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Abstract Algebras
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+ binary operation

binary algebraic structure

+ associative binary operation

\
semigroup

+ identity
\J

monoid

+ Inverse

\

group

+ finite order + commutative operation

finite group commutative group
+ prime order + generator

M

symmetric group cyclic group

+ prime order

y

alternating group prime order group

Glossary

: reads as “so that”

+i5 summation, multiplication over ¢
G ordered, unordered set over 2
AV, <> scalar operators

N,U,C, D set operators

=, congruent modulo #»

N is normal to, is ideal to
fx function application f (x)
commutative group abelian group

maximal p-group Sylow p-group
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Preliminaries
proving theorems
set
precision?
definition
A triangle with vertices P, Q, R is the collection of points X such that
e X is in the line segment PQ, or
e X is in the line segment QR, or
e X is in the line segment RP.

An equilateral triangle is a triangle with vertices P, Q, R such that the length of the line segment PQ equals both
the length of the line segment QR and the length of the line segment RP.

A right triangle is a triangle with vertices P, Q, R in which the two line segments through one of its vertices (say PQ
and PR) are such, that for any point X on PQ there is no point Y on PR such that the length of the line segment XY
is less than the length of the line segment XP.

The interior of a triangle is the collection of points X such that the line segments XP, XQ, XR from X to its vertices
P, Q, R have only the vertices in common with the triangle.

A circle with center C and radius 7 is the collection of points X such that the length of the line segment XC equals
7.

A disk with center C and radius 7 is the collection of points X such that the length of the line segment XC is less
than or equal to 7.

Define the relationship between PQ and PR in 7. to be aright angle. Then, a rectangle with vertices P, Q, R, Sis
the collection of points formed by the four line segments PQ, QR, RS, SP, where PQ is at a right angle to QR, QR to
RS, RS to SP, and SP to PQ.

Let # and m be even integers. Then by (2), there are integers p, g such that n=2p, m =2g. Then n+ m =2p + 2¢g
=2(p+ q), 80 n+ miseven.

Let n, m, p, gasin 12. Then nm=2p - 29 = 4pq. Since pq is an integer, 4pq is an integral multiple of 4.
Define an odd integer m to be an integer such that there exists another integer » such that m =2z + 1.
Let » be an even integer and s an odd integer. Then there are integers p, gsuch that » =2p, s=24+ 1. So 7+ s=

2p+2q+1=2(p+q)+ 1,507+ sis odd.

counterexample

ABFGM,CDJ,EHKN, I L, O.

1,2,4,8,16, 31 (the conjecture is false).

Suppose that 7 is the square of an odd integer 2 Then
JieZ:h=2l+1=i=k>=Q2[+1)> =4/ +4/+1

Since ¢ is also even,
JjeZ: i=2j= 4P+4l+1=2j = 2°+2+1=je7Z

which is a contradiction, so % cannot be odd. Since %2 must be even,
JeN: k=2l= i=k=2)%=4"

so ¢ is indeed an integral multiple of 4.

Let # =0, then (n+3)> =32 =9%9.

Let ”” +2=3= #n’=1= n=-lva=+1,s0 nis not unique.

Let n=2= n’>+4=2"+4=8.

Let n=3= n’+5=3>+5=14.

Let n=-3= #n?>+5=(-3)2+5=14. With 22., # is not unique.

Let =0: n?’>n< 0% >0, which is a contradiction.

Let neNn <0= n>0= n2>0>n.

2
Let x = % = xlcxe (%) < % = % < =, which is a contradiction.

1
2



27.
28.

29.

30.
31.

32.

33.

34.

§0.2
vl17.

A e

Let n=2: w’>ne 2°>2< 4>2.

n=0 n’=ne 0°=0c 0=0 . )
LC'[ 5 12 1 1 1,SO X 1S not umque.
n=1 n" =ne =1« =

Let j be an odd integer, so
ke Z: 5 =2k+1

=% =(2k+1)?

=4k* +4k+1

=k +keN
IJmeN: n=3m+1,s0 n? =(3m+1)2 =9m2+6m+1=3(3m2+2m)+1,and 3m* +2m is integral.

Let n=-2: nd<ne (2P<2< -8<-2.

Let n=-2,m=1: (2)2 :(%)2 = (<22 =4+¢1.

2
(i) <%:>(m=0) n<nm=m<0) nxm= ntm.

. Soletm=-1and n =-2:

(l)3<(l)2:>{m20: ' <mn® = n20) n<m= n<m
m m

m<0: w*2mn’=>m=0) n2m= ntm

(l)s < (%)2 = (‘—2)3 < (_—i)z = 8<4, which is a contradiction.

m -1

Sets and Relations

An equivalence relation ~ extracts a property from the whole identity of its arguments and asserts the equality of just
this property: equivalence is property equality. For example, ‘congruence modulo’ = asserts equality of the
remainder under division.

(x eR|x2 =3 = {43, +43)

meZ|m*=3=0

{m eZ|mn =60 forsome nez}==4l,2,3,4,5,6,10,12,15, 20,30}
{m eZ|m*—m <115}. Solve the inequality:

m?—m=115= m?-m-115=0=

1) -4 1-115 12414460 ‘

” 21 2
=1(1++461)~-102,11.2 S (1-v461) 0 T+ V461)

so me{-10,-9,...,10,11}.

not a set

%)

%)

Q

Q

{% |m e Z}

{(ﬂ>1), (ﬂ,Z), (ﬂ>£)> (b’l)a (b,2), (b>£>> (Cal)) (C>2>> (C,C>}
function one-to-one onto

a. yes no no

b. yes no no

no



d. yes yes yes

e. yes no no
f. no
13. Map xto y(x).
P
A \ B
X
C D
|y

14 a. f:[0,1] >[0,2]: x> 2x
b. f:[1,3]—>[5,25]:x.—>(x—1)§+5

c. filabl—>e,dl: x> (x—a) +c

b—n

15, f:8— R:x s tan(ar —37)
16. 2. 2@)=02, |2@)=]
b. 2({a)) = {2, lal}, |P(la})|=2
c. 2(la, b)) ={@,1a), 10, la, 0}, |P({a, b))] = 4
d. 2({a, b, c)) = {2, {a), (0}, a, 0}, ), (@, €], 16, b, la, b, ), |2(la, b, )] =8
17. Conjecture [P(A)= oM,
Let A be a series of sets such that |A | = »,and A, c 4,,,.

. l2(40)|= |7@)|=1.

«  Letlr@,)=2""

There is s5,,., ¢ A, such that A,,, =4, Us,, . Consider the set
Al = UPgAn Py (Pu{xn+1})

Since every element of A, is a subset of A A, cP(A,,)-

n+l>
Every subset Pof A, either does or does not contain s, ;:
s,meP= PcA,= Ped,
seP= P\[,lcd, = Ped
s0 P(A4,,,)C A

So P(4,,1)= A}, and [P(4,,)|=2-[p(4,)|= 2.2 = 21T = ol
18.  Let (f:A— BjeB".
. For each subset P < A, there is a corresponding function
agP:0
tA—>Ba-
fr {a elP:1

Let there be two such subsets P, P’ c A such that f = fp. Then Vae A:

neP= fpla)=fp@)=1= aecP'; negP=..=a¢l
so P=D".



Conversely, for each function f € B there is a corresponding subset Prc A:

p={acd|f=1}.
Let there be two functions £, £’ € B* such that Py =P, Then Vae A:

= P‘ ’ =
Jr@w=0_ Jaer _|fw=0
fla)=1 ael Fla)=1

so f=f".
So, Pp: B* - P(A) is a bijection, and ‘BA

= |7(4)).
For every element of A there is a distinct singleton subset containing just that element, which is an element of P(A)

. @ is not such a singleton set, yet is an element of P(A4). So |’P(A)| > |A| .

Let A be such that |A| =X. Then the power set of A has |EP(A)| >, and ‘EP(T(A))‘ > |T(A)

, ad infinitum.
a. It is possible to define addition in N in terms of the union of disjoint sets, so

243=5< |4=2,|B=3,]auH=5.
*)

i 3+x =fofuz7| = 27| =%, where () ¢:Z" 5 {0}uZ" mis m-1.

(*) dd: 1 -1 -1—'L
ii. N0+N0=(Z+—%)UZ+ :|Z+|:N0,where(*) ¢2Z+%(Z+—%)UZ+:WLH "o zl(m ) 2
meven: Zm

b. It is possible to define multiplication in N in terms of a Cartesian product:
2-3=1, 2 (1, 2, 3}|=6, 50

fig 14

7" x 7" 7"

NQ'N(): Zxo.

10’ digits, 10° digits. By extrapolation, 10%° would equal the number of digits of the form 0.###..., where ‘¥ is
repeated X, times— name this set R. Since any number in R’ = {x eR|0<x < 1} can be expressed arbitrarily

precise by an element of R, R R. Since Rc R’, R=R’. By Exercise 15, R’| =X, so |R| =X and 10% =X,

Similar arguments can be made in terms of duodecimal and binary expansions of numbers of R’, so 12% =2% =g,
Since

a7) 1) 19)
oz = M =2 = x|z :|(0,1}Z

The next higher cardinals after X are
N= |{0, 1}Z| = {0, 1} exp Z,

I(O, 1}{0’ 1’ | = {O, 1} exp {O, 1} exp Z

et cetera.

xRy=3ix,ye P, =y,xe P = yRx (symmetric)

xRy o Jiixe P, & xe§ (reflexive)

xRyanyRz=3ux,yel, Adjiy,zel;
= (P disjoint = ¢ = j) Ji: x, ¥,z € P, (transitive).
=yRz

not reflexive because 0-0»0=0R0

not symmetric because 2>1,122=2R1,1R 2.



31. R is a relation, because

|x|=|x| xRx R
|x|=|y|=>|y|=|x| =3ixRy=yRx

|x|=|y|’\|9’|=|x|:>|x|=|2| xRyryRz=xRz

|0—3|=3ss, |3—6|:3S3, |O—6|:6;<_3:
0R3, 3R6, ORG6

32. so R is not transitive.

33.  The number of digits of # € Z" is base 10 notation is 1+ llolog nJ Obviously R is reflexive and symmetric, and

transitive.

R

0 10 100

34.  Ris congruence modulo 10 on z.
35, a.{1,3,5,...},{2,4,6,...}

b.{1,4,7,...},{2,5,8,...},{3,6,9, ...}
c. {1,6,11,...},{2,7,12,...},{3,8,13, ...}, {4, 9, 14, ...}, {5, 10, 15, ...}
36a.
VrelZ: r—-r=0=0-n=r~7
Vr,s,w ~s: 3dgqe Z: V—:=qn:>s—r=—(qn)=(—q)n:>s~7f
Vrs,tyr ~s,s~t: Ap,ge Z: r—s=pn,s—t=qn
r—s+s—t=pn+qn
r—t=(p+qn=>7r~t
b. Vr,seZ*w~s: Jgqel: V—qun:(nel)y_szg—%zq
Jr),s, €lZ,v),s eN: v=rn+r) s=sn+s",0<r"s" <n
r—s=qn
oAy — S — Sy = qn
(V,;—s,;)n+(r,;’—y’,;)=qn
V;,—x,;+(yn_xn)— A 02T g
n n
Since 7, ,s, eN,ge Z, ”; 2=0 =)-s)
c.

§0.3 Mathematical Induction

1. Prove that + %= M
i=l.n 6
n=1 12 :M:ﬁzl

6 6



n(n+l)(2n+l)+6(n2 + 2n+1)

| n+l)(2n+1) ,

n+l:  + i*= + i2+(n+1)2= (

‘ 1 4 +n +2n+1= p
1...n+ 1...m
=n(2n2+3n+1)+6n2+12n+6=...=(n+1)(n+2)(2n+3)
2 2
Prove that _F i’ = z (n4+1) mel”.
o :12(1+1)2 e
4 4
2 2
n+l: 1...-;+1i3 =+ i +(n+ 1)3 _ (n4+ 1) +(n+1)(n+1)2

nz(nz +2n+ 1) + 4(n+ 1)(%2 +2n+ 1)

_ nt 4203 +n? + 40P +8n’ +4n+4n’ +8n+4
4 4

_ n*+6n° +13n” +12n+4 (n+l)2(n+2)2

1 =... 1
Prove that + (21' - 1) =n?

i=l..n

n=1 1=1°

n+l: + (Zi—l): + (2 1)+2(n+1)—1:n2+2n+1:(n+1)2

i=1l..n+1 i=i..n

"
nelZ".

Prove that +
i=1.. nl( ) n+1l’
1_
2

1 1

=k 1(1+1)_ T1+1 =2
n+1l: + 1 = + 1 + 1 __" + 1
i=1-~-n+1i(i+1) i:1~--nz'(i+1) (n+1)(n+2) n+1 (n+1)(n+2)
3 ”(”"’2)"‘1 ot 42n+l (”+1)2 _n+l
_(n+1)(n+2)_(n+1)(n+2)_(n+1)(n+2)_74+2
no ﬂ(l—zf’”l)
Prove that Vay eR,7r#1,ne R : A ar’ = T
n=1 u+m/=ﬂ(l_yz)=ﬂ(1_7)(1+7)=u(1—7)
1-7» 1-»
wel om ﬂ(l—af””) ﬂ(1—7”+1)+(1—7)mf"+1
n+ls +ar'=+ar' + " = +ar"tt =
i=0 i=0 1-7» 1-7
1- n+1 (1 7/') il 1_Vn+1+7,n+1_1/,n+2 ﬂ(1—7n+2)
=a =a =
1-7 1-7» 1-7»

max is only defined on Z", so max(; —1, j —1) is undefined.

the concept ‘interesting property’ is not well defined
Complex and Matrix Algebra

(2+3i)+(4+5i)=6+2i.
i+5-3i=5-2i.
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5+7i)—(3—2i)=2+5i.
1—3i)—(4+2i):5—5i.

B ’)(1—6i)_7—42i—5z'+30z2
146 (1+6i)(1-6i) 1-36

= 3—15(—23 - 47;‘) .

1 i(l—i) i—i? _i+l

1= -7) ——(i—i2)=—1—i.

L i(3+i)1+2d)  (3i-1)(1+2i - ,
Y 5.(1—2i))((1+2i;:%( 12—)(41'2 )=%(—1+32—21+612)=$(—7+z).

sazi (3eri-i)ees) (3—3i+7i—7i2)(2+3i)
(1+4)(2-3i)  (1+4)(1-d)(2-34)(2+34) (1-;'2)(4—9;'2)
(10+4i)(2+3i) (5+2i)2+3i) 10+15i+4i+6:" _4+19

2-13 13 13 13
(1—i)(2+i)_ (1_5)2(2+,’)(1+2¢') _(1—2i+i2)(2+4i+i+2i2)__21..51-__1-2

(1-2i)(1+i) (1-2i)(1+2i)1+i)(1-4) (1_4¢2)(1—z2) T 52 1

|3—4¢|=5.

6+ 4= 23+ 24]= 29 +4=2413.

[3-4i=5 :3—4z’=5(é—i )

5 5
|—1+i|:\/5 :>—1+i:x/5[—i+i%]=\/5(—l 2+li\/5).
22 202
|12+5i|=\/144+25=\/"@=13 :>12+5i=13(%+%i).

|3+5i]=19+25 =36 =6 = -3+5i=0-1+%i).

n i)
)

-1
; ; -1 ; ; . ..
z =1z, = = zl/zz =z,2; =ne? -(Vzetez) = . So z,/z, is the point in the complex

point at the end of a line from the origin with length 7 /7, and angle 6, -6, from the positive x-axis.



27.

28.

. \4 .
241 =>(7319) =1" =r=1,46=,0 =r=10=,0 =ze{li-1-i}
2
4 .
z4:—1 :>(ng0) =1e" :}7/’:%/1)40:2” i :>7"=1,6:l”i7f
2

Ly iy 1y i1y 1y _1:09 1. /7 1
=>ze{3w2+zz 2, 2N2+z2\/5, SN2 21N2>2\/5 2“/5}

§1.1 Binary Operations

1.

10.

11.

12.
13.

b*ﬂlZB,E*tzb,((VL*C)*E)*VLZ(C*B)*VLZPL*PL:VL.

(ﬂ*b)*EZb*EZPL
, 80 * could be, but is not necessarily, associative.
ﬂ*(b*t)zﬂ*azﬂ
(b*pl)*c=e*c=//z
, SO * is not associative.
bx(dxc)=brb=c

no, because exb#b*e.
*la b a

WD R
WD R
SR XN
™ W DS

*

O RN
S RN ™

AR TN WY

ST

a
pl*n:(c*la *ﬂzc*(b*ﬂ)zu*hzﬂl,
d*b=(£*b)*b=£*(b*b)=t*ﬂ=c,
dw:(C*b)*ﬁq*(b*c):ﬁ*g:g,

ded=(cxb)sd=cx(bxd)=cxd=d.

a
¢
b
a
a
a
da
a
a
)

1#0=1-0=1, 0*1=0-1=-1, (ﬂ*b)*ﬂZ(ﬂ—b)—l:Zﬂ—b—C, ﬂ*(b*c)=ﬂ—(b—c)=ﬂ—h+l:,so*iS neither
commutative nor associative.

