ + =λ λ� : ax n b .  Now 
    
d a n= ( )gcd ,  obviously divides  ax n+ λ , so if it does not also divide b the equation 

cannot possibly have a solution.  In other words,   ax b=  has a solution for x in     �n  iff the greatest common divisor 
of a and n divides b.

24. Find λ by the procedure outlined in Exercise 6, and let 
  
d a n= ( )gcd , .  Verify that d divides b, then 

  
x

b
d

= =αλ λ
.  So 

42 22 2 2 22 2 11= ⋅ − = ⋅,  so 
    
d = ( ) =gcd ,42 22 2 .  We see that 2 indeed divides 18, so there is a solution 

x
b

d
= = ⋅ =λ 2 18

2
18.

§7.3 Gaussian Integers and Norms

1. a bi
a bi

a bi

a bi a bi

a bi

a b

i
i+ ∈

+
=

⋅ −( )
+( ) −( ) = −

+
= − = −� :

5 5 5 5 5 10
5

1 2
2 2

, where a b= =1 2, , so 
  
5 1 2 1 2= +( ) −( )i i .

2.     N7 49=  has to be factored into two factors, so we are looking for a bi+  with norm 7 but that doesn't exist by 
Theorem 10.  Irreducible.

3.
4 3 4 3 4 3 3 4 4 1 3 2 3 1 4 2

1 2
2

2 2 2 2

+
+

=
+( ) −( )
+( ) −( ) =

+( ) + −( )
+

=
⋅ + ⋅( ) + ⋅ − ⋅( )

+
= −i

a bi

i a bi

a bi a bi

a b a b i

a b

i
i , where     a b= =1 2, , so 

    
4 3 1 2 2+ = +( ) −( )i i i .

4.

    

6 7 6 7 6 7 7 6 6 4 7 1 7 4 6 1

1 4
1 2

2 2 2 2

−
+

=
−( ) −( )
+( ) −( ) =

−( ) + − −( )
+

=
⋅ − ⋅( ) + − ⋅ − ⋅( )

+
= −i

a bi

i a bi

a bi a bi

a b a b i

a b

i
i , where a b= =4 1, , so 

6 7 4 1 2− = +( ) −( )i i i .

5.

    

6 2 3

1 5 1 5

= ⋅

= +



 −



i i

6.

    

α
β

σ= +
−

=
+( ) +( )
−( ) +( ) =

−( ) + +( )
+

= + ⇒ = +7 2
3 4

7 2 3 4

3 4 3 4

21 8 28 6

3 4
1

2 2
13
25

34
25

i
i

i i

i i

i
i i

    
ρ α βσ= − = +( ) − −( ) +( ) = +( ) − +( ) + −( )( ) = +( ) − −( ) =7 2 3 4 1 7 2 3 4 3 4 7 2 7i i i i i i i i .

7.

    

8 6
5 15

8 6 5 15

5 15 5 15

8 5 6 15 8 15 6 5

5 15

50 150
250

5 15 15 5

8 6 15 5 7

8 6 5 15

2 2
1
5

3
5

+
−

=
+( ) +( )

−( ) +( ) =
⋅ − ⋅( ) + ⋅ + ⋅( )

+
= − + = − +

⋅ −( ) = +

+( ) − +( ) = − +

+ = ⋅ −

i
i

i i

i i

i i
i

i i i

i i i

i i i(( ) + − +( )














 7 i
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5 15
7

5 15 7

7 1

5 7 15 1 5 1 15 7

50
50 100

50
1 2

5 15 1 2 7

2 2

−
− +

=
−( ) − −( )

+
=

⋅ −( ) − −( ) ⋅ −( )( ) + ⋅ −( ) + −( ) ⋅ −( )( )
= − + = − +

− = − +( ) ⋅ − +( )










i
i

i i i i
i

i i i

    
gcd ,8 6 5 15 7+ −( ) = − +i i i

8. a. true (Theorem 4 and Theorem 2.4)
b. true (Theorem 4)
c. true (Definition 1)

d. false (
      
1
2

∉ [ ]� i )

e. true (the Euclidean algorithm holds in any Euclidean domain, Theorem 9)
f. true (in the case of Theorem 7, a prime multiplicative norm corresponds to an irreducible)

g. true (Theorem 7)
h. false (  deg 0 0<  so Condition 1 of Definition 6 doesn't hold,   deg1 0=  so Condition 2 doesn't hold, and 

    deg deg degx x x2 2 1 1≠ ⋅ ⇐ ≠ ⋅  so Condition 3 doesn't hold either)
i. true (all three conditions of Definition 6 hold)
j. true (Example 9)

9. If π ∈D  such that Nπ  is minimal, then if π  was reducible there would be σ ρ π σρ, :∈ =D  with neither σ ρ,  a 
unit and thus     N Nσ ρ, ≠ 1, but then either     N N Nσ ρ π, <  which is a contradiction.  So π  is irreducible.

10. a.
    
2 2 1

2
= − ⋅ = − ⋅ +( )i i i i .

b. By Theorem 10, p p a b a bi a bi i= ⇒ = + = +( ) −( ) [ ]4
2 21  reducible in � .  Conversely, if p =4 3  was reducible then 

  p a b= ⋅  and     Np p Na Nb Na Nb p= = ⋅ ⇒ =2 ,  and 
    
Na p N a a i a a p= ⇒ ′ + ′′( ) = ′ + ′′ =2 2  but there is no such 

expression by Theorem 10.

11. 1.     N a aα = ′ + ′′ ≥2 2 0 , where ′ ′′ ∈a a, � .

2.     N a a a a a a aα = ′ + ′′ = ⇔ ′ = ∧ ′′ = ⇔ ′ = ∧ ′′ = ⇔ =2 2 2 20 0 0 0 0 0.

3.