Let Va,b € Q: a*b=ab+l=ba+1=b%a, (0*0)*1=(o-o+1)-1+1=2, 0*(0*1)=0~(0~1+1)+1=1,so*
is commutative, but not associative.

Vab eQ: ﬂ*bZ—;ﬂbZ%bﬂZb*ﬂ, Vab,ceQ: (ﬂ*b)*tz%(—lﬂb)c=—;ﬂ(lbc)=ﬂ*(b*c),so*is
commutative and associative.

Let Vab eZ: axb=2"=2"=bxa, then 0%(0%1)=2"2" =2°=1 and (0%0)*1=22""=2"=2 50 *is

commutative, but not associative.

3? 2
152=12=1; 2%1=2'=2 and 2*(3*2):2( ) =2, (2*3)*2:(23) — 2550 * is neither commutative nor
associative.
1; 22 =2t = 16; 33 =3%= 19683; n" ; the table defining * has n* entries, each having # possible values.
1. — 1. - 1 -
1, 22 221 =2'=2; 3> 3(3-1) =3%=27, nln(n 1); the table defining commutative * has %n(n— 1) entries, each

having # possible values.



14.

15.
l6.

17.
18.
19.
20.
21.

22.

23.

A binary operation on a set § is commutative if and only if for all 2,5 € §:

well defined
Correct the last part to read “a,b € H”.

Cl good; 1¥2=1-2=-1€Z",so C2 is ill defined.
Cl, C2 good.

Cl1, C2 good.

Cl1, C2 good.

Cl1 is not well defined, C2 is good.

Clgood; 1#1=0¢ Z", so C2 is ill defined.

c

axb=b*a.

vm=|* YNzl em
-b a —d
L b R —d _| ate —-b—d cH
-b a -d ¢ -b—-d a+c
a =b c —d a-c—b-—-d a-—-d-b-c ac+bd  —ad—bc
b. . = = eH
-b al|l|l-d ¢ —-bc+a-—d -b-—d+a-c —ad—bc oac+bd
a. false; b. true; c. false; d. false; e. false; f. true; g. true; h. true; 1. true; j. false.

Let * be addition and *' subtraction on the set of colors {K, R, G, B, C, M, Y, W} (black, red, green, blue, cyan,
magenta, yellow, and white).

+ KRGBCMY W |- KRGBCMTW
K| K K/IK K KKKXKK K]
RIR R RIRKRRRKKK
GIGY G G GGKGKGKK
B/BMCB BB GB KKK B K|
ccwccc ClCCB GKGB K]
MMMWMWM MMB MR R K B K
NrYrYrYy wwwry YYYRYRGKK
WWWWWWWWW WWWWWWWWW

(o2 8)e )=o) )=(a)e )=+ )

Let S be a set with single element s.
A binary operation * on S always maps its operands to s, so * must be associative and commutative.
Let * be the binary operation defined by the table. Then

(h*ﬂ)*ﬂ=1z*ﬂ=b and b*(ﬂ*ﬂ)=b*b=ﬂ,so * is not associative.

*la b

alb a

bla a
Let f,g4,heF. Then Vx € R:

(7))o} + ) +5) = o))
= f(x) (b)) = (s + (g 1))(x)

Let f:R>R:x— 0, g:R>R:x 1, then

(£-4)0)=£(0)-5(0)=0-1=-1

(5~ £)(0)= 4(0) - £(0)=1-0=1

SO — Is not commutative on F.
Let f:R—> R: x> 1, then

, SO + is associative on F.



32.
33.

34.

35.

36.

37.

38.
39.
40.

41].

42.

(0= £)=r o)== £)0)- 1 (0) = ((0)- £(0)) - £(0) =(1-1) -1 =1
(£ = =)o) =£(0)=( = £)0)= £(0)= (0] (o)) =1-1-1) =

Vf,geF,xeR: | fg)(xj = f(x)- a(x) = a(x)- £(x) = (ar (%), so multiplication is commutative on F.
For Vf,geF,xeR,

((@)p))= (1)) 1) = (£ () () - 2le) = £ () () () = () (98) () = o () (),

so multiplication is associative on F.

Let f:R>R:x—> x+1, g:Ro>R:x > x7, then

(r-0)0)=(oft) - ()2

(927 )0)= ol 1) - of2)-

SO concatenation is not commutative on F.
Let x=+, *"=., §=R. Then
1#(0%3)=1+(0-3)=1+0=1

(1%0)# (1%3)=(1+0)-(1+3)=1-4=4
so the property does not hold.

For Vh,h' e H:

* associative b commutative * associative * associative

(pen)ex = mx(bxx) = (Wex)eh = (wek)xh = Bx(hx)

For Va,be H:

(ﬂ*b)*(ﬂ*b)z(ﬂ*b)*(b*ﬂ)Z((ﬂ*b)*b)*ﬂZ(ﬂ*(b*b))*ﬂ
=(a*b)*a=(b*a)*ﬂ=b*(ﬂ*ﬂ)zb*ﬂzﬂ*b

so a*be H.

(deposit deposit) talk (deposit press press) = (deposit deposit deposit press) talk (press)

“(” doesn't affect whatever symbol is next on input.
a,c

a,c b

11



43.

44.

45.

§1.2
1.

0 1
50| s0 sl
sl| s0 s2
2| s0 s2

a b ¢
s0| s0 s0 sl
sl| sl sl s2
2| s2 s2 52

Isomorphic Binary Structures

e ¢ is a surjection and injection (bijection)
* Vs, tesl: q)(s* t)z Ps* Pt .

VmeZ: Inel: n=-m= ¢n=-n= —(—m) = m (surjection)
Vu,ny€l: ¢n=¢n, = —n =—ny,= n =n, (injection)
Y, ny: d)(nl + 742) = —(nl + nz) = (—nl) + (—nz) =¢ny + On,
leZ,Bne Z: ¢n=2n=1,s0 ¢is not surjective.
For Vuy,my,e Z,

¢(nl+n2)=(n1+n2)+1:nl+n2+1
¢n1+¢n2=(n1+l)+(n2+1)=nl+n2+2
so @ is not an isomorphism.
VyeQ: IxeQ: x=2y=> ¢x=%x=%-2y=y(surjection)
Vxy,x,€Q: ¢x)=0¢x,= %xlzéxzz X1 = &, (injection)

1 1 1
Vxy,x,€ Q: ¢(x1+x2)=3(x1+x2)=3x1+3x2=¢x1+¢x2.
1e Q,Ave Q: x?=-1,s0 @ is not surjective.

3
VyeR: IxeR: x=3y = q)x:xs:(%/;) =y
Vx1,x, € R ¢xy=¢x, > x13=x23: X=X,
3 3 3

Vxi,x, € R: ¢(x1-x2)=(x1x2) =X Xy =0x1-0x,

0 O 0 O
0 O 1 0

VyeR: IXeMR: X :[y] (surjective)

= =0, so ¢ is not injective.

b
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10.

11.

12.
13.

14.
15.

16.

17.

18.

19.

20.
21.

22.
23.

lon

=

VX1,X, e MiR: ¢X,=0¢0X;, = |X|=|X2|=> X]=Xx,= [xl]z[x2]=> X =X, (injective)
VX, X, e MiR: ¢(X, - X;) |X1X2| [xl le |[x1x2]|=x1x2=|x1|-lx2|=¢X1~¢X2.

200 210y
VyeR": IxeR: x=llhy= ¢x=05"=05 "' =2 ™

=y (surjective)
Vxi,6,€R: ¢xy=¢x,= 05" =05""= «x;=x, (injective)
Va,x,e R o(xg +x,) =052 =0.5%.0.5% = gy - g,

x ’

Jale)as= (o)) =)o) ={ ) e (s) o

0

VgeF: 3f eF: f(x)

Vinf2€F: ofi=0fh= VxeR: fi(x) =1 (x)= (A0 = 20)=0) fi(x)=filx)= fi=1
Vi freE o(fit f)=(fi+0) = A+ £ =0 +of

fieFxsx®, fyeFama® f(0)=(2x)0)=0, f2,(0)=(3x2)(0)=0,so¢isn0tinjectivc.

VgeF: If eF:. f=4

UfifreFr ofi=gf= Vx eRilof)) () (¥) = VreR: [ fil)dr=[ ra)dr= fi-rp
VfifreFe (A fo)x)= [ (A o)) de= [ Ale)are [ po(e) de= 0+ 08

(of)(x =—jf t)de = f(x)

Vf,f,eF: VxeR: q)(flfz)(x) :x(flfz)(x):xfl(x)fz(x) , SO ¢ is not an isomorphism.
(8£1-0f2)(x) = (0F 1)) (92 )(x) =2 fi(x) 2 fr(x)

Vm,eZ: dAmyel: ¢m;=n;= m;=n;—1

ny, k¥ ny=Qm, * om, =¢(m1m2) =mym, +1= (”1 —1)(742 —1) +1

le)z el : ¢(m1*m2)=¢m1+¢m2:> (ml*m2)+l =m1+1+m2+1:> ml*m2=m1+m2+l

m;ed: Im;eld: ¢m;=n,= wm;+l=n,= m;=n,—-1

)k ny = Qm, * gm, =¢(ml~m2) =mym,+1= (”1 —1)(n2—1)+1

Vmy eZ:(j)(ml *m2)=¢ml-¢m2=> (ml *m2)+1= (ml +1)(m2+1): my * my :(ml +l)(m2 +1)—1.

Vy,eQ: dx,;€eQ: ¢x,=y,= 3x,-1=y,=> 3x,=y,+1
Y1 FY,=0x ) * P, = ¢(x1+x2)=3(x1+x2)—1=(y1+1)+(y2+1)—1=y1+y2+1

Vxl,xze@: ¢(x1*x2) =¢x1+¢x2:> 3(x1*xz)—1=(3x1—1)+(3x2—1):>

S(xl * xz) =3x,+3x, 1= x,*x,=x,+x, +%
y,€Q: dx,eQ: ¢x,=y,= 3x,-1=y,= 3x,=y,+1
By, =0x )k ox, = ¢(x1x2) =3x 5,1 =(y1 +1)(y2 +1)—1
Vxl,xz e Q: ¢(x1 * xz) =¢x * Px, = S(xl * xz)—l = (3x1 —1)(3x2 —1):>
3(x1 * xz) :(3x1 —1)(3x2 —l) +1= x,*x,= (xl —%)(xz —%) +—;
The result of the operands after * then ¢ must be equal to that after ¢ then *.
A function ¢:S — § is an isomorphism between binary structures (S, *) and (S',*’) if and only if
Va,bes: q)(ﬂ*b):dm*'(l)b.
Exchange the phrases “is an identity for *” and “for all se §”.

An element ¢;,¢ep is a left, right identity of a binary structure (S, *) ifand only if Vse S ¢, *s=35 s*ex=s. Let
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24.

25.

26.

27.

28.

29.

30.

31.

322

* be defined by the table. Then 2 and & are both such that Vse §: a*s=ys b* 5=y, so left, right identites are not

unique. The proof of uniqueness of identity breaks down when applied to left, right identities at the point of the
‘role reversal’ of the two identities.

*la b
ala b
bla b

Let ¢;, ex be a left, right identity of a binary structure (S, x) Then

Vse§: epxs=s5s= e¢p*eg=c¢p i
VseS8: s*eg=s5= ¢ *eg=e¢p

, A\ isomorphism , ,0 invertible , ,
., ¢(¢'51 0’5, ) = 00’5 2007, = s Esy
Vs ,5 €8 o invertible , 80 ¢’ is an isomorphism.
¢'(s{ . sJ] = ¢'¢(¢':{ . M') =0 0
¢ isomorph y isomorph
Vs, 5 €8 (\If ° q))(fl * 52) = ‘If(q)(fl * 32)) = W(q)fl # ¢52) = lIf((P-‘l) * W(¢52) = (\If ° ¢)f1 * (\Il ° ¢)fz

reflexive: (S,*) = (S,*) by I:§—> S5 5.
symmetric: (S, *) = (S',*’) by ¢:S— §’. Then, by Exercise 25 (S',*') = (S, *) by ¢™.
transitive: If (S, *) i(S’,*'), (S',*’) ;(S”,*”) , then by Exercise 26, (S, )‘I’ ¢(S” ”)

¢
Let * be commutative on §, and let ¢ be an isomorphism (S,*) E(S’,*'). So,
, , ¢ isomorphism % commutative ¢ isomorphism
4 ’ .
Vs, €8 ds5;€8: ¢s; =5 1 ¢sp ¥ ¢s,y = ¢(x1 *52) = ¢(x2 *51) = @5y sy, * is
commutative on §’.
4 4
Let = be associative on §, and ¢: (S *) (S’ ') and Vs; €87 3Js;e€8 o¢s;=s5; . Then
, , , ¢ isomorph ¢ isomorph
4 ’ _ ’ ’ —_ 4 —
s ¥ s # sy | =08k (¢Jz * ¢53) = 05 ¢(f2 *53) = ¢(51 *(fz *53))
¢ isomorph ¢ isomorph

=¢((51*52)*53) = (])( ><:2) " O3 = ((1)51*'4)52)*'4)53=(Sl’*52')*53;

Ve'eS§: JeceS Ge=c, IxesS xxrx=c> £’=¢c=¢(x*x)=¢x*¢x,so x’#x” =¢" has a solution
x'=6xeSs.

Let be$ brbeS. Then 30’ =0beS: ' =0b=0(bxb)=0bxob=1"*0'.

-b
candlet vw € C;, v=v"+a", w=w"+iw”, vV v, w' ,w" e R.
a

. . v/+wl _(V/’_I_W/I) V’ _v// w’ _w//
17+W ¢( v +iv” w +¢W”))=¢((V’+w’)+z(v"+w”))= =, 1+, ,
v +w” v +w v weow
(v'+z ”)+¢(w + i’ ) ov + ow
( ) ((v’+¢ ) (w + i’ ))qu(v'w v”w”+z(v’w”+v”w’))

P wl _ V”W” (V’W” + V”W’) v/w/ V”W” V’W” _ v”w/ vl _V” w/ _W”
- r.” ”.__r’ ”n._..” ”_..r ”. .’ ”.__n - ” 4 ’ ” ’

vw +vw p'w —p"w "W +v"w —v"w” +v'w’

Let¢:C—> H:a+bi,a,beR: H|:Z

= ¢(p’ + z'v”) + q)(w’ + z'w”) =¢v-ow
14



33.

§1.3

1.

Gl.

G2.

G3.
2.

Gl.

G2.

G3.
3.

Gl1.
4.

Gl.

G2.

G3.
5.

Gl1.
6.

Gl1.

G2.
7.

Gl1.

The two isomorphisms possible are the identity and q):(ﬂ, b) - (b,u), so the equivalence classes have either one or

two elements. Calculate the number of equivalence classes with one element— these are the ones where ¢ coincides

with the identity:
C=F F=C
=
E=D',D=F D=E

there are 4+ 16-4

=4+ 6 =10 equivalence classes.

a b b a b a a b
a|C D||b |C D' |a |E F||a |F E
E F||a |E' F||b |C D'||b |D C

Groups

Z is closed under *.
Vab,cel: (ﬂ*b)*c=(ub)*£=(ﬂb)c=ﬂ(bc)=ﬂ*(b£)=u*(b*c).
VaeZ: lxa=1l-a=a, axl=al=a.

1
VaeZ: HAn' e€eZ: a*da' =na'=1= VL'=;.
Vabe2Z: AmmelZ: a=2mb=2n= ﬂ*b=u+b=2m+2n=2(m+n),m+neZ,so2Zisclosed
under *.

Vab,ce2l: (ﬂ*b)*cz(ﬂ+b)+c=u+(17+c)=u*(17*c).

VYaec2Z: a+0=0+a=a.

VYae2Z: IneZ: a=2n. Let a’=—a=—(2n)=(—2)n62Z,so ﬂ'*ﬂ=(—ﬂ)+ﬂ=0, ﬂ*u’=ﬂ+(—ﬂ)=0.

Vab e R": axb=+abeR", soRtisclosed under *.

Vab,c e R : (n*b)*c=(1/pz)*c=m=w.
ﬂ*(b*£)=ﬂ*(Jb_C)=J_Jb_=%

Vab €eQ: axb=abe Q,so Qisclosed under *.
Vab,ceQ: (ﬂ*b)*CZ(ﬂb)*CZ(ﬂb)L’:ﬂL(bt)Zﬂ*(bC)Zﬂ*(b*L’).
VaeQ: l*xa=1l-a=a, a*xl=al=a.
Vae Q: A’ eQ: 0-4'=1
Vab eR": a#b=afbe R, so Rt is closed under *.
Vab,c e R : (VL* b) ® 0= (ﬂ/b)/c :ﬂ/(bc).
a* (17 & c) = ﬂ/([y/c) = adlb
VabeC: axb= |ﬂb| € C, so Cis closed under *.
Va,b,c eC: a*(b*c):a*'bclzlm'hcl:lﬂbal.
(VL * b) * = |a17|* ¢ =||ﬂ[7|~ cl = |ﬂ[7£|
Vae C: #fe eC: i*ezlizlzi.
Ya,be {0, cees 999}: axb= (ﬂ+ b) mod1000 e {O, ey 999}, so the set is closed under *.
Va,b,c€{0,...,999}: (ﬂ*b)*c=((ﬂ+b)mod1000+£)mod1000=(ﬂ+b+c)mod1000

a%* (b *c) = (VL + (17 + c) moleOO) mod1000 = (VL +b+ c) moleOO.