    

N N i i N iαβ α α β β α β α β α β α β

α β α β α β α β

α β α α β β α β

( ) = ′ + ′′( ) ⋅ ′ + ′′( )( ) = ′ ′ − ′′ ′′( ) + ′ ′′ + ′′ ′( )( )
= ′ ′ − ′′ ′′( ) + ′ ′′ + ′′ ′( )
= ′ ′( ) − ′ ′′ ′ ′′ + ′′ ′′

2 2

2
2 (( ) + ′ ′′( ) + ′ ′′ ′ ′′ + ′′ ′( )

= ′ + ′( ) ⋅ ′ + ′′( )
= ′ + ′′( ) ⋅ ′ + ′′( ) = ⋅

2 2 2

2 2 2 2

2α β α α β β α β

α β β β

α α β β α βN i N i N N

12.     ∀ = ′ + ′′ = ′ + ′′α α α β β βi i5 5, :

    

N N i i N iαβ α α β β α β α β α β α β

α β α β α β α β

α β α

( ) = ′ + ′′



 ⋅ ′ + ′′









 = ′ ′ − ′′ ′′( ) + ′ ′′ + ′′ ′( )





= ′ ′ − ′′ ′′( ) + ′ ′′ + ′′ ′( )
= ′ ′( ) − ′ ′

5 5 5 5

5 5

10

2 2

2
′′ ′ ′′ + ′′ ′′ + ′ ′′( ) + ′ ′′ ′ ′′ + ′′ ′( )

= ′ + ′′( ) ⋅ ′ + ′′( )
= + ′′



 ⋅ ′ + ′′



 = ⋅

α β β α β α β α α β β α β

α α β β

α α β β α β

25 5 10 5

5 5

5 5

2 2

2 2 2 2

N i N i N N

13. Let d be a nonzero nonunit.  Suppose     ∃ =a b d ab, :  where   a b,  nonunit.  Because  Nd Na Nb= ⋅  and     Na Nb, > 1 it 
must be that     Na Nb Nd, < .  Otherwise, if     /∃ =a b d ab, :  where   a b,  nonunit, d is irreducible.  Because   Nd  has a 
finite factorization in   �, repeating this procedure will at some point terminate.
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14. 16 7
10 5

16 7 10 5

10 5 10 5

16 10 7 5 16 5 7 10

125
125 150

125
1 1

1 10 5 10 1 5 1 10 1 5 1 15 5

16 7 15

1
5

+
−

=
+( ) +( )
−( ) +( ) =

⋅ − ⋅( ) + ⋅ + ⋅( )
= + = +

+( ) −( ) = ⋅ − −( ) ⋅( ) + ⋅ − ⋅( ) = +

+( ) −

i
i

i i

i i

i i
i

i i i i

i ++( ) = +

+ = +( ) ⋅ −( ) + +( )
















5 1 2

16 7 1 10 5 1 2

i i

i i i i

    

10 5
1 2

10 5 1 2

1 2 1 2

10 1 5 2 10 2 5 1

5
25
5

5
−

+
=

−( ) −( )
+( ) −( ) =

⋅ − ⋅( ) + ⋅ −( ) + −( ) ⋅( )
= − = −







i
i

i i

i i

i i
i

    
gcd ,16 7 10 5 1 2+ −( ) = +i i i

15. a. Since 
    
� i[ ] is a Euclidean domain, there exists a valuation ν on 

    
� i[ ].  Then ∀ ∈ ∃ ∈ = +β β β β β α βD D: , :* *

0 0 

where β0 0=  or νβ να0 < .  So ψ
α

β β α: :�
�

i
i[ ] →

[ ]
+a 0  is the canonical homomorphism onto 

� i[ ]
α

 and the 

conditions on β0 show that there are a finite number of them.

b. If π  were not maximal then there would be ρ π π ρ∉ ⊂ ⊂ [ ]: � i  so ∃ =σ π ρσ:  where ρ not a unit (else 

ρ π= ), but then π would be reducible.  So π  is maximal and � i[ ] π  a field.

c. I verified these by plotting on graph paper.  The characteristic is pretty simple to find, the order seems always to be 
equal to the norm.

i.

   

� i
i

[ ]
= ′ + ′′ +{ }≤ ′ ′′<

3
30 3α α α α, .  

      

� �i i[ ]
=

[ ]
=

3
9

3
3; char ;

ii.

   

� �i

i

i

i

[ ]
+

=
[ ]
+

=
1

2
1

2; char ;

iii.
� �i

i

i

i

[ ]
+

=
[ ]

+
=

1 2
5

1 2
5; char .

16. I don't think n needs to be ‘square free’ in this exercise but in the next one.

a. Obviously ∀ ∈ −





≥α α� n N: 0.  Also, N a nb a b a bα = ⇔ + = ⇔ = ⇔ =0 0 0 02 2 2 2, , .  Finally, 

      
∀ ∈ −





= ′ + ′′ = ′ + ′′α β α α α β β β, : ,� n i n i n :

    

N N i n i n

N n i n

n n

n

αβ α α β β

α β α β α β α β

α β α β α β α β

α β α

= ′ + ′′



 ⋅ ′ + ′′











= ′ ′ − ′′ ′′( ) + ′ ′′ + ′′ ′( )





= ′ ′ − ′′ ′′( ) + ′ ′′ + ′′ ′( )
= ′ ′( ) − ′ ′′

2 2

2
2 αα β β α β α β α α β β α β

α α β β

α α β β α β

′ ′′ + ′′ ′′ + ′ ′′( ) + ′ ′′ ′ ′′ + ′′ ′( )
= ′ + ′′( ) ′ + ′′( )
= ′ + ′′



 ⋅ ′ + ′′



 = ⋅

n n n n

n n

N i n N i n N N

2 2 2

2 2 2 2

2

b. ∀ ∈ −





= ⇒ ′ + ′′



 = ′ + ′′ = ⇒

′ = ∧ ′′ =

′ = ∧ ′′ =






⇒

′ = ± ∧ ′′ =
′ = ∧ ′′ = ± ∧ =





α α α α α α α α
α α

α α
α α

� n N N i n n
n

n n
: 1 1

1 0

0 1

1 0
0 1 1

2 2
2 2

2 2
  

Since these elements are also the only possible units, this describes precisely all the units.
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c. We show that 
    