{C - F,,, which corresponds to the four tables where (C, D) € {(”‘a ”)v (”> b)’ (b’ ﬂ)’ (b’ b)} - S0
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vae{o,..., 999} 0% =(0+2)mod1000=amod1000 = a

G2. )
a*0= (ﬂ + O) mod1000 =2mod1000 =2

G3. Vae {0, 999}: = (—n) mod1000: 1 = (’H (_ﬂ)) mod1000=0mod1000=0

ﬂ'*ﬂz((—ﬂ)+ﬂ)m0d1000=OmOleOOZO'
_Lie
8. U={"}
Vx,y eU: 30,y € R: x:ew,y:ew: x-y:eiezziw :ei(ew/)eU,so U is closed under multiplication.
Gl. Vx,y,zeU: 30,y .0 R: x=ei9,y=ei"',z=e
(Wla)-c:(eiewil’/)-zw =ei9~(eiw~zi¢)=ﬂ-(b~c)

G2.e=1=¢"€U: VxeU: - X=X,X€E=X.

G3 VxeU: 30eR: x=¢"= x'=¢ecU:x-x" =" ="=1=¢
xx=e e =0 =1 =¢
0i , $0i ,_ ($0+x)i , oi
9. VxeU: 30eR: x=¢"'= y,y elU: y=e’ ,y =¢* ,y # v where y-y=¢" =x and
y oy = g(eﬂﬂ)i =% =x. So (U,~) has two distinct ‘halves’ of each of its elements— this is an algebraic property of

the group. Now
VxeR: FIyeR: y+y=5x= y=-§x

VxeR,x<0: y-y=x= sz;: ye R
SO (IR,+) has just exactly one ‘half’ for each element, and (R,*) has elements with none. So neither of the three
groups are isomorphic.
10. a. Va,b € (nZ,+) c AmeZ T a=hnb=mn= a+b= (l + m)n € (nZ,-I—) , so the operation is closed.

G1. + is associative.
G2.0e (nZ,+): Vﬂe(nZ,+): O+a=a,2+0=0n.
G3. Vae (nZ,+): dmeZ:a=mn= a’ = (—m)n € (nZ,+) = a+a'= Wm+(—m)n= 0, a'+a= (—m)n+mn= 0.
b. Define isomorphisms by VzeN: ¢ :(nZ,+) - (Z,+): nm +— m. Then
VNmelZ: nmenl = ¢(nm) = m (surjective)
Nmp €Z :3m, p, €Z:n=mn,p =p,n:0m=0p = ¢)(m,,n) = ¢(pnn):> m,=p,= m=p (injective)
Vmp €Z: $lum+np)=¢(n(m+p))=m+p=¢lm)+¢(np)

11. The operation is closed, associative, with identity 0, and inverse —A.

12, Wite these matrices as [,]", then the operation is closed by A-B=[a,,]" . Also
GL (4-B)-C=[aty] -[e;] =[mbic;] =[a;] [0se:] = 4-(B-C).
G2. A+0:[ui]i +[0L = [ai]i =A, 0+A=..=A.
G3. VA= [ﬂi]i: A’ =-A= [—PLZ-L: A+ A= [u,.]i +[—u,.]i = [OL =0, A'+A=...=0.

13. By the calculations in Exercise 12, the operation is closed, associative, with identity 0, and inverse —A.
14. As Exercise 13.

n—1
n—1
15.  In our notation, A-B= I;:O ﬂikbkj] . The elements of A and B under the diagonal #;,; ; =, ; ; =0 are zero,

i, j=0
so the elements of AB under the diagonal are:

16



Joi

n—1 n—1
= + ﬂ'kbk': + + + ﬂ’kbk‘: + Obk + ﬂ-k-() + ﬂkOZO
k=0 Y | k=0k=gete=iv1 | Y k<j<i Y j<k<i 0 jei<k

n—1f n—1 n—1 -1
= + a,b, [c; =| + a;b,c,;
AR 1o 1R
v

[ n—1
: ,,]
Y 7=0
,J i,7=0

-1 n—1 n-l n—1 n—1
A'(B'C):[ﬂ’f]i,/eo kiobik%j , =L kjoblktkj "k

a1 n—1
+ o by .
i,7=0

[AB]DN

so the operation is closed.

n—1
n—1
Gl. (A-B)-C:[ki-oﬂikbkjjl
i, j=0

and

i,7=0
G2. AI=1-A=A.
n—1
G3. |A|= + ... s0 Ais not invertible if A=0.
=0

16.
17.

The operation is closed, associative, with identity 0, and inverse —A.

The operation is closed, associative, and identity by Exercise 15G2. Since |A| =1, an inverse exists:

A=A"= AT'A=AA"'=1. Is the inverse in the group? Suppose that A™" is not upper-triangular, then by the
calculation in Exercise 15, neither is A™ A4 = I, which is a contradiction.

18. VA, B: |AB| = |A| . |B|, so the operation is closed. It is associative, with identity I, and the regular matrix inverse.

19. a.Va,beR\{—l}: axb=a+b+abeR;, a+b+ab=-1= ([7+1)ﬂ=—(b+1):> b=—1\/ﬂ=—%=—1,

so a*be R\{—l}.
b.Gl. Vab,c e R\{-1}: (axb)sc=(a+b+ab)*c=(a+b+ab)+c+(a+b+ablc=a+b+c+ab+ac+db+ abe,
Va,b,c eR\{—l}: a (h*c)= a (b+c+bc) =a+(b+c+bc)+a(b+c+ba) =a+b+c+ab+ac+bc+abe.

G2. Vae [R\{—l}: ake=na=

ate+ae =a0=

ne=—+= ¢=0va=-1= ¢ =0. Conversely,

0+*2=0+a+0a=a,so 0 is the identity.

a
G3.Vﬂ€R\{—l}: Wxa=0=> a'+a+an=0=> (1+ﬂ)ﬂ’=—ﬂ=>(ﬂ¢—l=>1+ﬂ¢0) @ =- 1
a
2 ala+l s
Conversely, a+a’=a— 2 _2 - ( )—ﬂ 2 =0, so a’ is the inverse.
a+l a+l a+1 a+1

C.2%x%3=7= (2+x+2x)*3=7=>

(2+x+2x)+3+(2+x+2x)3:7=> o= 12x=—4> xz—%.

ab c d ab c d ab ¢ dl|x 1i -1-
ale a b c|laje a b c||aje alb ¢ 11
blae c b |\blae c b||blabcel||i -1
c|lb c e allclbcace||lc|lbceal|-]l 1
20. dlc b ae||dicbeal|dlceald|| -1
The groups represented by the second and third tables are isomorphic by (]):(e, a, b,c) = (e, b,a, c).
a. commutative
b. See fourth table— it is isomorphic to the group represented by the second and third tables.
c. Since the group has four elements, #» must equal two. The four elements are thus represented by
1 1 -1 -1
l 1:|, |: 1], [ 1:|, |: 1:|. Each of these squared equals the identity matrix, so this group must be
isomorphic to that represented by the first table.
21. A two-element group must be isomorphic to the one represented by Table 1.3.18. A three-element group must be
isomorphic to the one represented by Table 1.3.19.
22. The definition of an inverse depends on that of identity, so G2 must precede G3. So the logically possible orders

are G1-G2-G3, G2-G1-G3, and G2-G3-Gl.
17



23.

24.

25.

26.

27.

28.

29.
30.

[132)

a. ‘associativity’ might be defined; the statement “x = identity” is false; the operation “-” is not defined

b.a group is a set with an operation; ‘associativity’ might be defined; ‘identity’ should be defined; ‘inverse’ should
be defined

c. the statement “the binary operation is defined” is redundant; associativity axiom is omitted; ‘identity’ should be
defined; ‘inverse’ should be defined, after ‘identity’

d. “a set is called a group” is incorrect, rather a set with an operation; ‘associativity’ might be defined; the statement

“an operation is associative under addition” is meaningless, an operation is either associative or not; define what ‘a
is; “{e}” is a set, many groups do not have a set as an identity element; define ' as the inverse; define # and a' as

elements of the group
Name this group S.
Seab

e|le a

b
ala e ¢
blb e e
Vxe§S ee§ x*e=crx=x(G2)
Vxe§S x*x=¢ (G3)

(B*PL)*EZVL*EZPL

, so G1 is not satisfied.
e*(ﬂ*ﬂ):e*g:e

b

a. false; b. true; c. true; d. false; e. false; f. true, assuming the text is correct; g. by Table 18 and 19, true; h. true

(see calculation); 1. false, no identity element; j.true.
u'*(ﬂ*x*h)=u’*c:> (ﬂ’*u)*x*b=ﬂ’*c:> exxrb=n"vc> xxb=a%c=

(x*b)=ﬂ’*c:> (x*b)*b’=(ﬂ’*c)*[7’:> x*(b*b’)=p/*c*17’:> x*e=n"%cxlh =

x=a'*cxb’
VaecA: Ja’eA: a*a’=¢

toofo=)=on<ofa) = (on] <oe=(on] seno{w)= (oa] =o(o)

By contradiction. Since G is finite, there are an odd number of elements in G besides ¢. Reduce by pairs until there

is just one element left.

’ ,(17)
Take any a e G,a#¢. If a*a=¢, we stop; otherwise, a*a=beG,b#¢= b’:(b) Z(ﬂ*ﬂ) =a'*xa". If
b’ =¢,then a’+a’=¢ and we can stop; otherwise, &’ #¢. If 2’ =a then e=a*a’=a+a,whichisa
contradiction, so a4’ # &, that is, # and &' are distinct elements that do not square to identity.
Continue this process until an appropriate element is found, or there is just one element left; call this element ¢.
Suppose cxc=d#ze= c’*c’=d". f =4, then e=d+d and we can stop. If 4’ =¢, then ¢’#¢ =¢, and we
can stop. Otherwise ¢ #¢” = b for some & we considered in the reduction process, so ¢*¢=d = b’ which is
impossible because we already removed 4'.

So we must have stopped at some point previous and found an appropriate element.
a.For Va,b,c eR":

(ﬂ & 17) e = (|PL|I7) o= “VLMC = |ab|c

w* (b * c) =a* (|b|c) = |ﬂ| . |b|1: = |ﬂb|£
b.1eR": VaeR": l*nzlll-n:ﬂ

L1 1 1
VaeR : —meR : gx—=lal- —=1
¥ FRAr

c.-1eR": AneR: a*—lzlul-—l=—|u|=1,soitisnotagroup.

d. The group axioms with left identity and inverse, or with right identity and inverse, both define groups; the group

axioms with left identity and right inverse do not.
xxx=x= «x'*x*x=x"*x= x=c¢,and the identity is unique.
For Va,beG,
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31.
GI.
G2.
G3.

32.

33.

34.

35.

36.

37.

38.

39.

40.

4]1. a.

b.

§1.4

(ﬂ*b)*(ﬂ*b)z((ﬂ*b)*ﬂ)*bze: ((u*b)*u)*b*hze*b: ((ﬂ*b)*ﬂ)*6=b=> (ﬂ*b)*ﬂzb:

(ﬂ*b)*ﬂ*ﬂ=l7*ﬂ=> (ﬂ*b)*ﬁ=b*ﬂ=> axb=b*ana
so G is commutative.

n-1 n n n

VneNT, let Un:{zieC}A_ be the roots of z” =1. Then Vz; ;eU,: (zi-z]-) =z; -z; =1l-1=1,s0

z;-z; €U, and the set is closed under multiplication.

multiplication is associative
leU,: Vz,eU,: l-z,=z,-1=z,.

Vz,eU,: 2, €C z,-z, =2.=1,and (zi‘l)n =z, =(zi”)_l =1'=1,50 5, €U,.
Va,beG: (ﬂ*b)l=(ﬂ*b)=(ﬂ)*(b)=(nl)*(bl)

(ax5)’ =(u”)*(pﬁ)=>

N R A RO R IR R R

Let m:|G

,and consider the m +1 elements #°,...,2™. Since G has only m elements, 37, j: 2’ = a’. Assume

) ) o . . . . i . i . . .
without loss of generality that i< j,s0 a' =a’ =2’ %27 = (ﬂ’) * g =(p/) xa' %0l = e=al7".

2 2 2 ’ ’ ’ ’
(a%0) =0’ x0> = (axb)#(axb)=axaxbrb= a'*axbraxbxa’=a"axaxbxbxb’= bra=axb.

7 ’
(ﬂ*b)Zﬂ'*b'(:) ﬂ*b*(a*b)zu*b*(ﬂ’*b’)@ e=a*bx*a*xb’ o b=arbxa’ S bra=axb.
a*bxc=¢e= brc=a"= brcxa=c.
% n! % * * " ox ok . *
Suppose x#x” # ¢, then ¥*¥ xFekx= xEerx= x'kxrerxtx= ckete= c#te
Suppose yxpzx,then x'xx*ezx’*x= e*ete= e#e.

Define e by ¢*a=a for some 2 €G. Then

VbeG: FyeG: axy=b= cra=a= cxary=arxy= exb=0,
so ¢ is a left identity. Also,

VaeG: da'eG: a'*a=ce,

so ' is a left inverse for a. By Exercise 37, G is a group.

Let ¢: (G,*)%(G;)z ar>a’. Then

’ ’ ’

Vae (G,~): da’ e (G,~): ¢(n’) = (ﬂ')’ = because (n') A =e= (ﬂ') A== (ﬂ’) =a,s0 @ is surjective.

Vﬂ,bE(G,*)I pa=0b= a'=b'= a'-a=b-a> e=b-a> b-e=b-b'-a= b=a,so ¢isinjective.
Vﬂ,be(G,*): (])(ﬂ*b):(ﬂ*b)’=(17-n),=ﬂ'-b’=¢u-¢b,so (G,*)E(G,').

VgeG: i,:G—>G x> gxg’. Then

VxeG: JgyeG i, (g'xg) = q9'xyy = x (surjective)

Vx,yeG: i,x=i,y= g’ =90 = Jo9g=g099= x=y (injective)

Vx,y €G: ig(xy) =gy’ = gxeng’ = gg iy’ =i,x01,,

SO Gziﬂ G.

monoid
semigroup (€ is the identity element)

Subgroups
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10.

11.
12.

13.

14.

15.

16.

S ol

o

.LetfelR—)R:xl—){

Vf,geG: VxeR: {

Vx,y €eR: x+yeR (closed), eg =¢c =0 (identity), Vx € R: —x € R (inverse).

1eQ": —-1¢Q7 (inverse), so not a subgroup.

Vx,y €7Z: 3Ix;,y,€Z: x=7x;,y=7y;,=> x+y= 7(x7 +y7) €77 (closed), e77 =e¢ = 0 (identity),
Vxe7Z: Ix,elZ: —-x= (—7)x7 = —«x € 77 (inverse).

Va,y €iR: Jx,y;, €eR: x=ix;,y =1y, x+y =i(x,-+y,-) € iR (closed), ;g =¢c =0 (identity),

VeeR: Fx,eR: x=wx;,> -x =i(—xi) € 1R (inverse).

Va,yenQ: Fx,,y, €eQ: x=mx,,y=my, = x+y =7'c(x,r + Y ) enQ (closed), ¢, =e¢c =0 (identity),
Veen: Ix, eQ: x=nx, = —xzn(—xﬂ)en@(invcrse).

nte {ﬂ:”} , nl+nte {n ”} (not closed), so not a subgroup.
nel neZ

0¢C'= RgC

Vx,y €eQ7: x-ye Q" (closed), eq- =e¢ =1 (identity), Vx € Q" : xeQ" (inverse)
ec =1 ¢ 77 (identity not in subset), so not a subgroup.

1€iR i-7=-1¢€iR (not closed), so not a subgroup.

ec=1= 3geQ: gr =1 (identity), so not a subgroup.

i . . Ry _ )z _ XYz z _1_.0 z

Vx,y e{n }z‘ez' A,y €Z: x=n"",y=n"= Xx-Yy=7 e{n’ }ieZ (closed), ec =1 =x e{n’ }ieZ
(identity), Vx e {n’}iezz I, €Z: x=n""= x =gV ¢ {ﬂz}zez (inverse).
Let A,Be GL(n, R): |A| = |B| =2= |A * B| =4, so multiplication is not closed on that set.
By §1.3.12, the set is closed. The identity is in the set. Forall A= [%‘] = A= [ﬂii_l] is in the set also.

] ..

122
. . o 1 1|1 11 .

By §1.3.15, the set is closed. The identity is in the set. By Ul =..= ) we see that the inverse of at

least one element of the set is itself not in the set.
By the argument of Exercise 8, multiplication is not closed on that set.
By the argument of Exercise 8, multiplication is closed on that set. The identity has a determinant of one, and so is

-

T
Let A, B be orthogonal matrices, then (AB) (AB) =BTATAB=B'B=1 , 0 ABis orthogonal. Also, I T1=1 so the

identity is orthogonal also. Since the transpose of an orthogonal matrix is its inverse, the inverse is also orthogonal.

in the set. Since ‘A_l , the inverse is also in the set.