� −





n  is an integral domain by showing it has no divisors of zero:

    
αβ αβ α β α β α β= ⇒ ( ) = ⋅ = ⇒ = ∨ = ⇒ = ∨ =0 0 0 0 0 0N N N N N

Then by Exercise 13 and (b.) every nonzero nonunit has a factorization into irreducibles.
17. I think n needs to be ‘square free’ in this exercise but not in the previous one.

a. Obviously 
      
∀ ∈ 





≥α α� n N: 0.  Also, 
  
∀ = ⇔ ′ − ′′ = ⇔ ′ = ′′ ⇔ ′ ′′ =α α α α α α α α: ,N n n0 0 02 2 2 2

*

, where (*) 

holds only if n is square free— for example, if     n = ′ = ′′ ⇔ ′ ′′ =3 3 02 2: ,α α α α  but if   n = 4: 

  ′ = ′′ ⇐ ′ = ′′ =α α α α2 24 2 1, .  Then, 
   
∀ ∈ 





α β, � n :

    

N N n n

N n n

n n

n

αβ α α β β

α β α β α β α β

α β α β α β α β

α β α α

( ) = ′ + ′′



 ⋅ ′ + ′′











= ′ ′ + ′′ ′′( ) + ′ ′′ + ′′ ′( )





= ′ ′ + ′′ ′′( ) − ′ ′′ + ′′ ′( )
= ′ ′( ) + ′ ′′

2 2

2
2 ′′ ′′ + ′′ ′′( ) − ′ ′′( ) − ′ ′′ ′ ′′ − ′′ ′( )

= ′ − ′′( ) ′ − ′′( )
= ′ − ′′ ⋅ ′ − ′′

= ′ + ′′



 ⋅ ′ + ′′



β β α β α β α α β β α β

α α β β

α α β β

α α β β

n n n n

n n

n n

N n N n

2 2 2

2 2 2 2

2 2 2 2

2


 = ⋅N Nα β

b. This can only hold if one of ′ ′′α α2 2,  is even and the other odd.  Since 
  

±( )1
2
 is the only odd integer square,

⇔
′ = ∧ ′′ =

′ = ∧ ′′ =






⇔

′ = ± ∧ ′′ =
′ = ∧ ′′ = ± ∧ =





α α
α α

α α
α α

2 2

2 2

1 0

0 1

1 0
0 1 1

n

n n

c.
    
� n




 is an integral domain because it has no divisors of zero because it has a multiplicative norm, so by Exercise 

13 and (b.) every nonzero nonunit has a factorization into irreducibles.

18. Let 
      
α β α α α β β β β, : , ,∈ −





= ′ + ′′ = ′ + ′′ ≠� 2 0i i  and let    q q iq q q= = ′ + ′′ ′ ′′ ∈α β , , � , and let 

σ σ σ σ σ= ′ + ′′ ′ ′′ ∈i , , �  as close as possible to q so that ′ − ′ ′′ − ′′ ≤σ σq q, 1
2

.  Then 

    
N q N q iq i N q q i−( ) = ′ + ′′( ) − ′ + ′′( )( ) = ′ − ′( ) + ′′ − ′′( )( ) ≤ ( ) + ⋅ ( ) = + =σ σ σ σ σ 1

2

2
1
2

2
1
4

2
4

3
4

2  and 

    
νρ ρ α βσ β α β σ β σ β β νβ= = −( ) = ⋅ −( )( ) = ⋅ −( ) ≤ ⋅ < =N N N N N q N N3

4
, so � n




 is a Euclidean domain.  

Similarly for 
    
� n




, 

    
N q n n−( ) = … ≤ ⋅ ( ) =σ 1

2

2
1
4

 and νρ β β νβ= … ≤ ⋅ < =
=

N n N
n

1
4

2 3,

 so 
  
� �2 3











,  are 

Euclidean domains.

§8.1 Introduction to Extension Fields
♥ So “extension field” is just “superfield.”

1.
    
x x x x x x x= + ⇒ − = ⇒ −( ) = − + = ⇒ − − =1 2 1 2 1 2 1 2 2 1 0

2 2 2 .

2.

    

x x

x x x x x x

= + ⇒ = +



 = + + = +

⇒ − = ⇒ −( ) = − + = ⋅ = ⇒ − + =

2 3 2 3 2 2 6 3 5 2 6

5 2 6 5 10 25 4 6 24 10 1 0

2
2

2 2 2
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3.
    
x i x i x x x x x= + ⇒ − = ⇒ −( ) = − + = − ⇒ − + =1 1 1 2 1 1 2 2 0

2 2 2 .

4.

    

x x x x x x x x x x x

x x x x x x

= + ⇒ = + ⇒ −( ) = +( ) − +( ) = − + + − +

= − − + = ⇒ − − − =

1 2 1 2 1 1 2 1 2 2 1

1 2 1 0

3 2 3 2
3

2 4 2 6 4 2 4 2

6 4 2 6 4 2

5.

    

x i x i x i

x i x i x i x i x x i x x i x x i x i

x x x i

x x

= − ⇒ = − ⇒ + =

+( ) = +( ) +( ) = +( ) + −( ) = + − + − −( ) =

− −( ) = − +( )
− −( )

2 2 2

2 1 2 2 2

3 2 3 1

3 2

3 2 3 2 3

2
3

2 2
2

2 4 2 6 4 2 4 2

6 2 4

6 2
2

== − − +( ) ⇒ − −( ) + − +( ) =

− − − + + − + + + − + =

+ − + + + =

3 1 3 2 3 1 0

3 2 3 9 6 2 6 4 9 6 1 0

3 4 3 12 5 0

4
2

6 2
2

4
2

12 8 6 8 4 2 6 2 8 4

12 8 6 4 2

x x x x

x x x x x x x x x x

x x x x x

6.