+leF:Ro>R:ix>1, -1eF:Ro>R:ix>-1= (+1)+(—1)=Oe1:",sothesetisnotclosedunder

addition.

. The question of whether Fisa subgroup of itself is answered by whether Fisa group.
Vf,geG: f+g:Ro>R: (f+g)l =fl+41=0= f+geG (closed)

0eR>R: VFeG: f+0eR>Rixs (F+0)x=fa+0(x)=fr= F+0=Ff (identity)
VfeG: f'eRoRixm—fi= VyeR: (f+f/)v=fi+fh=fi-fr=0= f+f =0€eG (inverse)

.VfeG: f(l)zO: feﬁ,sothesetisnotasubsetof15.

x=1: 1
xz1l: -1
not closed under addition.

= f G, then (1+£)0=1(0)+ f0=1+(-1)=0= 1+ eF,so the sctis

() =fo-gx 20= freF
leG: VfeG: VxeR: (lf)le(x)'ﬁC:l'fx:fx: 1= f (identity)

= [y €G (closed)
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17.

18.

19.

20.
21.

22.

23.

24.

VfeG: I eR>Rixo (f): VaeR: (f)e=f fh=f () =1 fF=1
VxeR: fh=(f)" 20> f'cF (inverse).
=) =1"=1> f'eG

aleF= 10)=1= (1+1)0=1(0)+1(0)=1+1=2:> 1+1¢F, so the set is not closed.

b.Vf,geﬁ: Vi eR: (fo)vx=fc gx#0=> fyeF

()0=£(0)-5(0) =1-1 =1
leF= 1(0)=1: VfeF: VxeR: (fl)x=fi-1(x)=fr= fl=F (identity)

VfeF: EIf’elR%lR:xH(fx)_l: Vx eR: (ﬁ‘")x=fx-fk=fx-(fx)_l=1:> Fr=1
f0=1= f0=(f0)"=1
a.-lefF= (—1)0 =-1= (—1 + —1)0 = (—1)0 + (—1)0 =-1+-1=-2, so the set is not closed under addition.

(closed)

(inverse)

b. Vf,g¢€ F: (]Q])O =f0-4g0=-1--1=1, so the set is not closed under multiplication.

a.Let Vae R: f, e [RR—){u}. Then

VaheR: VxeR: (fo+fu)x=fax+fox=a+b= fo+fy= fasy (closed)

VaeR: Vi eR: (fo+fo)x =fax+fox=a+0=a= f,+fo=f, (identity)

VaeR: fi=f,= VxeR:(fo+fi)x=(fotfu)x=fux+fox=a+(-2)=0= f,+f,=0 (inverse)
b. f, &F.

See table.
a.-50,-25, 0, 25, 50

b.4,2,1,+ 1
274

o -1 _[0:0-1-1 0--1-1:0]_[1 0] o —1] _[1:0+0--1 1.-1+0-0]_[0 -1]
-1 0] |[-1:0+0.-1 -1.-1+0-0] [0 1 -1 0] |0-0+1.-1 0--1+1.0] |-1 o]

1 1| |1 #fl 1] (11420 1-1+n-1| 1 =+l
o 1| o 10 1| [0-1=1.:0 0-1+1-1| [0 1 [

1] [1 a1 4] [1142:0 1-1+21] [1 2-1
i 0 1 0 1|- 1] [0-1+1.0 0--1+1-1] [0 1 [
11 1
so by induction q :|> = {{ %]} .
01 01
neZ
0
30/ [1 o] |3 o
0 2 0 1] o 27|
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25.

26.

27.
28.

29.

30.

31.

32.

r an+l n
3 o _[3 0|3 0[_{3" 0|3 0|_[3"-3+0-0 3"-0+0-2|_{3"" 0
0 2] 0 2/0 2] [0 2"[0 2] [0-3+2"-0 0-0+2"-2 0o 2"
3 0] _1f2 0]_[37 o]_[ o
0 2f 6[0 3] [0 27 |o 27|
r an-1 n -1
3.0 _[3 03 0] _[3 03" 0_{3"3"+0.0 3"-0+0-27"|_|3"" 0
0 2] 0 2|0 2 0 2|0 27 [3-0+2"-0 0-0+2"-27'| [ 0 2"
3.0 3" 0
so by induction 4: :|> = {{ :|} .
0 2 0 2"
nel
0 ) 0 -1 0 -2 Exercise 22 1 0 0 -1
:2 = = 2 5 .
-2 0 -1 0 -2 0 0 1[[-1 0

(z:0=(1),
(

®,+) is not cyclic,

Gy
G,
Gs

(@ * ,-) is not cyclic, because Vg>1: Vp e Q" p>g,pprime: p ¢ (q), and the same argument can be
made for numbers of the form 1/ when g<1.

G, =(62,+)=(6),

G5 :{6n}nez = (6) >

Go ={a+ 1B}

VneZ: na+(n+1)2 e(mbﬁ).

is not cyclic, because Va,b € Z: (ﬂ + 17\/5) = {WL + nbﬁ} 80

a,bel

4 s \0 4\ i \2 8 . i )3 12 2. s \4 16 77 6
27ii 2 2 L S L 27 =7 i 2T Smi
1)5: e 7”]/5} , SO (BD ) :1’ (ga J R (65 ) = g5 S (35 ) =¢5 =¢° s (33 J =¢° =¢5 —
J=0
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33.

34.

35.

36.

37.

38.
39.

40.
4].

42.

43.

c.
d.

1 1 1
1 1 1
1 |y = 1 , SO <[]>‘=2
| 1 1 1 1 ] 1
[ 1] [ 1 1 [ 1
1 1 1
1 5 1 1 , SO K[M: 3
| 1 1 L 1 1 1 ld
[ 1 11 1] [ 1 1
1 1 1
10 10 D K[ M: 2
1 1 | 1 1 1 ]
See table.

(0)={o}
1)=1{0,1,2,3,4,5} = Z,

§2)={0,2,4}s Zs,
{

(4)=1{0,4,2}= 7,
(5)=105,4,3,2,1} =Z.
1 and 5.

<1l>, <5>

/\

<2> <4> <3>

N/

Replace “is a subset H of G” with “is a group on the subset of elements H of G, with the induced operation from
G.”

Ok.

a. true (G1); b. false; c. true; d. false (the group itself is the only improper subgroup of itself); e. false; f. false;
g. false; h. false; i. true (under addition); j. false.

In <[R{+,'>, e=1, 12=1, (—1)2 -1
¢H < G’ (subset)
Vi b € H: by hy € He ¢y =hi, 0hy =5 = hi ¥ b} =y ¥ 9hy = §(hy b, ) € 9H (closed)

(12.14)  (HcG)
e = Qe = ¢ey < dH (identity)

Vie¢H: b eH: hlsh=ep= ¢(h“*h)=¢g=> oh ¥ oh=ge= ohT ¥ b =epy 50 (h’)_lzq)h—l
(inverse)

If Gis cyclic, then Jgy € G : G:(go): VgeG: ImeZ: g=g, .

Vo'eG: peG: dy=g4: ImeZ: g=g, = ﬂ,:(bﬂom:((bﬂo)m’so G,:<¢ﬂ0>‘

Write HK = {Iok}h g then
€H, ke
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44.

45.

46.

47.

48.

49.
50.

51.

52.

abelian by eH, kykyeK
Vinky,hoky € HK: (kg )loky) = (Inhs)(kiky) € HK (closed)
H,KcG
ec=¢g ec = e ex € HK (identity)

abelian

Vhke HIC 307 eH, k'ek: bk e HK= (h‘lk‘l)-(hk) - (h—‘h)(k-lk)zeHeK = £11xc, SO

(hk)_l =, k7! (inverse).
HcG G3
ae <H,*> = ae€ <G,*> = ale <G,*>:> ale <H,*>
Gl
axga E<H’*> = ¢g€ <H, *>, which proves G2?!
axg al= eg
(=) HcG= VabeH: b GesH: ab™! H

VaeH: an'=e;e H(G2)
(<:) Va,beH: abeH= VbeH: eb'=b"eH(G3)

-1
Va,be H: IceH: c=b"'= m_lzﬂ(b_l) =abe H(GI)

Let G=<g0>,so VgeG: ImeZ: g=g4," = g=(g0_l) , and so a cyclic group must have at least g,

o . -1
and its inverse as a generator. If a cyclic group has only one generator, then g, =4, and

0 1 2 -1
Jo =6 Fo =F0> Jo =JoJo=I0do =¢,80 ‘<ﬂ0>‘52~
P commutative 5 2
Vb eH: (b)) = I'hy =e-e=e (closed)

e’ =¢= ¢e H (identity)

commut. commut.

VheH: (1[1)2 2 (h—lh)z e (14*1)2 = (h*1)2 o= (14*1)2142 = (14*114)2 =e= (h*1)2 eH
(inverse).

Let H - ={xeG}xn:€. Then

ne

commut.

Vi eH,: (b)) = b"hy" =e-e=c (closed)

¢"=¢=> e¢e H, (identity)

commut. commut.

R C S R

1 n
VheH,: (h‘ ) e
(inverse).
See Exercise 1.3.33.
Since H# &, 3h € H. Since H is closed under the operation of G, VmeN: 5™ e H. Since |H| eN,

Amm eN:  h"=h". Suppose without loss of generality that m < n,so »™ =h"-5h""". Since this is an

‘hn—m—l —prm = ¢, s0

expression in G also, and since the identity of G is unique, ¢ =4""" € H. Also, b

bt =p"""1cH. So His a subgroup of G.

Vx,yeH,: xa=ax,yp=n0y= (xy)ﬂ =xay = ﬂ(xy) = «xy € H, (closed)

en=n=ne= ¢c H, (identity)

VeeH,: x'a=x'ne=x"axx =x'wax" =eax =ax' = x7' € H, (inverse).
a. Vx,ye H: Vse§8 xs=sx,p5=5> (xy)s = x5y = s(xy) = xy € H, (closed)
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53.

54.

55.
56.

57.

§1.5
1.

AR

10.

11.
12.
13.
14.
15.
16.

17.

VseS: es=s=se= ¢e H, (identity)

1 1 1

-1 -1 1, - 1, -1 -1 - :
VxeH: Vse$ x s=x"se=x"sxx" =x"wsx =esx =s = x €H, (inverse).

. By definition.

VaeG: an'=e¢o=eyeH= a~a
Va,beG: a~b= ab'eH= (ﬂb_1)=[7ﬂ_1€H:> b~a

Va,beeG: a~bab~c= ablbel'eH= abtbc'=ac'eH= a-~c.
Vgre HNK: qgeH,qeK,reHreK= gqgeHAqre K= gqreHnNK (closed)
HeG= ey=cceH_ | HAK (identty)
KcG= ¢p=e¢geK

VgeHNK: g'eHAg'eK= g'eHNK (inverse).

my t+my my +my

m m m m
VI1,52 €<ﬂo>¢ Jmy,my€Ze g1=g0 J2=00 = SI2=5o =Jo =d0 Jo =020

This is the case if G is commutative:
commutative

Vg' " €G,: g = (gh) €G, (closed)

o . .
e=¢" € G, (identity)
commutative

n n n
Vg"eG,: (Jfl) g" = (gilg) =¢" =e¢, (gil) € G, (inverse).
By contradiction: suppose Gis not cyclic. If Age G, g#¢,then G=E= <5> , which is a contradiction. So

3y €G, g # ¢ and by (17), the the nontrivial cyclic group <g> c G. But Gisnotcyclic,so 3g°€G: 4'¢ <g>, SO

< g> is proper.

Cyclic Groups and Generators
42=4.9+6

—42=-5-9+3

-50=-7-8+6

50=6-8+2

ged(32,24) = gcd(25, 23 3) -2%=38.
ged(48,88) = gcd(24 3,28 -11) ~23=8.
gcd(360,420)=gcd(23 .32.5,22 -3-5-7): 22.3.5=60.

13+, 8=21mod17 = 4.

2143719 =40 mod 30=10.

2644 16=42mod 42 =0.

3945, 17 =56 mod54=2.

1,2, 3, 4: 4 (by relative primes).

1,3,5,7: 4.

1,5,7,11: 4.

1,7,11,13,17,19, 23,29, 31, 37,41, 43,47, 53, 57, 59: 16.

The image of a generator under an isomorphism must be another generator. By Exercise 52, an isomorphism is

defined completely by its action on a generator. Therefore, there is one automorphism for each generator that one

specific generator could be mapped onto— that is, the number of automorphisms on a cyclic group is the number
of generators of that group.

1: 1.

1,5:2.
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18.
19.
20.

21.

22.

23.

24.

25.

26.

29.
30.
31.
32.
33.
34.

35.

36.

37.

38.

39.

40.
4].

1,3,5,7: 4.

-1,1: 2.

1,5,7,11: 4.
30/gcd(25,30)=30/5=6.

42/gcd(30,42) = 42/6 =7 .

{i, 2 =1, =i i* =1}: 4,
(1+4)/2= 4", <e‘l‘m>‘:8.
1+i= \/E-eim,

/\
/\/

]
\ \
e

6 =2-3, so the cyclic subgroups are the ones generated by 2°-3° =1,

8=2°= 20=2 2'=2 22=4 2%=3.

12=2%.3= 2°.3°=1, 2'.3°=2, 2°.3'=3
20=22.5= 2°.5°=1 2M.59=2 22.50=4,

17=17'= 17°=1, 17'=17.

([18,24,39}) <{2 32,23.3,3. 13>

<{22 3,23 7}> (2-3)=(s).

(2:#7)

21.30 =2,

22.3%=4, 2'.3'=6, 22.3'=12.

20.51 =5,

2.5t =10,

2%.5=20.

Insert the phrase “[if and only if] # is the smallest nonnegative integer such that [2#” =¢].”

Ok.

20.31 =3,



42.

43.

44.

45.
46.

47.

48.

49.

50.

51.

52.
53.

54.

55.

56.

57.

58.

59.
60.

a. true; b. false; c. true; d. false; e. true; f. false (the group of order 3 with the operation that takes the right
element); g. true; h. false (G and G' don't even have to be defined on the same set); i. true; j. true.

(Z5,+) x(2Z5,+) = ({(0,0),(0,1),(1,0),(1,1)},+).

(©4).

E.

Every infinite cyclic group is isomorphic to Z, which has two generators.

Z5 has generators 1, 2, 3, 4.

. 127”- Lni 3mi
U, =7, which has generators 1, 3, s0 {¢* ={52 €2 }
j=1,3

Ug =Z¢ - e%m ={e§lm,e%m}.

7=1,5
Uy = Z4 eézm _ {ngz’E%ﬂz,e-ﬂz’gzm}

j=1,3,5,7

Lzm‘ 1. 5. . 7 . 1l
Up=7Z,: et? = {e?m,ezm,ezm,gﬁm}.
j=1,5,7,11

¢ isomorphism
VxeG: AneZ: x=a"= ¢x=0¢a" = (qm) .
Vo4 €S sl msltn Am €L p =P un AP g = Ayt ¥ M=
pHa=,+a)n+ b+ a)m py+ 0.0+, € Z (closed).
0=0n+0m e S (identity)
VpeS: Ap,pn€l: p=pnu+p,m= -—p :—(pnn +pmm) :(—pn)n+(—pm)me S (inverse).

(ﬂb)n == ﬂb(ﬂb)n_2ﬂb = ﬂ(bﬂ)n_lb == (bﬂ)n_lh =l (bﬂ)n_lbﬂ == (bp;)n =¢. Similarly,

(bﬂ)n’ == (ﬂb)n’ =¢, S0 ‘<bﬂ>‘ = ‘<nb>‘.

. The least common multiple of 7,5 eN " is the generator of the group Z, N Z, (which exists by Theorem 24). This

agrees with the intuitive notion because elements of the intersection must be multiples of both 7 and .

When 2, n7Z,=72,,.

Show that an infinite group has an infinite number of subgroups. If there is a generator a of the group, then it is
isomorphic to Z and thus has an infinite number of subgroups. If it does not have a generator, then ...

The group {O, 1,4,1+ z'} under modulo addition is not cyclic, but all its proper subgroups <O>, <1>, <z>, <l + z> are.
(V +, 5) +,t= (((7’ + 5) modn)+ t) modz = ((V + .f)+ t) mod 7z

Z, is closed under +,. For Vr,s;teZ,),
= (V +(s+ t))modn = (1/' + (s+ t)modn)modn =7+, (s+n t)

(associative)
VreZ,: r+0=r (identity)

r=0: 0

rz0: n-r

r=0: 0+,0=0

VreZ,: r =
re,: r { r£0: V+n(n—y)=nmodn=0

= r+,7' = { (inverse)

2
VxeG: a’=e=xx"'=wxa’x"' = xaax = xax'xaxt = (xnx_l) = a=xax'= ax=uxn.

Z ,, is generated by all relative primes to pg, that is, to p and g, less than pg. There are p—1 divisors by g of pg, and
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6l.
62.
63.

64.

65.
66.

67.

68.
69.
70.

72.

73.

74.

75.

76.

g —1divisors by p of pg, so there are (pq - 1) - (q - 1) - (p - 1) generators when p # ¢ and (pq - 1) - (p - 1)
generators when p=g4.

This again amounts to finding the relative primes to ", of which there are p" ™' 1.

n/ gcd(n, m)

All the proper subgroups of Z,, are <1’ = 5>, where ‘<s>‘ = p/gcd(x,p) <p= gcd(y,p) >1, and p has no

denominator common with s except 1 if it is prime.

Every permutation of edges leads to the same vertex.
Not commutative, because 230-ba=¢, a’b-ab ' =a*#e¢.

Not obvious: one would need to find a path which generates the group.
No, because it does not include the identity element.

5/\>@1770«1
v(@)

a. A relation is represented by a closed path from the identity element to itself.

b. 6% =e, abab=e, a*=e¢, a’ba’b=c.

a. (ﬂzb)ﬂs =a’b; b. (ﬂb)(ﬂsb) =a% c. b(ﬂzb) =a?.

A T ST AN

ela
ale
blc

SIS

c|lb a

See table, where c=ab.

e abcdf
e c b fd
de f a
fade
b fec
c dalbd
See table, where c=ab, d=ba, f =aba.

~N RS = R
S IR STREEN N Y

RS WAL I U A
S N
XD X
[S VAN Y
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77.

See table, where c=a"}, d=ba, f= bat.

78.
v

Z4 0 V .
e a
3 1 e ——
(nonabelian)
b
2

C

§2.1 Groups of Permutations

1.

2.

3.

AN

10.
11.

12.
13.

14.

w0=(123654)

’6=(241563)

uo’ =(341625)

ct=(516243

c7'10=(261543)

0" =(123456), 0" =(314562), 0> =(435621), 6° =(546213), 6* =(652134), 6°=(261345),
0°=(123456)=0" 50 ‘<G>‘=6.

(%)

16
o100 _ 561644 _ (0.6) ot=ot= (6 5213 4).

[=1

=(123450), (12)1:(432156), (12)2=(123456)=(72)0,so =2.

)

u'=(123456), u'=(524316), x> =(123456), 50 y‘°°=u2‘5°=(y2)50=35°=e.
2 3 6 17 6 x, X

(2,,+) (32,+) (172,+) S
S, . . .
cyclic cyclic  acyclic

o (2] (o]
(m) (@)

Oy ={1, 3,4,5,6, 2}.
O, = {1, 2,4, 3}.

O, = {1, 5}.

&P =P, Py =P, 1 =0, 1, =pd, 3 =p°0.
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15.

16.

17.

18.

19.

p=p =(2341), o=u,=(2143), e=p", p;=p', p,=p’ =p(2341)=(3412),
ps=p =p(3412)=(4123), o=p,, op=0(2341)=(1432)=5,, 4p’ =0(3412)=(4321)=p,,
0p° =0(4123)=(3214)=3,.

S| =8 ‘S4|03:3‘:|83|:3!:6

63=3
S| =8 ‘55|62=5‘=|s4|=4!=24.

62=5

ap =(123), p'=(231), p°=(312), p’ =(123)= (p))={e.p1.p:},

P =(123), p,'=(312), p,"=(231), p,"=(123)= () =le.ps.pi],

m=e =, u12=u1(214s)=(1234)=e: () ={e.m}-

b fua) = femad ()=o) (oot )y s o= Do i =pi132)=(213) =0

P =pi(213)=(321)=p,.

D;y

PN

() ) ) (pa)=(p2)
\\ /

P =t pr=pi P =(3412)=pa, o’ =pi(3412)=(4123)=ps, py" =py(4123)=(1234)=¢,
(1) ={e.P1sP2,p3 )5

P =, Py =psy Py =pa(3412)=(1234)=e= <p2>={£,P2};

Py =€, ps =ps ps =ps(4123)=(3412)=p,, ps’ =ps(3412)=(2341)=p,,

ps' =ps(2341)=(1234)=e= (p;)=le, p1, s, pg}

w'=e, w=py, om = (2143)=(1234)=e= (u)={en};

b=l

=e, 8,'=8, 8, °=5,(3214)=(1234)=e= (5,)=[e,5,};
> ={8 8]

0=(12345), p'=(24513), p’=(41325), p’=(12543), p*=(24315), p’=(41523),

m

=(12345)= 0

2
¢ Since (2 1 3) =g, (1 3 2) =¢, there are two distinct elements that square to the identity, while <p> has only one

(p*) 50 (p)S;.
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21.

22.

[\S]

23.
24.
25.
26.
27.

N

28.
29.
30.
31.
32.
33.

34.

35

3
1

N
2
1

1

1
2
3

11
2
3

=|1|= [...]~(312),

= i = [.]~(213).

e Ao =(0+,)=(0123), &, =(1+4)=(1230), 2, =(2+4)=(2301), A3 =(3+,)=(3012), the left regular

et cetera, reading off the columns of Table 2.1.8. Then the right regular representation is ¢: §3 = S3: 6 pg.

The book definition states “onto”, but this is the same as “to” when a set is mapped to itself.

fex=5>—x?-2x= fs,x=3x2—2x—2=> fs”xzéx—2. fsﬁx=0: 6x=2= x=%,so

012345
1/23450
2134501
345012
450123
50012 3 4
1 T [t 1 1]
a 1 [2]=]2|= [...]~(123), 1{2|=
13 3 1 3
1 111 [ 1]1]
112|=(3[= [.]-(132),| 1 |2|=
1 3 2 1 3
Since (A B)x = A(Bx) , the matrices form a group isomorphic to a group of permutations.
b. Ss.
1 1 1
¢ 1 1
1 > P1 1 > P2 1
1 1 1
1 1 1
1 1
- .S, ~ 8, ~
Ha 1 171 2
1 1 1
SZ .
8§, %8,
S4 .
Se
representationis ¢: Zy, — S :x > A,
e With & ={e,py, s by, 1y, 13
Pe(e 1 P2 1y 1o 3) = (e p1 P iy 1y 13) €= (Epy sy 1y 1 15),
P, (€91 P2 11 1o 13) = (€ Py P2 1y 1y )Py =Py P2 €12 s 1y ),
Okay.
Permutation.
Not surjective for negative numbers.
Permutation.
Not surjective for nonpositive numbers.
fs”o =6-0-2=-2<0 and fs”l =6-1-2=4>0, and thus f; is not injective around %

a. true; b. false, must map on the same set; c. true; d. true? (book says false); e. true; f. true (by Theorem
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36.

37.

38.

39.

40.

4].
42.

43.

44.

i~

45.

46.

47.

48.

49.

50.

1.4.17); g. false,

SlO| =10!; h. false, by Theorem 1.5.1. every cyclic subgroup is commutative, but in Example

2.1.17 §; is shown not to be commutative and is thus not cyclic; 1. true, any §, has S; as a subgroup and can
therefore be neither commutative nor cyclic; j. true

§; is not commutative, with proper subgroups <(1 2)> , <(1 3)>, and <(2 3)> , each isomorphic to §, and

commutative.

Function composition is associative by 1.1.13. The set has the identity function as an identity element, however the

set does not have an inverse for each of its elements. For example, let 2 € A, then f,:x+> 2 hasno f, such that

fa o fs=1. This algebraic structure is a monoid.

LetHz{O'eSA|crb=b},then Vo,reH: tleS,,th=b= t'b=b,and

1 1

ot eS,,ot'b=0b=b= ot ' e H,so Hisa subgroup by Exercise 1.5.45.

Let H={ceS,|obeB}. If BC A then 3ne A\B. doeH: on=b= o 'b=a= o 'eH,so Hisnota

subgroup by Theorem 1.4.14.
Let H={ceS,|oBC B}. Vo,re H: tBC B= (rbijectie) tB=B= 1 'B=B,s0 ot €S, and

ot 'B=oB=Band ot € H.
By 40., also a subgroup.

A “copy” of an n-gon is any permutation of the vertices of the original in which neighbors of vertices remain
neighbors. There are # permutations that leave the orientation unchanged, and another # that reverse it ( 72> 3).

The first set form a group in itself, because any product of permutations that leave the orientation unchanged itself

leaves the orientation unchanged.

How many different ways can a cube be rotated? One of its six faces can be rotated upwards, then one of four faces

can be rotated leftward, which fixes the rotation. So there are 6-4 = 24 possible rotations. Three subgroups of
order four are formed by rotating the cube around its three perpendicular axes, and four subgroups of order three
are formed by rotating it around its four diagonal axes.

For VS5 (1 2), (1 3) €S, and (1 2)(1 3)(1, 2, 3) = (1 2)(3, 2, 1) = (2, 3, 1), (1 3)(1 2)(1, 2, 3) = (1 3)(2, 1, 3) = (3, 1, 2)

so the group is not commutative.
Let 0SS, VyeS§,: oy=yp0= o= y~loy. Suppose c#1= Ji:oi#i. Since n>3, 35 # 4,04, so define

Y= (j Gz'). So (y_ldy)i = (y_IO')i = y_l(cri) =7, but j # 07, so it cannot be that o #1.

Suppose c€ O, ;,0, 5, then 3n,,m, e Z: c"a=c,6"b=c. So

0,,= {o”u} = {o””"m} = {G”G”ﬂﬂ} = {o”c} = {G”G"" b} = {a”*”b 17} = {O'”b} =0, 5.
? neZ neZ neZ neZ neZ neZ neZ ?

Number the elements of A by a,_,,_,. Generate » permutations 0; € §4 by 0,4, =a;, ;. +, induces » distinct

a a

permutations on A. Also, Vﬂi,j €A j—-,i<n= o i=a;.

j_n i
*If O, ; = A then it is possible to number the elements of A by a,_,,_; such that 6”45 = a,,. Then
Va, ;€A o', =06’y =0'n, = aj, and o/ e <G>, $O <6> is transitive on A.
e Conversely, let <0'> be transitive on A. Then for any given Vae A: Va, e A: 3o’ e <G>: o'a=ua,; 0
0,,=4.

a. They will read every product a* & =c¢ as b*a =c, and every instance of the associative property of the group

ak (b * c) = (VL * b) *¢ as an associative property (c * b) *g=c* (b * PL) of a corresponding, but different, group. Since

a group can be defined solely in terms of such expressions, their reversal defines a group also.
b. (ﬂ*'b)*'c=(Za*ﬂ)*’c=c*(b*ﬂ) =(c*17)*ﬂ = ﬂ*'(c*b)z ﬂ*’(b*’t) (associativity)

e’ x=x%e=¢ (left identity)
a’'# a=n*a" =e (left inverse)

Show that the right regular representation ¢: G — ¢G: g ( & g) is an isomorphism. Obviously
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51.

52.

53.

54.
55.

56.
57.

58.

ISR

a

o

=

(- *g) = ( *g’) = g =4 because * is a group operation, so ¢ is an injection, and surjective on @G, so a bijection.

Vg,heG: ¢(g * 14) = ( * (g * h)) = ( * g) *jy = (gbg) *Jj = ph o ¢y , with Exercise 49 shows that ((])G,o) does indeed

form a group.

0
1

11101
010100

0110
0110111
1101

1

¢

(n+ 1)"“?

yx is such a string.

T

e 1

£
1

e 1
1l e

. .. . . . -1
is a group, because it is a monoid with an inverse T, =1,.
Tg(so 5 :2):(50 5 sz), TO(SO 5 32):(:0 50 SO), T1(50 5 yz):(sl 5 52), Tm(-‘o 5 52):(51 5 31), and

Tll(fo 1 52):(52 ) 52)-

So
52

1

So

T, 5o

S0
D
So

So

T ¢ 0 1 01 11
e ¢ 0 1 01 11
00 O 01 01 11
111 0 11 01 11
01{01 0 11 01 11
11/ 11 0 11 01 11

is not a group, because there is no inverse for any T, except 7.
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60.

6l.

The state transition function for an input string g = ( Jo--In 1) of the automaton of a finite group G is a function

I,:G> Gy« 23 g;. Since 2} g; € G, Tis a permutation of G.

isomorphic to G.

§2.2 Orbits, Cycles, and the Alternating Groups

Moo

Y *® N o ok W

11.

12.

13

14.

1,52}, {3}, {46}
{1,58,7}, {263}, {4}
1,2,3,5,4}, {6}, {7,8}

Z

2i}._,, 2i+1}_,

Bit,_,, Bi+1},_,, {8+2},,
(41358627)

37285416

)
54378621)
)

(

(

(18)364)(57)=(18)3 4)[36)(57)

(13 4)26)(587) = (1)1 3)(26)(57)(55]
(13478652)=(12)15)1e)18)17)1 4)13)

a.4
b. The order of a cycle is equal to the number of elements in its orbit.

c.o’=()0'=(45)237),6>=(273),0° =(45),0* =(237),6° =(45)273),0 () o' = |G|:6
=), t'=(14)3578), >=(37)58), *=(14)(3875) 7*=()="= ||
d. (18)(364)(57), (346), (18)57), (364), (18)(346)57), ()= ||=6,

(134)26)(587), (143)(578), (26), (134)(587), (143)26)578), ()= ||:6,
(13478652), (1485)(3762), (17538246), .. = ||=8.

e. The order of a permutation is equal to the least common multiple of the numbers of elements of the orbits in a
decomposition into disjoint cycles.

5=2+3, lm(2, 3):6
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15.
16.

17.

18.

19.
20.

21.
22.

23.

24.

25.

6.
7=3+4, 1cm(3, 4)=12

10=5+3+2, lm(5,3,2)=30
15=3+5+7, lem(7,5,3)=105

okay
[A cycle is a permutation having] at most [one] nontrivial [orbit].
For all positive #, A, [is the] sub[group of all even permutations] of S, .

a. false, but every permutation is a product of disjoint cycles.
b. true
c. true, but it wouldn't have been obvious that a permutation couldn't have been both even and odd

d. false, <(1 23 4)> < 8 contains the odd permutation (123 4) = (14)(13)(1 2) but none of
(123 4)0 (123 4)1, (1 23 4)2 =(13)24), (123 4)3 =(1432) is a transposition.

[=3fs|=38=0

f.false, §, = { } < >

}

g.true, A; = {8 o, 0 where = 1 2 3), al= (1 3 2) and the group is commutative:

e. false,

e o o
e |0 €
o e o
h. true
1. true

j.false, (1 2) and (3 4) are both odd permutations but (1 2)(3 4) is even.

e=( ), p=(123)=(13)(12), p, =(132)=(12)(13) arc even, u; =(23), u,=(13), pz=(12)arcodd.
e |pl p2
pl|p2 ¢
p2 e pl

a. By induction. For n=1, the only element of §, = {(1)} can be written as a product of zero transpositions. For
n>1, for any o € §,, the permutation ((m n)c does not move 7 so is a permutation of §,_; and can be written as a
product of at most 7 —1 transpositions. So (Gn n)((m n)c =0 is a product of at most » transpositions.

b.If a permutation o € §, is not a cycle it consists of at least two cycles. Since by (a) each cycle can be written as a
product of at most #—1 transpositions, ¢ can be written as a product of at most #—2.
c.

a. (z j)(b J XX x)(¢) = (b z 7 XX x)
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b. (¢ ))9) = 4)

26. Let Hc S,. Either 30 € H where 6 is odd, or all the permutations in H are even. In the first case let H, be the
set of even permutations of H, and let ¢: H, — H: A+ 6A. Since A is even and 6 is odd, Ac must also be odd. If
LN eH,:ch=0cA"= A=L",s0 ¢isa bijection.

§2.3 Cosets and the Theorem of Lagrange

1. 47+0={..., -8,-4, 0, 4,8, ..},
47+1={..,-7,-3,1,5, ..},
47+2={..,-6,-2, 2,6, ..},
47+3={...,-5,-1,3,7, ..}

2. 27={...,-4,-2,0,2,4,..}
47+0={.,-4,0 4, ..}, 4z+2={.., -2, 2 6, ..}
3. Zwyy =({0,..., 11}, +15), Z1, " (2) ,=10,2,4,6,8,10}
<2>12+o={o, 2, 4, 6, 8, 10},
<2>12+1={1, 3,5 7,09, 11}.

4. <4>12+o={o, 4, 8}, <4>12+1={1, 5, 9}, <4>12+2={2, 6, 10}, <4>12+3={3, 7, 11}.

6. po-{po- 1} ={po, 12}
P1 {POaﬂz}z{P1>52}>
.Ul'{Po,.uz}:{.“bPz}
51'{P0a/~12}={51>l73}-

7. {po-u2}-po={po, 12}
{Po’#z} P1={P1a51}>
{Pm.uz} N1={#1>P2}
{Po’ﬂz}'az ={52aps}

The left and right cosets are not the same.
8. Neither the left nor the right cosets form a group.



10.

11.

12.

13.