      

x x x

x x x x x

x x

= − ⇒ = − ⇒ − = −

⇒ −( ) = − + = ⇒ − + =

−





= − + −





=

3 6 3 6 3 6

3 6 9 6 6 3 0

3 6 6 3 3 6 4

2 2

2
2

4 2 4 2

4 2irr , ; deg ,� �

7.

      

x x x x x x

x x

= + ⇒ = + ⇒ − = ⇒ −( ) = − + =

⇒ +





= − − +





=

1
3

2 1
3

2 1
3

2 1
3

2
4 2

3
2 1

9

1
3

4 2
3

2 8
9

1
3

7 7 7 7

7 6 7 4irr , ; deg ,� �

8.

      

x i x i x i x ix x ix x x x x

i x x i

= + ⇒ − = ⇒ −( ) = − − = ⇒ − = ⇒ −( ) = − + = −

⇒ +



 = − + +



 =

2 2 2 1 2 3 2 3 6 9 4

2 2 9 2 4

2 2 2 2
2

4 2 2

4 2irr , ; deg ,� �

9.     x i x x= ⇒ = − ⇒ + =2 21 1 0; algebraic with degree 2.

10. x i x i x x x x x= + ⇒ − = ⇒ −( ) = − + = − ⇒ − + =1 1 1 2 1 1 2 2 0
2 2 2 ; algebraic with degree 2.

11. x = π ; transcendental.

12.     x x x= ⇒ = ⇒ − =π π π2 2 0; algebraic with degree 2.
13. idem.

14.     x = π 2; transcendental.

15. x x= ⇒ − =π π2 2 0 ; algebraic with degree 1.

16.     x x= ⇒ =π π2 3 6; algebraic with degree 3.

17.
x x

x
x x x x x

2
21

1 1 1
+ +
−

= + +( ) ⇒ + +( ) = −( ) + +( )α
α α α .

18. a. Since the polynomial has no zero for any element of     �3, it is irreducible by Theorem 5.6.10.

α     x 2 1+

 0   1
  2
22

 1

b.
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  0
  1

  2
α

  2α
  1+ α

  1 2+ α
  2 + α

  2 2+ α

  0
  1

  2
α

  2α
  1+ α
  1 2+ α

  2 + α

  2 2+ α

  0   1

  1
  2

  0

  1+ α
  1 2+ α
  2 + α
  2 2+ α

α

  2α

  2

  2
  0

  1

  2 + α
  2 2+ α

α

  2α
  1+ α

  1 2+ α

α

α

  1+ α

  2 + α
  2α

 0

  1 2+ α
 1

  2 2+ α
 2

  1+ α

  1+ α
  2 + α

α

 1 2+ α
 1

 2 2+ α
  2

  2α
  0

  1 2+ α

  1 2+ α
  2 2+ α

  2α
 1

  1+ α
 2

  2 + α
 0
α

  2 + α

  2 + α
α

  1+ α
  2 2+ α

 2

 2α
 0

  1 2+ α
 1

 2 2+ α

 2 2+ α
 2α

 1 2+ α
  2

 2 + α
  0
α

  1

 1+ α

+  2α

 2α
 1 2+ α

  2 2+ α
  0
α

  1

 1+ α
  2

 2 + α

  0
  1

  2
α
2α

  1+ α
1 2+ α
2 + α
2 2+ α

  0   1   2 α   1+ α   1 2+ α  2 + α  2 2+ α⋅

  0
  0

  0
0
  0
  0
0
  0

  0

  0   0   0   0   0   0   0
  1

  2
α
2α

  1+ α
1 2+ α

2 + α
2 2+ α

  2 α   1+ α   1 2+ α  2 + α  2 2+ α
  1

  2α
α

  2 2+ α
2 + α
1 2+ α
1+ α

 2α α  2 2+ α  2 + α

  2α

  0

  2α

 1 2+ α  1+ α
2
  1

 2 + α
1+ α
2 2+ α
1 2+ α

1  2 + α   1+ α  2 2+ α  1 2+ α
  2

  1 2+ α
2 2+ α
1+ α
2 + α

1 2+ α 2 2+ α 1+ α 2 + α
  2α

2
 1

α

  2   1 α
α
2α
 1

2α 1
α

  2
  2
2α

where α α+ = ⇒ = − =1 0 1 22 .

19. “of some nonzero polynomial” in F x[ ] .

20. “nonzero”
21. are having “the coefficient of the highest-degree term” equal to 1.
22. Correct?
23. a. true (there is no polynomial over �  having π  as a root)

b. true

c. true (
    
∀ ∈ − ∈ [ ]f F x f F x:  has f as a root)

d. true (  � �⊃ )
e. false (    � �/⊃ 2  because addition on   �2  is not the one induced from   � )
f. true (Definition 14)

g. false (
      
x x2 2− ∈ [ ]�  has degree 2 but 

      
x x− ∈ [ ]2 �  has degree 1)

h. true (Kronecker's Theorem)

i. false ( � � �× ⊃2  is an extension field but x 2 1+  has no zero in it)
j. true (as in the discussion after Example 19)

24. a. In 
    
F = 1 3,π , irr ,π πF x( ) = −3 3  with degree 3.

b. In 
    
E e= 1 10, , 

    
irr ,e E x e2 5 10( ) = −  with degree 5.

25. a.
      