Po M2 P16 Iy Py O P; Po M2 P1 Oy Py Oy P3
Po |Po My pr 6y My Py 61 p3 Po |Po My P 01 My Py 6y p3
My My Po 61 P3 P2 My Py Oy My |y Po 61 Py P2 My P3 Oy
Pi|p1 6 P2ty 61 Pz K2 Po pi|pr 8 pa Ha 81 Pzt Py
6 16, p1 My Py Pz 61 Py My 61 |60 Pz My po P1 Oy Py Mo
Mot P2 6 p1opo Ha P3O Mot P2 6 p3 po By p1 O
P2 |P2 My p3 61 Uy Py 6y P P2 |P2 My Pp3 6y Uy Py 61 P
61 |60 p3 My P2 P1 Oy Po Mo 6 16, p1 My P2 Pz 61 Po M
Ps |Ps 61 Po My O p1 My Py ps |Ps 61 Po M1 Oy p1 My P
po-{po> P2} ={p0s P},
p1-{pos P2} =1{p1, P},
#1'{/’0)92}:{/41»#2}»
51'{P0apz}:{51>52 .
{Pos P2} Po ={po> P2}
{pos P2} P ={p1s s}
{Por P2} = {1, 12},
{P0>P2} g {51>52}

The left and right cosets of this subgroup are the same.

So, even a noncommutative group may (must?) have left and right coset partitions that equal, and thus a coset

group, if the subgroup is appropriately chosen.

This subgroup induces a coset group isomorphic to the Klein 4-group.

Po P2 P1 P3 Ky

s

5,

Po |Po P2 P1 P3 My
P2 P2 Po P3 P1 M2
PL|PL Pz P2 Po O
P3 |P3 P1 Po P2 O3
My |y My 6y 61 po
My |Hy My 6y 65 P
6, |16, 6 My My Py
6, 16, 61 Hy My p3

.,21},

2%)
t
6,
9}
P2
Po
P3
P1

9}
6,
2%)
t
P3
P1
Po
P2

Zos: B),, = s |[}3),, | = 2488 =3.

)= Pon

Ss< > Sz|/‘,u1‘ 3/2=

3.

Vil p u 6
e le p u o
plp € 6
uofp 6 € p
S5 |0 u p ¢




14.

15.

16.

17.
18.
19.

20.
21.

22.

23.
24.

25.

26.

27.

28.

b2
o=(1 2 4 53 6)=(1 2 3 5 4)= ‘<o>‘=5,
S5:(0) = |SL-,|/‘<0'>‘ =5)/5=24.

p=@1 2 4 53 6= ‘<u>‘=22=4,

S+ (1) = |Sﬁ|/‘<u>\ = 6l/4=180.
Insert “where 2 € G”.
Amend “ Hc G” (H is a subgroup of G).
a. true
b. true
c. true (every subgroup of prime order is cyclic (2.3.11), thus isomorphic to Z,,, and thus commutative)

d. false (the trivial subgroup of any infinite group obviously has left cosets)

e.true (H=¢H)

f. false

g.true (by Theorem 2.2.20)

h. true

i. false (not necessarily if the group is noncommutative)

j. true (because cyclic groups are commutative (1.5.1) and by the remark after 2.3.14)
Impossible, by the boxed remark after Example 2.3.3.
The improper subgroup of any group G.
The trivial subgroup of any group of order 6 such as Zg.

Impossible, since a partition of a set can never produce more cells than the order of the set.
Impossible, since by the boxed remark before 2.3.10 the order of each cell of the partition must be equal, and thus

equal 6/4= 1%, and the order of a set must obviously be integral.
The relation ~j is

ereflexive: VgeG: g~pge g9 ' =ceH,

e symmetric: Vg, 5’ €G:g~g 4’ = 49" € H, and because His a group, (gg'_l)_l = (g'_l)_lg_l =4 eH so
I ~rY

e transitive: Vg, 5/, 5" €G:g~r 5,0 ~r 8" = ' €HA g
(ﬁﬂ'_l) : (ﬂ'ﬂ"_l) ="

so it is an equivalence relation.
Let ¢: H— Hy: b hy. This function is

VheH:9h=lyeHy= ¢HcC Hy
Ve Hy= 3FAbeH:9h=hy= HycoH
sinjective: Vhg,hlge Hy:hg=hly= h=h",

7-1

€ H, and because H is a group,

EH)SO gNRg”’

e surjective: } = ¢H=Hjy,
so it is bijective.
For every left coset defined by some ge€G, Vghe yH= ke H,and then because 4! € G,
-1
(g_l) lo(g_l) ceH= gy 'eH= 3ecH:yhy'=h"= gh=h'y= gheHy,so gHc Hy. Conversely,
Hgc gH,so Hg=gH.
VheH, geG:hyeHy= hjegH= 3 cH:h=gh'= g 'ly=h"= 45 'hyecH.

27 and 28 together state that H c G induces the same left and right coset partition iff Vi e H, g G: g ' hye H.
We already know from Example 7 that this is equivalent to the existence of a coset group.
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29.

30.
31.

32.

33.

34.

35.

36.

37.

Counterexample: choose 2 =¢= (H =bH= H-= Hb) = bH = Hb, which obviously does not always hold, as
in Example 7, where p,H # Hp;,.
Vo,beG:Ha=Hb= Vh,eH:3h,eH:ha=hb= b, hao=b= beHa.
Vo,beG:aH=bH= Yh eH:3h,eH:ah, =bb,= h, =a"bhy= hh, =ab= bh, 6 =a"s0
VheH:ha = hhﬂhb_lb_l = ha'eHb'= Ha' < Hb™'. Transposition of ‘2’ and ‘&’ gives the converse, so
that Ha™' = Hb™.
Counterexample: choose 2 =¢= (H= bH= H= sz) = bH=b0"H= H=5bH whichis false if b ¢ H.
The order of any proper subgroup H c G must divide the order pg of G, so |H| € {1, b, q} is prime, so by (11) His
cyclic.
. . -1 Ce
Let ¢: {yH}yeG - {Hy}yeG :gyHw— Hy , which is:
® surjective: )
) oyl
VgeG:gyHe {yH}yeG = q)(gH) =Hy € {Hy}yeG = q)({VH}yEG) c {Hy}yeG
) -1 Lol
VgeG:Hye {Hy}yeG = 3dg eG:y He {yH}yeG = ¢({YH}}/EG) = {Hy}yec’
-1 o\
= q)(g H) = H(g ) =Hy= ¢({yH}yeG) 2 {Hy}

einjective: Vyg,4 € G: yH,5'H e {YH}}/GG . (/)(gH) = ¢(ng) N Hg—l _ Hg’_l, 5o

reG

-1 -1
VheH:3 eH: iy =iy = (h_lg_l) - (h’g'_l) = gh=gb > gheyH= gHc5H.
Transposition of symbols gives the converse, so gH < g'H .

So the function is bijective, which shows the existence of an isomorphism between the left and right coset partition,
and thus (for infinite sets, by definition) their equal size.

Suppose there were two elements ¢, 4 of order 2, then <c, pl> would generate a subgroup of order 4 (remebering

that the group is commutative):

¢ ¢ a cd
¢ ¢ ¢ a cd
¢ ¢ cc=e¢ cd ced =d
da a dc =cd dd =e¢ ded =dde =¢
cd | cd cde =ccd =d cdd =¢ cded =cdde =cc=e¢

By Lagrange,

<c, d>‘ =4 would have to divide 2» = 4% , but g is not integral.

VgeG: <g> c G . Since G has no proper subgroups, <g> =G. If Gis of infinite order, then <g2> c <g> =G
which contradicts G not having a proper subgroup, so G must be of finite order. Similarly, if K g>‘ is divisible by

n>1, then <g"> c <g> , again contradicting. So G must be of prime order.

We need to show that each of the elements is in fact a left coset of Kin G, that every such coset is an element, and

that the elements are distinct. So, let {ﬂi} be such that {ﬂiH } is the set of distinct left cosets of Hin G, and

0<i<G:H

{lai} A such that {b,-K} is the set of distinct left cosets of K in H.
0<i<H:K

. Vﬂi,b]- = ﬂibj eG=> ﬂib]-K is a left coset of Kin G;

* Vg eG: gK isaleft coset of Kin G, since U,ﬂiH: G= 3da,:gen;H= 3TbeH:yg=un;h,and since
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38.

39.
40.

4]1.

42.

43.

44.
45.

46.

Ujlaj-K=H:> 3bj:hebK= 3keK:h=bk,so gK=0a;b;kK=0n;b;K;

*Va,a' e {ﬂi}; b,b’ e {Zai} cabK=a''K= (a;Hare distinctin G) a=a"= bK=0'K,so
(b;K are distinct in H) b=10".

So U {ﬂib]-K} =G is a distinct left coset partition of G, so G: K = ‘{ﬂi}i =G:H -H:K.

1,7 . {bi}i

Obviously H is itself one of the left cosets of Hin G. Since there is just one other left coset, and since the cosets
form a partition of G, the other is G\ H. The same argument holds for the right coset partition, so the left and
right coset partitions are equal.

<VL> cG,so ‘<ﬂ>‘ divides |G ,thatis Im e N: m‘<ﬂ>‘ = |G|, so a” = VL‘G‘ = ﬂm‘<ﬂ>‘ =e"=¢.

The left cosets of Z in (R,+) are {;(+Z}XER. Then Vye R: Vx,x'e y+7Z ~ x,x'e[O,l[,

x—y,x'-yeZ
= |x—x'|=|(x—)()—(x'—)()| € Z" and |x—x'

S‘[O,l”<1,so |x—x'|=0:> x=x".

The left cosets of <27t> in (IR,+) are {){ +<27r)}ﬂ g Then
VyeR:Vxey +(27r)=> IneZ:x=y+n-2r= sinx =sin(}( +n- 271:) = sin y, so it does indeed make
sense to write the sine function as sin : {;( + (27[)}1 w [—1,+l].

a. The relation ~ is an equivalence relation because it is:
ereflexive: a~a <3IheH keK:a=hak <a=a;hk=c¢;

esymmetric: Va,beG:a~b= 3heH, keK:a=hbk= hlak ' =bh ' cH F'eK= b~a;
e transitive: Va,b,c:a~b,b~c= b, b’ e Hyk,k' e K:a=hbk,b=h'ck’ = a=bb'ck’k,bh’ € H, k’k € K, so
= a~c.
b.dheH keK:a=hk < acHIK.
a. Prove it is a subgroup because it satisfies the requirements of Theorem 1.4.14:

e Vo,0'€S, ,: (0' ° o")c = oc¢ =, so the subset is closed under the operation of S,;
¢ The identity permutation ¢ of A certainly has e(c) =c,50 €€, ;
*Voes, oclc=c,50 07l e S5
so S, . S8,
b. The identity permutation of S, is not closed in §, ;, so again by Theorem 1.4.14, S, ; € S,4.

c. §, ; is one of the left cosets {G oS, C} ¢ of §,,.
, [ oes, ,

VneN: Vi:0<i<n,iisa generator of exactly one subgroup of Z,, and conversely, any subgroup of Z, must

be generated by 7:0 <7< #, so it suffices to enumerate the generators of the subgroups. By Exercise 44, the

subgroups of Z,, are {Zd} and by Corollary 1.5.18, Z,; has ¢d generators, so n=+,. ;,¢d.

dln>

§2.4 Direct Products and Finitely Generated Abelian Groups

1.

2.

(0,0) (0,1) (0,2) (0,3)
(1,0) @d,1) (1,2) (1,3)
IZZ X Z4|=8 , SO it is not cyclic.

4 2 4

} . There is no element of order
4 2 4

Iy x4 = { } The orders are {;

(0,0) (0,1) (0,2) (0,3) I 4 2 4
Z3xZy=4(10) (1,1) (1,2) (1,3)7. Theordersare 13 12 6 12. There are elements of order
(2,0) (2,1) (2,2) (2,3) 3 12 6 12
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O X N T »

11.

12.

13.

14.

15.

(92

16.

17.

18.

19.

20.

=)

21.
22.
23.

|Zs X Z4| =12, so the group is cyclic.
lem(2, 2) = 2 (by Theorem 9).
lem(3, 5) = 15.
lem(3,9) =9.
lem(4, 6, 5) = 60.

lem(4, 2, 5, 3) = 60.

73 x ZS c ZgxZg, IZs X Zsl =24 (excepting the nonproper subgroup).

{{o, 10) ((1,1))}czz><zz.
(¢
{(0,0),(0,1), (0,2), (0,3)}
{0,0),(1,), (0,2, (13)} .
{(0,0),(0,2), (1,0), (1,2)}
ZyxZyx2, =V
, so the subgroups are
Dy XDy X2y £V
{0,0,0, (0,1,0), @,0,0), @,1,0)]

{0,0,0, (0,0,2), ,0,0), @1,0,2)}.
{0,0,0, (0,0,2), (0,1,2), (0,1,2)}
60 = 2235, so by Corollary 6
Z60 = Z4 XZ3 XZS
Zyy X Zs
VAR VM)
4 ({0,18,12,6}).
b.12 (by Corollary 6, Z3 x Z4 = Z5).
c.lem(3,4) = 12.
d.. VE Zz X Zz.
e.2-1-4=8.
({2,3}) :<{]}> =74,. The left cosets are Uie{O}le +i.

(2)+i.
(2)+i

P2>,U1) {po,P2,l1, s} The left cosets are Uie{po o1l

ZzXZzEVﬁ{

4 6) (2}) The left cosets are Uie{O 1}(
8,

6 10) ( ) The left cosets are Uie[() 1](

{
{
{
(11,8 =1po,111,8,p1,P 3,01, 12,05 =

Uie{(O,O), (1,00} <{<2’0>’ <0’l>}>' :

8=12% giving Z, X7y x 7,5, 74x7,, Zs.
16224,giving ZZXZZ XZZ XZz, Z4 X22XZZ, Z4 XZ4,

32=2° giving
Dy XAy XUy XXy X Uoy Ly XUy XLy XLy, Ly XLyXZy,

(P21 )i

D, . The left cosets are U

ie{po}

{0 01) 1,0)), {(0,1,1)),{(1,0,0)),{(1,0,1)), {@,1,0)), {(1,1,1)), } € Z, x 2, x Z,.

((u1,8,))-i
( [4,2),2, 3)) ((2,3))=({<0,0),<2,3),(4,2),(0,1)})=({(2,0),(0,1)}). The left cosets are

Zg XZZ, Zlé'

g XXy X7Z,,

g X1y,

Zy6 X125,

232 .
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24.

25.
26.

27.

28.
29.

30.

31.
32.

33.
34.

720 = 2%3%5, giving Zy X Zy X Zy X Uy X Ly X Ly X Us, Ly XUy X Ly X Ly X L3 X Ls, Ly XLy x U3 x L3 X Us,
Dg XUy X U3 X X3 X L5y Z1g X L3 X L3 X L5y Ly XLy XXy XUy X L9 X X5y Ly XVy XXy X Lo X s,

24 XZ4 XZQ XZS, ZgXZZ XZQ XZS, Zl6 XZg XZs.

1089 :32112, glvmg Zg XZg lel Xle, Zg lel Xle, Zg XZs XZIZI’ Zg XZIZI'
24:233,giving“2><2><2><3, 4%x2x3, 8x37;

25 = 52, giving “5x5, 257,

so 24-25 has 2-3=6.

Each commutative group of order m is isomorphic (by Theorem 12) to H Zp « ,and each commutative group of
1 i

order # to H Zz,»w' for some p;,p%,7;,7;. Then H Zp i X H Zp,;; is a group of order mn. Since p; ;tp;.
7 i 7 i ? i

there is no rearrangement of factors between the two ‘halves’ that gives the same order, so this product is unique for
the given ‘halves’.
Conversely, any commutative group of order nm can be written (by Theorem 12, reordering factors as required) as

IIZ ;—,XI IZ .

i Pi i Pi

Thus there are exactly |I I 'ZP ||I I 'Zpﬂ,f
7 i 7 i

10° = (2 : 5)5 =2°5°, By (23) there are 7 groups of order k. so there are 49.

a. For each order, the possible group factorings are:

2,11 (2)

3,21,111 (3)

4,31,22,211, 1111 (5)

5,41, 32,311, 221,2111, 1111 (7)

6,51,42,411, 33,321, 3111,222,2211,21111, 111111 (11)
7,61,52,511,43,421,4111, 331, 322, 3211, 31111,2221 22111,211111, 1111111 (15)

8,71,62,611, 53,521, 5111, 44, 431,422, 4211, 41111, 332, 3311, 3221, 32111, 311111, 2222, 22211,
221111, 21111111, 11111111 (22)

b.3-5-15=225; 15-15=225; 22-5=110.
a. true

=75 groups.

b. true
c. false
d. true
e.false ( Z, x Z is not cyclic whereas Zg is)

f. false (ngl =8 whereas Z, xZ, =8)
g.false? (there is no element of §; of order 8 that generates the subgroup isomorphic to Zg)

h. false ( Ks)l =1)

1. true
j.true

z,={0,1}.
a. 1, because every proper subgroup has fewer elements than the group.
b. e, because Vz € N :nZ=7.
|s;|=3=6.
a. true (Corollary 3.11)
b. false (the Klein 4-group V'is not cyclic, and |V| =4 = 22)

c.false (1 ({4, ¢}y =(2))
d.true ({{4,5, 6y =(1) = Zy)
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35.

36.

37.

38.

39.

40.

4].

42.

43.

44.

it

45.

921

e. true
f.false ( Z, £ Z3 both have Betti number 0)

g. true (by Theorem 16 G = Z.; x...,and Z.; is cyclic)

h. false (it could be that G = Z, X Z,; but there exist G for which it is true)

i. false (by Theorem 16, there is no isomorphic factorization containing Zy)

j. true
It is equal. For each commutative group of order p” the factorization of Theorem 16 gives the structure of a
corresponding group of order 4.
72 = 2332, so G must be isomorphic to one of Zy X Zy X Zy X ..., Z4XZ,..., ZgX....

a. In each of the three cases, G has one subgroup of order 8.

b. In the first case, G has three subgroups of order 4; in the second case, two (Z4 and Z, X Z, € Z4 X Z,); in the
third case, one.

By Theorem 12, G = x; va,, xZ". Then H=x; Zp_,l. x E™ since Z has no other elements of finite order, and
var,- are finite so each of its elements are.
The torsion subgroup of Zy xZx Z3is Z4 X E X Z3, which has 4-3 =12 elements; thatof Z,y, XZ xZ, is
75 X E X Z1,, which has 12-12 =144 elements.
The only elements of finite order in R* form its torsion subgroup ({—1,+1}) .
The only elements of finite order in C* form its torsion subgroup ({1, 7,-1,—7 })
By Theorem 12, every finitely generated commutative group is isomorphic to H = X; Zp_,i xZ". ExZ"is
obviously torsion-free, and x; Zp‘,-,- is its torsion subgroup.
c.Let G=X; X, Zp.’”f s Vi, 7:q;;24; jo,then T=x;7 e For each prime p;, g;; are its powers in the
i iij<n; Pi
factorization. Note that I reverse the order of the torsion coefficients because it simplifies the expressions.
a.G=LypxX2,50 1=0,1; nyg=Lm=1 py=2,p1=3; qoo=2,010=2. Then T'=27,, ;» =Z5.
b. G = 22131 X 22231 X 22251 5 SO T: 222_31 _51 X 222'31 X ZZI = ZGO X le X ZZ from

i=0,1,2; po=2,p=3,p,=5 my=3,m=2,m=1 qo0=2,901=2,900 =L 10=L, 011 =1, 450 =1.

\v(ﬂ’h%(ﬂ,ah,) € GXH: (ﬂ,h)(ﬂ,ah,) :(ﬂ'ﬂ,>h' h,) :(ﬂ"ﬂ>h,' h) Z(ﬂ’,h'>"(ﬂ,h),50 GXH is
commutative.

H={heG||(0)|=2}oE= vheH:(b)={c.i}.
® ¢ € H (identity)
evhe H: ()= (0)={et} = [r')=2= 57 e H (inverse)
e nl e H\NE:hh' =h™ 5™ =it =) = (oh)={e b 0} = [’ =2 (closure)
so Hc G.
aH={ne G |[p)=3}vE= viem:(0)={en.0).
® ¢ € H (identity)
evhe H: ()= ()= e,0? 0t} = {0} = |(1f1)|=3 = e H (inverse)
v (n): ()={e o (o))
by e H\E: \W=h: ()=(s")=(b") = e HUE (dlosure).
B=n': bh=c
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47.

48.

49.

50.

51.

52.

53.

54.

55.

so Hc G.
b.H={neGl|p)=4}oE= VheH:()={en.0? 57} Then ()={ci?} = [m)24= HeG.
c. For any #, the identity and inverse exist in the subgroup. Suppose # is divisible by , then

Vhe H: (hm)n/mz h' =e= Kth=%<n=> h™ ¢ H,so n must be prime.

a. By Definition 1.

b= (h,e)x (e k) =(heek)=(h,k)
C kb= (e, k)x(hye) =(ehke) = (h,k)
c.Vhe Hyke K,h=k: (he)=(e,h) > h=enk=e= HNK=E.

Vih' e Hy bk € K:hk=h't = (he)-(e,k)="se) (e,k)) = (he,ek) =(h'e,el) = h=h"Ak=1F . Also,

HxK=HXxK.

Consider the factorization of any finite commutative group by Theorem 12. If it contains a factor of the form

Z, X Z,, the group is not cyclic because that subgroup has no generator. Since the group is finite, it contains no Z

b }:> hle = kb .

factors. Any factors Z, x Z, where p# qhave (1,1) as generator, but factors £, X Z,» 2 £, X Z, have no
generator.

By Theorem 12, any such group is isomorphic to G = H ZZ E For each factor, p;” is divisible only by a power
of p, so the order of any element of Z 2.7 is a power of p. So the order of any element of G is (Theorem 9) the least

common multiple of powers of p, which is itself a power of p.
Is there a counterexample for noncommutative groups?
From the isomorphism,

39: GXK - HxK: W g,k),(5',K) € GXK:9(4,h) 0(5',8))=0(.8)(5',k))= ¢(ag",kK)), so then
v:G->H: g ¢1(g,e) is an isomorphism between G and H.

It is easily verified that Vr<n —1: (l 23 ...n)nir(l 2)(1 23 n)’ =(7f +1 7 +2). Then Vab:a<b,
(ab)y=(a a+l)(a+l a+2)..0-2 b-1)(b-1 b)(6-2 b-1)...(a+1 a+2)(a a+l). By Corollary
2.12, every ge §, isa product of such transpositions, so the given set indeed generates S,,.

A - (0,1
G >$ ©1)

- (1,0)
—

> > —p >

a. G will be commutative when the inner and outer #-gons have the same orientation.
b.Z,x72,.
clfnisodd, n=2m+1: ZyxXZ,=275XxX25,,,1 D Zy*xZ, itis (49) cyclic.
d. The dihedral group.
S =sin2mx.
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56.

57.

58.

59.

60.

6l.

62.

63.

64.
65.

66.
67.
68.

69.
70.

71.

72.

73.
74.

75.
76.

77.
78.
79.

80.

81.
82.

2
fx= sinfx .
f(x,y)=sin2nmx-sin2my.

. 2r o2
x, =SIN—Xx - -SIN—Fp=Y%.
flx,y) 3 ng

2 3
f(x,y) =sin2x + cos3y :sin2—n27rx + c052—”27ry

2n 2r
Tl(‘x’y): x+7)y > Tz(x’)’)= xa)""?

flx,y) = sir{lZ arctan%j.

. y+5
x,y) = sinf 12 arctan: .
flx,y) ‘{ x—\/g]

e the rotation over zero degrees is the identity isometry (identity)

. -1 -1 .
eif rot,€e H= rot, € G = rot, =rot, € H (inverse)

*if rot,,roty € H = rot, orotg € G= rot, orotg =roty,g € H (closure)

so H ¢ G. An isometry is either orientation-preserving or not, and isometry preservation is isomorphic to 73 (e.g.,

the composition of a preserving with a non-preserving function is non-preserving, 0 + 1 = 1). The isometries in H

are all the orientation-preserving ones. If there is at least one orientation non-preserving isometry in G, then
G=HxZ,= |G|=2/H|. Otherwise, G=H.

rotation h-reflection v-reflection glide isomorphism
Z

D,

7.X 75

D,

D, X7,

Z

7ZxD,?

< Z =< =< Z ZZ
Z Z < Z =< Z Z
< Zo< ZZ < Z
<= Z Z Z Z2Z

a. Qe {0",900,180",2700}; b. yes; c. no. (see left figure)

a. fe {O°,180°}; b. yes; c. yes. (see center figure)

a. no; b.no; c. no.
a. no; b.yes; c. no.

a. Qe {0",1800}; b. yes; c. no.

a. 6 e {O°,120°,240°}; b. yes; c. no. (see right figure)

a. O e {O°,120°,240 °}; b. yes; c. yes (? book says no).

a.no; b.no; c.yes; d.(1,0)and (0,1).

a. Be {00,90°,180°,270 °}; b. yes; ¢. no; d. (2,0) and (0,2) (why does the book say “(1,1)” and not just
(((1,0)?7?).

a. 6 € {0°,120°,240°}; b. no; c. yes; d. (1,0) and (0,2)

a. 6 € {0°,120°,240°}; b. yes; . no; d. (0,1) and 1.43).

Space rotation of a cube is a permutation of its four diagonal axes, so G < §;. How many ways are there of
permuting them? Fix one arbitrary axis— there are 2-4 =8 ways of doing this. Then there remain three 120°
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rotations along that axis, giving a total of 83 = 24 permutations. So G = §;.

§2.5 Binary Linear Codes

A

10.

11.

12.

13.
14.

lon o

(g

d

o

7\'»—4
=

w o
=

T ]
~

0B007EF7F2500257F39 (hexadecimal).

“GONE_HOME”.

Xg =X1+X);, X5=X]+X3; Xg =X)+X3.

000000, 001011, 010101, 011110, 100110, 101101, 110011, 111000.

An error in one bit generates an error in two parity bits; an error in two bits also generates an error in two parity
bits; an error in three bits is never detected.

One- and two-bit errors both generate errors in two parity bits, so only one type can be reliably corrected.
C+{000111} ={000111 ,001100,010010, 011001,100001,101010,110100,111111 }
a. 110; b. 001; c. 110; d. 001, 100, 111; e. 101.

1 1 01 0
H=|1 01 0 0.
0110 1

oS = O

H-[io111]" =[100]" = 110,

.H-[001011]" =[000]" = 001 .

T

H-oi1]’ =[o11]" = 110.

]
H-[101010]" =[111]" = not decodable.
]T

_H-[100101]" =[o11]" = 101.

000000 000
000001 001
000010 010
000100 100
001000 011
010000 101
100000 110

Hw corrected code
100 110011 110
000 001011 001
011 110011 110
111 incorrigible

011 101101 101

a. wtiw) =7; b. wt(v) =6; c. »+»=1010011001 ; d. 5.
VreB" v eB":v+r =0 Vicvi=v,= vl=v.sou-v=u+v =u+»

Because it has a “1” bit in each position where a transmission error occurred.
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15.
16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

Because # — v has a “1” bit in each position where # differs from ».

a. d(u,v) = 0 u and v agree in each bit position & # = ».

b. In every bit position where # difters from », » differs from .

c. If » differs from w in some bit position, then # differs from » or w differs from » in that position, so
d(z,v) +d(w,») 2d(u,w).

d.If u; = »; for some bit position 7, then also #; + 0 =»;+0, u;+1=p;+1,s0 u+w=r+w.

B” = (z,)".
* 0000000 =¢ € B”; 0000000 € C = ¢ € C (identity)
*Vxe C: %= (T ,1%,%;¥45576%7) (inverse)

=(9'01972763974)(901+x2+x3)(x1+x2+x3)(x1+x2+x3)
= (01X 270384 )Ry + X2+ X3)(F 1+ %3+ %4 )(Fr + T3+ %4) € C
e Vx,ye C:x+y =
(1202050 g0 207 )+ (01929 5 495767 7) =
(-’C1+)’1 XytYy X3tYz X4ty Xgt); Xgt)g x7+y7)=
(x1+yl Xptyy X3t); X4ty
(X +xy+x5) +(y +02+03)
(1 +x3+2x4) +(y1+73+54)
(X, + X3 +2,) +(0,+03+5,))=
(xi+yy x by, Kty Kyt
(0 +y)+(x, +y5) +(x5+3)
(1 +y1)+(x3+y3)+ (x4 +74)
(x2+y2)+(x3+y3)+(x4+y4))=
((x+y)1 (x+y), (x+y); (x+y), (x+y)5 (x+) (x+y)7)EC

so Cc B’
l6d 15
Vede Ciczd:d(e,d) =dc—d,d—d)=d(c—4,0) =Wt((£—ﬂl) —O)ZWt(C—ﬂl>,WhCrC ¢ — d is some element of

C.

m
— >
d=m+1
|
da
m
—>
Ad=2m+1
-

a

From Exercise 19, the minimum nonzero weight of code words is the minimum distance between code words.
Then we can detect 2t+1 =m+1 = m= 2t and correct 2t+1 =2m+1 = m=1 errors.

For there to be a minimum distance of 3 between code words, changing one bit in each of two code words may
map those two code words into the same coset. The number of cosets is thus the number of ways of changing 0 or

1 bits in a code word, so 2" ¥ >1+n.
Similarly, the number of cosets is the number of ways of changing 0, 1, or 2 bits in a code word, so
2" > 14m +%n(n —1).
Simply try the formula with increasing value of #:
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k m n—k
a.2 3 3
b.4 3 3
c.8 3 4
d.2 5 5
c.4 5 6
£.8 5 7
B ) .
1 1
26. G= 1 1 1|. By Exercise 24, n— k= 4.
1 1 1
L 1 1 1]
1 11 |
1 1 1
1 1 1
27. G= 1 1 b . By Exercise 24, n — k> 4.
1 111
1 1 1
1 11
i 1 1 1]

13
28. a.wt(0)=0= 0e H (identity). Vhe H: hlt=h= wt(h_l) =wt(h) = x e H (inverse). Finally, see that
wt(x +y) =wt(x) + wt(y) — 24, where a is the number of positions where x; =y; =1 (closure).

b. A word is either even or odd. Let x € G be odd, then Vi e H:xbis odd, and because G is a group, £H is a coset
of Gso G=HuU xH.

29.

3.1 Homomorphisms
1. Ya,b eZ:¢(ﬂ+Z b)=¢ﬂ+z¢b.
2. ¢(+pd)=9l=1, 92+Z¢1=0+,0=0.
3 Ya,b eR’ :(I)(ﬂb)=|ab|=|a|-|b|=¢u-¢b.
4 Vabelg:a=2ay+ay,b=2b+b
¢(”+Zo b) = ¢(2(n2 +b2) +z, (ao +170)) = (ao +b0)mod2 =
mo +2, bo = 9(20, + 1) +2, (20, +b) =¢a+,, ¢b

5. (D(S +z, 1) =¢0=0; ¢8+z, ¢1=0+z, 1 =1. ¢isan ‘even-odd’ calculator, but in Zg, 8 and 8 + 1 are both even.
6. VabeR:¢p(a+,0)=2""=2"2"=¢a ¢b.
def.
7' Vgnﬂ; € Gi ¢l(ﬂtﬂz,) =(51)"‘)gi'ﬂ;)"')51’) =(51)"‘)gi"")gr)' (51)"'3ﬂ;)"‘)67’) =¢iﬂi ¢tﬂ:
1

8. If Gis commutative, Vg, 4" € G : ¢(gg’) = (g ’)7 = g’_lg_l = g_lg’_l =dg- ¢y . If Gis not commutative, f'is
not generally an isomorphism.

&(f+g) d2f &
LS L LIy
dx dx dx

4 4 4
10. Vf,g eF:¢(f+g)=J0f+gdx =J0f dx-l—Jl)g dx =9f -¢g.

9. Vf,geF:o(f+yg)=
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11.

12.

13.
14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.
26.
27.
28.

29.

30.
31.
32.

Vi, geF:0(f+g)=3(f+4)=3f +35=0f +95.

{1 0] [0 0} [1 0} 1 0{1 0] [0 0} 1 0 0

+ =¢ = =1; +¢ = + =0+0=0.
0{0 o] [0 1 0 1] o1 0 0 o 1] |o 0 1
VA,BeM”:¢(A+B):tr(A+B):z.aﬂrbi:z,nﬁz,bi:trAHrB.

Since GL(n,R) c M,,, the proof of Exercise 13 holds.
1 1
fy=x= o(r+f)=] (£ f)w)dr =] #7de =4s°

()= [ £ =[rds=te = o(r)vo(r) =7

Ker¢ = A;.
O4: 22— Z:n+ 4n is a homomorphism by Example 7, and y,: Z— Z;: n+> nmod7 is by Example 10, so
O=yY70¢0,, ¢l =4-1mod7 =4mod7 =4 is a homomorphism. Then

Kerg = Keryy o ¢y = (y7004) " 0=0," 72 =22 A7 =7Z; 925 =(y7°¢4)25 =7,100 =2.
Letd=y10°0s; ¢l =6. Then
Kerg =¢"™0 =(y 1o °¢6)im0: b6
First, notethat 1 4 2 6)2 5 7)=(1 4 25 7 6). Let¢9:Z— Sg:n—>(1 4 2 5 7 6)", then
Kerg =¢™() =67Z; ¢20=(142576)* =1 2 7)4 5 6).

Let §:Z19— Zzg:n > 85, n; ¢1 =8, then Kerg=¢™0=27n71y =10Z+5; ¢3=8, 3=4.

inv

102=27N72=22n7Z=5Z; ¢18=(y19 °9s)18=719108=8.

Let ¢: 755 — Ss:n (2 51 4 6 7))"; ¢1=(2 5)(1 4 6 7), then

Kerg = ™0 =47 ~ Z,, ={0,4,8,12,16,20}; 14 =(2 51 4 6 7))’ =(1 6)(4 7).
Let ¢9: ZxZ— Z:(x,y) > 3x —5y; ¢(1,0) =(2,-3),¢(0,1) =(-1,5), then

Kerg =¢™0 ={(x,y) €ZxZ|3x-5y=0}; ¢(-3,2)=3--3-5-2=-9-10=-19.