φ�2

3 2 1 1x x+ +( ) = { }  has no zero in �2 , so no nonunit factors.

b.
    

x x
x

x x
3 2

2 21
1

+ +
−

= + +( ) + +( )α
α α α , so 

  
x x x x x3 2 2 21 1+ + = −( ) + +( ) + +( )



α α α α .  To factorize the second 

factor, finding a zero by applying the elements of 
    
�2 α( ): 0 1 1 1 12 2 2 2, , , , , , ,α α α α α α α α+ + + + + .  Eventually we 

find that φ α α α α α α α α α α α α α αα 2
2 2 2

2
2 2 3 2 3 21 1 0x x+ +( ) + +( )



 = ( ) + +( ) + + =− + + + + + =

*

, where 
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α α α α α α α α α α α3 2 3 2 4 3 2 31 0 1 1+ + = ⇒ = − +( ) = ⋅ = − ⋅ +( ) = − +; .  Then

    

x x

x
x

2 2

2
2

1
1

+ +( ) + +( )
−

= + + +( )α α α

α
α α , so 

  
x x x x x2 2 2 21 1+ +( ) + +( ) = −( ) −( ) + + +( )



α α α α α α α .  ¿Note 

that the solution in the text has a minus sign in 
    
x − + +( )α α2 1 ?

26. deg , :α α α α� �2 2
33 0( ) = ⇒ ∈ ( ) − =x ; 

    
�2

2 2 2 20 1 1 1 1α α α α α α α α α( ) = + + + + +{ }, , , , , , , .  The table gives 

    
�3 α( ) +, :

  0
  1
α

  α + 1

α 2

  α 2 1+
  α α2 +

α α2 1+ +
  α α2 1+ +

α α2 +

  α 2
α 2 1+

α
  α + 1

  0
  1

  0
  1

α

  α + 1

  α 2

α 2 1+

α α2 +
  α α2 1+ +

α α2 1+ +
  α α2 +

α 2
  α 2 1+

α
  α + 1

 0
 1

0
 1

α
  α + 1

 α 2

  α 2 1+

  α α2 +

  α α2 1+ +
  α α2 1+ +

  α α2 +

  α 2
  α 2 1+

α
α + 1

  0
1

 0
 1

α
  α + 1

 α 2

  α 2 1+

  α α2 +
 α α2 1+ +

  α α2 1+ +
 α α2 +

  α 2
 α 2 1+

α
  α + 1

  0
  1

By the Fundamental Theorem of Finitely-Generated Commutative Groups, this has to be isomorphic to either 
� � �2 2 2× × , � �4 2× , or �8.  Since � �4 8,  have elements of order 4 and 8, respectively, which �2 α( ) does not, 

we must have 
    
� � � �2 2 2 2

20 1 0 0α α α( ) ≅ × × ≅ { } × { } × { }, , , .  
    

�2 α( ) ⋅
*
,  has order 7 so it can only be isomorphic 

to     �7 .
27. Because it is (Theorem 13) of minimal degree.
28.

29. By Theorem 18, 
    
F bb F i

n
i

i
i

α α( ) = +{ }∈ =
−
0
1  where each of the elements are unique, so 

  
F F q

n nα( ) = = .

30. a.
  
x x x x x x x x x x+( ) +( ) = + +( ) = +( ) = +1 2 3 2 2 22 2 3  evaulates to zero for 

      
x ∈{ } =0 1 2 3, , �  so 

    
x x x x x+( ) +( ) + = + +1 2 1 2 13  evaluates to one over   �3 and is therefore irreducible.

b. By Exercise 29, �3
33 27α( ) = = .

31. a. Since   1 12 =  and 
    

p p p p−( ) = − + =1 2 1 1
2 2  there must be at least one element in �p  that is not a square.

b. By (a.), there is an element     a p∈�  that is not a square, so x a2 −  has no zero in   �p  so a is of degree 2 in �p α( ) , 

and by Exercise 30b �p a p( ) = 2.

32. Because if β α∈ ( )F  is algebraic then ∃ ∈ ( ) =p F pα φβ: 0 and then ∃ ′ ∈ ( ) ′ = + −p F p pa aα φ φ β α:  such that 

φ φα β′ = =p p 0, and α  would be algebraic also.  It is clear that ′p  is in fact polynomial also.

33. It is clear that 
      

a b c a b c, , ∈ + ⋅ + ⋅ 
















⊂� �2 23 3

2
 is the simple extension � 23



  described by Theorem 18 and a 

field, and that � �23



 ⊂ .

34. i. Since   8 23= , we look for an irreducible polynomial of degree 3 in   �2 : 
    
x x x x x⋅ −( ) ⋅ + = − +1 1 13 2 .  So 

�
�

2
2

3 2 1
α( ) ≅

[ ]
− +

x

x x
 and �2

32 8α( ) = =  (Exercise 25).
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ii.Since   16 24= , we look for an irreducible polynomial of degree 4 in     �2 : 
    
x x x x x⋅ −( ) ⋅ + = − +1 1 12 4 3 .  So 

      

�
�

2
2

4 3 1
α( ) ≅

[ ]
− +

x

x x
 and 

    
�2

42 16α( ) = = .

iii. Since   25 52= , we look for an irreducible polynomial of degree 5 in     �5.  Since 
   
φ�5

2 3 2 3 4x +( ) = { }, ,  that one is 

irreducible and �
�

5
5

2 3
α( ) ≅

[ ]
+

x

x
 and 

  
�5

25 25α( ) = =  (Exercise 31b).

35. Since F is finite it is of prime characteristic and contains a prime subfield     �p F⊆  (Theorem 6.2.19).  By Theorem 

5.3.1, 
      
∀ ∈ = ⇒ −( ) =− −a a xp

p
p a

p�
*

: 1 11 1 0φ  and algebraic over   �p .

36. By Exercise 35 every finite field can be considered an extension of its prime subfield.  Then by Exercise 29, the 
order of the field is a prime power.

§8.2 Vector Spaces
♥ 1 So, dimensionality does not even enter into the definition of a vector space— the defining aspect is only scalar 

multiplication with a field.  It's almost like a G-set (Definition 3.5.1) except X has to be an actual group and G a 
field.  Note in particular that no relationship between V and F is implied.

♥ 4 This seems profound but is almost meaningless: any superfield can be regarded as a vector space in the same way 
that any field is a vector space.

1. 0 1 1 1 1 0 1 1 1 0 1 1, , , , , , , , , , ,( ) ( ){ } ( ) −( ){ } −( ) − −( ){ } .

2. Since

  

1 0 0 1 1 0 1 0 1 0 1 1

0 1 0 1 1 0 0 1 1 1 0 1

0 0 1 0 1 1 1 0 1 1 1 0

1
2

1
2

1
2

[ ] = [ ] + [ ] − [ ]( )
[ ] = [ ] + [ ] − [ ]( )
[ ] = [ ] + [ ] − [ ]( )
and by Lemma 16, this set of vectors obviously spans   �3.  Since     dim�3 3= , by Theorem 17 this is a basis.

3.

    

− + + =
− + =

− =









⇒

− + =

− + =

− =










⇒
− + =

− =




1 1 2 0
2 3 1 0

10 14 0

2 0

1 0

10 14 0

5 0
5 7 0

4
10
1
5

x y z
z y z

x y

y z

y z

x y

y z
x y

so not linearly independent by Definition 10, and hence not a basis.

4.
  
1 2,{ } .

5.
  
1{ }.

6.
  

2 2 20 3 1 3 2 3, ,{ } .

7.
    
1, i{ }.

8.
    
1, i{ }

9.
  

2 2 2 20 4 1 4 2 4 3 4, , ,{ } .

10. The same polynomial of Example 1.19 has a zero for 1+ α :

    
φ α α α α α αα1

2 2 21 1 1 1 1 1 1 0+ + +( ) = +( ) + +( ) + = + + = + + + =x x .

11. Delete “uniquely.”
12. Correct.
13. Correct.
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14. “independent.”
15. a. true (    ∀ ∈ + ∈α β α β, :V V )

b. false (    ∀ ∈ + ∈a b F a b F, : )
c. true (    ∀ ∈ ⋅ ∈a b F a b F, : )
d. true (    ∀ ∈ ∈ ∈a F V a V, :α α )

e. false (
  
F x[ ]  has an infinite basis, Example 7)

f. false (Definition 15)
g. false (wouldn't be linearly independent)
h. true (Theorem 23)
i. true (idem)
j. true (discussion before Lemma 16)

16. a. A subspace of a vector space V over F is a vector space of a subgroup of V over F with the induced operations.
b. We have to show that the intersection is closed.  Let U,V be subspaces over F:

    ∀ ∈ ∩ + ∈ + ∈ ⇒ + ∈ ∩α β α β α β α β, : ,U V U V U V ,

    ∀ ∈ ∩ ∈ ∈ ∈ ⇒ ∈ ∩α α α αU V a F a U a V a U V, : , .
17.
18.
19.
20.
21. If every vector in V can be generated by the   βi  then they certainly span at least V.  If the zero vector is the sum of 

none of the   βi , and the zero vector can be expressed only uniquely as a linear combination of   βi , then they are 
linearly independent.  So   βi  are a basis.  Conversely, if   βi  are a basis then they span V.  Each vector is a unique 
linear combincation of the   βi , otherwise the difference between two expressions of the same vector would give a 
linear combination of the zero vector and   βi  would not be linearly independent.

22. a. Considering the vector space   F m over F, we have ∀ + = ⇔ + =i a x b xj
n

ij j i j j j: a b, where 

      
a bj j m j m

ma a b b F= …( ) = …( ) ∈− −0 1 0 1, , .  The system has a solution iff   b is in the span of 
    j ja{ } .

b. By the Exercise, every β ∈F m  can be expressed uniquely as a linear combination of the basis j ja{ } .

23. They are naturally isomorphic by their ‘coefficients’.  Let i
n

i=
−{ }0

1 v  and i
n

i=
−{ }0

1 f  be bases for V and   F n , respectively.  

Then         ψ : :V F x xn
i i i i i i→ = + +x v fa  is an isomorphism:       ∀ = + = + ∈x v y vi i i i i ix y V, :

ψ ψ ψ

ψ ψ ψ ψ

x y v v v

f f f v v x y

+( ) = + + +( ) = + +( )( )
= + +( ) = + + + = +( ) + +( ) = +

i i i i i i i i i i

i i i i i i i i i i i i i i i i

x y x y

x y x y x x

and ∀ ∈ = + ∈a F x Vi i i, x v :

ψ ψ ψ ψ

ψ ψ

a a x a x ax

ax a x a x a x a

i i i i i i i i i

i i i i i i i i i i i i

x v v v

f f f v x

( ) = ⋅ +( ) = + ⋅ ( )( ) = + ( )( )
= + ( ) = + ⋅ ( ) = ⋅ + = ⋅ +( ) = ⋅

24. a. ∀ = + = +( ) = + ( ) = +v vi i i i i i i i i i i iv v v vβ φ φ β φ β φβ: .

b. Since by (a.) a linear transformation is completely determined by its action on the basis vectors, the action required 
for the basis vectors specified here suffices.

25. a. homomorphism.
b. The nullspace of φ is the set of vectors     v V v∈ =: φ 0.  To show that     Kerφ ⊆V  is a subspace we have to show that it 

is closed under the induced operations from V:

    
∀ ∈ +( ) = + = + = ⇒ + ∈v w v w v w v w, Ker : Kerφ φ φ φ φ0 0 0 .

c. When it is a homomorphism (linear transformation) with     Kerφ = E .

26. The quotient space V S  over F is the vector space in the group of cosets of S in V over F, with scalar multiplication 
by representatives in V.  The coset group exists by Corollary 3.2.5 and is clearly commutative.  Show that the five 
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conditions of a vector space hold:   ∀ ∈ + + ∈a b F S S V S, : ,α β :

(1)
  
a S a S V Sα α+( ) = + ∈ ;

(2)
  
a b S a b S ab S ab S⋅ ⋅ +( )( ) = ⋅ +( ) = + = +( )α α α α ;

(3)
  
a b S a b S a b S a S b S a S b S+( ) +( ) = +( ) + = +( ) + = ( ) +( ) + ( ) +( ) = ⋅ +( ) + ⋅ +( )α α α α α α α α ;

(4)
  
a S S a S a S a a S a S a sα β α β α β α β α β+( ) + +( )( ) = +( ) +( ) = +( ) + = +( ) + = +( ) + +( ) ;

(5)
    
1 1α α α+( ) = + = +S S S .

27. a. We know that φ is a homomorphiosm so that operations under φ coincide with the ones induced from   ′V .  We 
need to show that   φV V⊆ ′ is closed:

    
∀ ′ ′ ∈ ∃ ∈ = ′ = ′ ⇒ +( ) = + = ′ + ′ ∈α β φ α β φα α φβ β φ α β φα φβ α β φ, : , : ,V V V .

b. Let 
  i iα{ } be a basis for     Kerφ ⊆V .  To this basis can be adjoined   dim dim KerV − φ  vectors to form a basis for V.  

Since     ψ φ φ: KerV V→  is an isomorphism, we have   dim dim dim Kerφ φV V= − .

§8.3 Algebraic Extensions
So we have two ways of determining the degree of an extension: by the order of the basis, and by the degree of the 
irreducible polynomial.

1.
    
deg :� �2 2











= , so by Theorem 2.23 , 2 20 2 1 2,{ }  is a basis for � 2



 .

2.
  

2 20 2 1 2,{ }  is a basis for � 2



  over �.  It is ‘clear’ that   3  cannot be axpressed as a linear combination of this 

basis, so 3 30 2 1 2,{ }  is a basis for 
    
� 2 3,



  over 

    
� 2



 .  By Theorem 4, 1 3 2 61 2 1 2 1 2, , ,{ }  is a basis for 

    
� 2 3,



  over   � and 

    
� �2 3 4, :











= .

3.
    

18 3 2 2 3= ∈ 



� , , so from Exercise 2, 

    
� �2 3 18 4, , :











=  and 1 3 2 61 2 1 2 1 2, , ,{ }  is a basis for 

    
� 2 3 18, ,



  over   �.

4.
  

2 2 20 3 1 3 2 3, ,{ }  is a basis for 
    
� 23



  over �.  Since 

  
deg ,3 2�



 =  does not divide 

  
deg 2 33



 = , 

    
3 23∉ 



�  

and by Theorem 4, 
  
1 2 2 3 2 3 2 31 3 2 3 1 2 1 3 1 2 2 3 1 2, , , , ,⋅ ⋅{ }  spans 

    
� 2 33 ,



  over �.  Since this set is linearly 

independent, it forms a basis, and � �2 3 43 , :











= .

5. 2 20 2 1 2,{ }  is a basis for 
    
� 2



  over   �.  

    
deg ,2 33 �



 =  does not divide 

  
deg ,2 2�



 = , so 

    
2 23 ∉ 



� .  So 

  
2 2 20 3 1 3 2 3, ,{ }  is a basis for 

    
� 2 21 3 1 2,( )  over 

    
� 21 2( ) and by Theorem 4, 

  
2 2 2 2 2 20 6 2 6 4 6 3 6 5 6 7 6, , , , ,{ } is a 

basis for � 2 21 3 1 2,( )  over   �.  Try to simplify the basis.  2 2 27 6 1 6= ⋅ , so 2 2 21 6 1 3 1 2∈ ( )� ,  and 

    
� �2 2 21 3 1 2 1 6,( ) ⊇ ( ) .  

    
φ1 6

6 2 0x −( ) =  is an Eisenstein polynomial for p = 2 and irreducible over �, so 

    
� �21 6( ) ⊃ , and 

    
� � �2 2 21 3 1 2 1 6,( ) ⊇ ( ) ⊃ .  Then

    

� � � � � �

� �

2 2 2 2 2 2

6 2 2 2 6

1 3 1 2 1 3 1 2 1 6 1 6

1 3 1 2 1 6

, : , : :

, :

( )





= ( ) ( )





⋅ ( )





= ( ) ( )





⋅

and 
    

� �2 2 2 11 3 1 2 1 6, :( ) ( )





= , so by the discussion after Definition 2, 
  
� �2 2 21 3 1 2 1 6, :( ) ( )




.  So 
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� �2 2 61 3 1 2, ,( )





=  and 
    0 6

62≤ <{ }i
i  is a basis.

6.     x x x= + ⇒ − + =2 3 10 1 02
Exercise 8.1

.  
  
1 2 3, +{ } is a basis for 

  
� 2 3+



 , and 

  
� �2 3 2+











=: .

7.
  
1 6,{ } is a basis for 

    
� 6



 , and 

    
� �6 2











=: .

8. Analogous to Exercise 4, 0 2 0 3
2 32 5≤ < ≤ < ⋅{ }i j

i j
,  is a basis for � 2 53,



 , and 

    
� �2 5 63, :











= .

9.   24 2 63 3= , so � �2 6 24 2 63 3 3 3 3, , ,



 = 



 .    6 2 33 3 3= ⋅ , so � �2 6 2 33 3 3 3, ,



 = 



  (¿why?).  Then 

    0 3 0 3
3 32 3≤ < ≤ < ⋅{ }i j

i j
,  is a basis for 

    
� 2 6 243 3 3, ,



  over  �, and 

  
� �2 6 24 93 3 3, , :











= .

10.
    
� �2 6 2 3, ,



 = 



 , so 

  
1 2,{ }  is a basis for 

  
� 2 6,



  over 

    
� 3



  and 

    
� �2 6 2, :











= .

11. 2 3 3+ ∉ 



� , so 2 3∉ 



�  and 

  
2 20 2 1 2,{ }  is a basis for � 2 3+



  over   �, 

    
� �2 3 2+











=: .

12. By Theorem 4,

    

� � � � � �

� �

2 3 3 2 3 2 3 2 3 3

2 2 3 2 3 2

, : : :

:



















= +



 +











⋅ +

















= +



 +











⋅

so � �2 3 2 3 1+



 +











=:  (?!?)

13. 2 3 5∉ +



�  but 6 10 3 5 2+ ∈ +



� , , so 2 20 2 1 2,{ }  is a basis for � 2 6 10, +



  over 

    
� 3 5+



 .

14. “is a field E where each element of E is”
15. “to a basis for F”
16. Correct.
17. “nonconstant polynomial over F”

18.   ��  (the algebraic numbers) are real elements such as   2  that have polynomials in 
  
� x[ ]  such as     x 2 2−  with those 

elements as zeroes.  However, 
    
�� x[ ] has polynomials such as x 2 1+  with imaginary roots that are not in �� .

19. a. true (Theorem 3)

b. false (the extension of   � containing all powers of π , 
  
�π[ ] , is algebraic and infinite)

c. true (Theorem 4)

d. false (
      
x x2 1+ ∈ [ ]�  has no zero in   � )

e. false (
      
x x2 2− ∈ [ ]� , but the root 2 ∉� so  � �� ⊃ )

f. true (the only elements of 
    
� x( ) that are algebraic in   � are   � itself; for example,   x − 1 has no root in 

    
� y[ ])

g. false (the polynomial 
      

x y x x y+( ) + ∈ ( )[ ]1 �  does not have a root   y )

h. false (Theorem 17)
i.
j. false (  � is an algebraically closed extension of  �, but π ∈�  shows that   � is not an algebraic extension of   �)

20. Since     a bi+ ∉� , 1,a bi+{ }  is a basis for � a bi+( ) over   �  and 
   
� �a bi+( )[ ] =: 2 .  Similarly, � �:[ ] = 2, so 

      

� � � � � � � �
� �

� �
: : : :

:

:
[ ] = +( )[ ] ⋅ +( )[ ] ⇒ +( )[ ] =

[ ]
+( )[ ] = =a bi a bi a bi

a bi

2
2

1.  So � �= +( )a bi .
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21. Since   E F⊇  is a finite extension and 
    
E F:[ ] is prime,  E  is a simple extension of   F , 

    
∃ ∈ = ( )α αE F E F\ : .  Consider 

  
F α( )  for any     α ∈E F\ .  Then 

 
1,α{ } is a basis for 

 
F α( )  over   F  and 

    

E F E F F F E F
E F

F F
E F: : : :

:

:
:[ ] = ( )[ ] ⋅ ( )[ ] ⇒ ( )[ ] =

[ ]
( )[ ] = [ ]α α α
α

1
2

 which is impossible because 
    
E F:[ ] is prime, so 

    
E F:[ ] = 2  and 

    
E F: α( )[ ] = 1 so 

  
E F= ( )α  is simple.

22.     x 2 3−  has roots 
    
± ∉ 



 ⊂3 23� �.

23. Every root increases the degree of the field by a factor of 2, so 
      

� �i
n

i
np











=: 2 .  Since a zero of     x x14 23 12− +  

has degree   14 2 7= ⋅ , which does not divide     2n , there is no element of 
    
� i

n
ip



  that can be such a zero.

24. Since   E  is a finite extension, by Theorem 11 
    
∃ = ( )α αi i iE F: .  Let     g h D E g h, ; ,∈ ⊆ ≠ 0, so 

g g h hi i i i i i= + = +α α, .  Since g h, ≠ 0  and the extension is finite, there are maximal   ∃ ≠j k g hj k, : , 0 , so 

    g h g hi j i j
i j⋅ = + +

, α .

25. Since 3 7∉ 



� , 1 3,{ } is a basis for � 3 7,



  over � 7



 , so 

    
� �3 7 7 2, :

















= .  Now consider:

x x x x x

x x x x x

= + ⇒ − = ⇒ −



 = ⇒ − + = ⇒ − =

⇒ −( ) = ⋅ = ⇒ − + = ⇒ − + =

3 7 3 7 3 7 2 3 3 7 4 2 3

4 4 3 12 8 16 12 8 28 0

2
2 2

2
2

4 2 4 2

so deg ,3 7 4+



 =�  and � �3 7 4+











=: , so

    

� � � � � �

� �

� �

3 7 3 7 7 3

4 3 7 7 2

2 3 7 7

+











= +

















⋅ 











= +

















⋅

= +

















: : :

:

:

Then:

    

� � � � � �

� �

� �

3 7 7 3 7 3 7 3 7 7

2 3 7 3 7 2

1 3 7 3 7

, : , : :

, :

, :



















= 



 +











⋅ +

















= 



 +











⋅

= 



 +











26.

27. A zero β  of an irreducible p  is of degree deg , degβ F p( ) =  and 
    
deg , :β βF F F( ) = ( )[ ].  But E F F⊇ ( ) ⊇β , and so 

    
F F pβ( )[ ] =: deg  would not divide E F:[ ], which is impossible by Theorem 14.

28. If α  is of degree 1,     α α, 2 ∈F  and 
    
F F Fα α( ) = ( ) =2 .  Suppose n is of at least degree 3.  By Theorem 2.23, F α( )  

has basis 
    i

n i
=
−{ }0

1 α , where 
    
n F= ( )deg ,α .  Since 2 is relatively prime to  n, 2 generates     �n  by Corollary 1.5.18 and 

i
n

i

i
n i

=
−

=
−( )








= { }0
1 2

0
1α α  and 

    
F Fα α2( ) = ( ) .
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