Let ¢: ZxZ— ZxZ: (x,7) - (25 —y,-3x +5y); ¢(1,0) =(2,-3),6(0,1) =(~1,5), then
Ker¢ = ¢™™0 ={(x,y) eZxZ|2x—-y=0A-3x+5y = 0}= {(0,0)}, because

2x—y =0 =2 =0
{x J - {y o - {y ,and ¢(4,6)=(2-4-6,-3-4+5-6) =(2,18).
-3x+5y=0 -3x+10x=7x=0 x=0

0:ZXZ— S :(x,9) > ((35)2 4) (@ 7)(6 10 8 9)); ¢(1,0) =(3 5)2 4),6(0,1) =(1 7)(6 10 8 9),

then Kerg = 9™ 0 =2Zx4Z; ¢(3,10)=(3 5)2 4)) (1 7)(6 10 8 9))*=(3 5)(2 4)(6 8)10 9).
Thercare two: ¢1: Z—> Z:iv— i, ¢_y:Z—>7:i+— —i.
VueN: ¢,:Z>7Z:m nm.

There are two: ¢1: Z— Z5:i+—> imod2; ¢y :Z—>7Z5:i+— 0.
Va,y €G: ¢ (xy)=¢,x9,5y= Jw) == w=xp=> y=p=> g=c.

V,y €G:9,(00)=0,5-0,0= sog =pg aw =aw > geG.
A group homomorphism of a group G into a group G'is amap ¢ : G— G’ such that forall x,y €G ...
OK

a. true (odd times even equals even times odd)

b. true (the trivial homomorphism)

c. false (the trivial homomorphism)

d. true (Corollary 18)

c. false (there are 4 cosets in G, but 4 does not divide 6)

f.false (¢ is a function, so |(])G| < |G| )
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33.
34.

35.
36.

37.

38.
39.
40.

4]1.

42.

43.

44.

45.
46.

47.
48.
49.
50.

51.

52.
53.

54.

55.

g. true (the trivial homomorphism)
h. true (the trivial homomorphism)
i.false (¢e-gpe =ge= ¢e =¢ = ¢ € Kerg)
jfalse (¢: Z,— Z X 2,0+ (0,0))
No, there must be 5 cosets in G, but 5 does not divide 12.
O:2Z1,— Z4:i— imod4.
O: Ly x Ly — ZyxZs5:(G,5) - (4,0).
No.
73— S3:i> (12 3).

¢
0:7— S3:i > (1 2 3).
O:IxXL— 27 :(x,y) > 2x.
0:27—>ZxZ:iw(i,0).
0:D, — S {Po»PpPz’Ps (1 2>f .
HyH5,81,6, (1 2)
O0:8 > 8450 5.
seven (1 2)0
sodd (1 2)'
¢ partitions G into |¢G| cosets (Theorem 15), so |¢G| divides |G|. Also, since ¢ is a function
bel<lel= el < == e <=.
0GC G'= pG|<|6]|<~. Also, 96 c G'= PG| divides |67].
VgeG:g=-m, = Q=0 0, =9, = lUay, =10, =lg= ¢=U.
By Exercise 44, |¢G| divides |G|, SO |¢G| =1 (trivial homomorphism) v |¢G| = |G| (injective map) .
Obvious. Ker¢ =A4,,.
Vg €G:(ag')=v g 49') =105 Wy’
¢G commutative < Vb edG cH: b =hh < h=kb" < Wb h!=¢
Theorem 12.2
o Vs eGo(gmwa) = e w) - (e) =
& Vg5 €Gigu " g eKerg
Vu,melZ :¢(nm) =a"=a"a"=¢n-om. o7 = (ﬂ), Ker¢ = ZK”X (where Z., =E).

¢IS4—>532{

Y m,n eZXZ:¢(mn)=¢m-¢n<:> .
0 ((my,m2) - (r1,m2)) =9 ((my,m2))- ¢ ((m1 ) &
o (mymy ,mamy) =@ (my,ms)- 9y ,ms) &
BT = " pM " &
kb = bk, so ({lo, k}) is commutative

VihkeG:hk=kh << Giscommutative.

.. g o ity,] [ h=e
VijjeZ, :0ij)=¢i-¢f o b ' =h'N <= Khx:n@ h" =e.

3.2 Factor Groups
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Y ® N ke

—
e

[—
—

12.

13.

14.

15.

16.

17.

18.
19.

20.
21.

22.

23.

lzs/(3)=zs|/K3) = 6./2=3.

2. x 20,/ (2)x 2) = [ /) |21/ 2) = 2 2= 4.

|z, x /{2 1) =8/2=4.

|25 x 2510 x 5| = |z:/10)]- |25/25| = 3-1 = 3.

|22 <z {0, D) = |z, < Z.]f|(1.0) =874 = 2.

212 % Z15/((4,3)) = |22 x Z:s|f|{(4.3)) = 2166 =36.

|22 % 83 (1 p0) = 22 < il p0)) =12/ 6 =2

|21 x Z1s/{0, 1)) = |20 x Zas|f|( 1.1 =161 161 =1.

b+e), m =h +<4)|z12/<4) =f1,2,3,4 =0} +(4) = 4.

ks +(12 o 12 =|2+(12)|Zm/(12) =[2.4,6,8,10,12 = 0} + (12)| = 6.

2,1) +{(1,1)) =[1,0) +{1,1)) =[(1,0),2,0),3=0,0)} +{1,1)) = 3.
k2’0>+((1’1))|z4xz4/((1 " =f2,0),(4=0,0)} + (1,1} = 2.

=f3.1),(6=2,2=0,(5=1,1),(4=0,2=0)} +(0,2)) = 4.

75 %26 (1, 1)) 7y xZ6[{,1))

31)+{1D)

k
k
[3.)+(0.2)
k
k

7, x24 f{(1,1))

7, x5 f{(0,2))

33)+{1,2)) =|4=0,5)+(1,2)) =f(0,5),(0,10 =2 =0)} +{1,2)) = 2.

2,0) +{(4,4))

Zy xZsJ{a,2))
=[-2=4,-4=4)+(4,9))

7, x7s f{(1,2))

=10,0 +(4,9)

=1
76 x25 f{(4,4)) Zo xZs [ ,4)) 76 xZs f{(4,4))

. -1 . -1 -1
ip, 183> 83:0 > prop :’pl{po’.ul} ={p1pop1 =pPo, P1H1P1 =u2}-
Replace “for all # € H” with “forall ge G”.

The book definition says “ iy~ € H”, but this definition is equivalent.

Replace “into” with “onto”. This makes the homomorphism an isomorphism, which is what an automorphism is
supposed to be.
A normal subgroup can be used to form a factor group.

a. This doesn't necessarily have to be nonsense, but apparently students that write 2 € G/H don't realize that

a=y4,H, g, €G. Since they don't realize that elements of G/ H are sets (cosets of H), the proofs make no sense.

b. “Let aH and 6H be two elements of G/H.”

H normal G commutative H normal

c. VaH,bH € G[H :(aH)(bH) = o(HH)H = a(bH)H = (bwyHH = bHa)H=(bH)(aH).
a.See Exercise 21a.
b. See Exercise 21b.
Theorem 4
. VgHe G[H:3neN: 5" =e = (yH)" = 4"H=eH=H,which is the identity clement of G/H.

a.true (if N is not normal, the factor group does not exist— Definition 6)
b. true (Example 8)

commutative
c.true(zé:G—)G:xr%ﬂxﬂ_1 = xgg_l=x)
d. true (G cannot have more cosets than elements)
e. true (Exercise 22)

f.false (|2/22]=2)
g. true (Exercise 21)

h. false (G/ G is commutative)
i. true (Example 7)
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24.

25.
26.

27.

28.

29.

30.
31.

32.

33.
34.

35.

36.
37.

38.
39.

40.

j.false (nR=R= R/uR=E)
All permutations of A are even, and those of $\A4 are all odd. {A,S \ A} are the cosetsof Ain §. If o € §, is even,
so are A = Ao similarly it ¢ is odd.

|0'evan OcvenA Z2|0 1
Ocvend | Oevend  Oodd4 o 010 1
Oodd4 | 6odd4  Oevend If1r o0

The group is isomorphic to Z,.

G is commutative, so the subgroup 7'is normal in G.
YT eGIT :IneN :(4T)" =T= 4'T=T= 4" eT,so G/T isindeed torsion-free.
e VHCG: iL,(H) = H (reflexive)
*VHKcG:H~K= 3yeG:i H=K= VkeK:3heH:ih=k= (symmetric)
i k=i igh =i (ghg”) = (g*)(ghg*)(jl)_l =h= i K=H= K-H
e VHK,LcH: H~KK~L= 354€G:K=iHL=i K= (transitive)

Vhe Hiigh =(g0)gn) = aohs”a™ = slato™)s

iﬂrqH:L: H~L

=

Y= g i h)g ™ =i i gh =i i b =

If His normal to G, then by the discussion after Definition 9, the image of H under all the inner automorphisms is
H itself. So His normal ift its cell of the partition under conjugacy contains only itself.

{ipz :iug > ipo :illz 5 ipl :iul}:{{PO "ul}’ {pO ,,Uz}’{Po ).LLS}}'

Let HK G benormal. Vge G: g(HNK)cHjrg(HNK)cKy= gHNK)cHjnKg=HNK)y.
From the converse, g(H N K) = (H s K) J.

Suppose there were two distinct ‘smallest” normal subgroups containing S, then their intersection would be smaller,
contain §, and be (Exercise 31) normal.

If G has one subgroup H of order |H|, then H must be invariant under all inner automorphisms, so (by the
discussion after Definition 9) H is normal.

H NN cC H by Exercise 1.5.54. Yhe H: h(HnN K) ceHNnK= hHN K) =H N K, and by the converse,
(HAK)k=HANK,so HlHANK)=(HNK)h.

a. Vge G, oiﬂ:‘v’xeG:(ie Oiﬂ)x=ieif,x=iﬂx=> i, o1, =1, (identity)
VgeGiipoi,:VxeG: (iﬂ—l oiﬂ)x:iﬂfl(gngl):gfl(gngl)g:x:> i1 00, =1, (inverse)

Vg, bk eG: (z' 501 h) 0ty =1,0 (i p ot k) because function composition is associative (associative)

b.

Let ¢ : G/H - G’[H : yH > (q)g)H'. This is a homomorphism if V4H, g’H € G[H,
0’ (gH-g'H)=¢ gH- 9’ y’He ¢ (a)H) =9 gH ¢ y'H &

0w H =0 H) (9" H)= g o) H = olaw’) =05 05
which holds because ¢ is an isomorphism.
a. H= {M € GL(%,R) | det M = 1} is normal in G because

VgeG,h eH:ghgf1 eH < detghg_l = cletg-dctla-detg_1 =detg-deth- (dctg)_l =deth =1.
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b. H= {M € GL(n,R) | det M = il} is normal in G because of a similar argument.
41. a. VAB,CcG: (AB)Cz {ﬂb| neAb eB}C ={(ﬂb)£ |aeA,beB,ce C}z {ﬂ(bﬁ)| } =A{b£| } =A(BC)

b.

(associativity). Ec G= VH cG:EH :{eh| ceeEhe H} :{h | b eH} = H (identity). Suppose G has an
inverse G' in its power set, then GG’ = E = {gg’| VAKEN &= G'} :{e}, but Hgg'| }l > |G| 2IE|

c.Let M= {m c G |mis a coset of N} ={gN| JE G}. The operation is associative, as shown in (a).

§3.3

W XN D

e = =
w b = O

14.

15.

16.

VgN e M: (gN )N = { g}NN = { g}N € N, so Nisan identity in M. Finally, because N is normal in G,
VgN e M: (Jle) : (gN) = ({gil}N) ({g}N) :{gfl}N{g}N: ({gil}{g})NN :{B}N:N (inverse).

Factor-Group Computations and Simple Groups
Z, x4 [{0,1)) =2, x{0} = Z,.

Z,xZ2,f{(0,2)) =7, x Z,.

Z,x2,f((1,2))=2,.

Zy xZgf{(1,2)) = 7.
Zy xZy x Zgf{(1,2,4)) =7, x Zs.

7x7f{0,1))=2.
7x7f(1,2))=2.

Zx7xZf{(1,1,1)=7ZxZ.
ZxZxZ4[{(3,0,0)=25x7Zx2,.
Zx7xZs[(0,4,0)=7x7, xZs.
7x7f(2,2))=2,x7.
Zx7xZf((3,33))=23xZx1Z.

n

7D, ={ Po ,pz}. Is the center a natural choice for a minimal normal subgroup? In any case,
D,[Z= {pOZ, P2, IWZ, 51Z} is commutative, by manual verification, so by Theorem 20 Z < C. But
D, [E = D, is not commutative,so E¢ C= C=Z.
First, note that for any commutative group Va,b € G : aba o = ﬂb(bﬂ)_l = (ﬂb)(ﬂb)_l =¢,s0 CG=E. Then,
7 73 = Z3,and by Example 19 Z §; =E . Further, CZ3; = E, and by Example 21 CS§; =A4;. So
ZZ3%x83) =Z3xE, C(Z3x8;)=ExA;.
Z(S;xD,)= 7S, xZD, = (Example 19, Exercise 13) E x{p,,p,}
C(8;xD,)=CS8;xCD, = (Example 21, Exercise 13) A;x{p,,p,}

Subgroups of Z4 x Z, with one generator (cyclic):

<..> {<...>} [...] Zy xZyl<...>
(0,0) (0,0) 1 Zy X2y

(0,1) (0,0) (0,1) (0,2) (0,3) 4 Zy X2y

(0,2) (0,0) (0,2) 2 Zy X2y

(0,3) ~ (0,1)

(1,0) (0,0) (1,0) (2,0) (3,0) 4 VAR YN

(1,1) (0,0) (1,1) (2,2) (3,3) 4 Zy

(1,2) (0,0) (1,2) (2,0) (3,2) 4 Z,4 (figure left)
(1,3) (0,0) (1,3) (2,2) (3,1) 4 Z, (figure center)

53



17.

18.
19.

20.
21.
22.

23.
24.

25.

26.
27.
28.

29.
30.

(2,0) (0,0) (2,0) 2 Zyx 2y
(2,1) (0,0) (2,1) (0,2) (2,3) 4 Zy
(2,2) (0,0) (2,2) 2 Zyx 2,
(2,3) ~(2,1)

(3774) - (l’n)

Subgroups with two generators (not cyclic), with order less than or equal to 4:

(0,2) (2,0) (0,0) (0,2) (2,0) (2,2) 4 V (figure right)

(0’2) (2)2) - (0’2) (2’0)

(2’0> (272) -~ <270) (0’2>

There are no subgroups with more than two generators with order less than or equal to 4.

L] L s A ) )
) L I L] L
& A : ) )
A A s A | & &

“The center of a group G is a set containing all...”

The book uses “ zba™'™'”, but this definition is equivalent.
a. true (Theorem 9)
b. false (by Exercise 16, G/G =E)

c. false (éIR/Z +%|R,Z =0gjz)
d. true (ﬂw)

1 1
1 El[R/Z - 3|R/z )
Exercise 14)
g. false (not C< H but Hc C)
h. false (when G is simple and commutative)

i.true (By Theorem 20, the commutator subgroup is normal to G, so if G is simple then Cis trivial or nonproper.
But if C were trivial, then G/E =G would be commutative. So C is nonproper.)

e. false

f.true

o~~~ —

j. false (by Theorem 15, Ajs is nontrivial, finite, simple, and of 5! nonprime order)
{feF|fo=0}cF.
{feriro=1}cF".

The cosets each represent a specific additive discontinuity, of the form #- G(x - 17) , where 0 is the step function. An

element of order two would represent a discontinuity that is its own inverse, which under addition could only be the
identity discontinuity, which has order one.

See Exercise 22. Each discontinuity with 2 < 0 is its own inverse under multiplication, and has order two.
z0U=U= Ufz,U=E.

1), ={-1+1 y/¢-n)=v.

(z,,) =0 U/(zn) =U.

Rz =[01[=U.

Zhas 7[27 =7,.

Let G=7,x7Zy,then Z; xZy =7y xZybut Zy X ZufZy X7y =7y X 7Ty %= ZyxZy|ZyxZ)=71%x7Z,.
a. The center of every commutative group consists of all the elements of that same group.
b.Suppose 3z€ ZG:Vge G: zg= yz= V3" e(z), neN:z"g= 42" s0 (z) is normal to G and, since G is

simple, wither trivial or nonproper. Since (z) is commutative but G is not, (z) =E,so Z=E.
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31.

32.

33.

34.
35.

36.

37.

a.If G is commutative, then G = G/E is too, so by Theorem 20 Cc E= C =E.

b. Since G is not commutative, by the same argument C ¢ E= C #E. Since G is simple, C must then be
nonproper.

simple group G not commutative commutative
center ZG E G
commutator CG G E

If H ¢ G such that G/H exists, then H is normal to G. Since G: H>1= H c G, and since H is nontrivial
H > E. So H is a proper nontrivial normal subgroup of G, so G is not simple.

Vg€ Gl g ON=ON- g’ = $9™ g 9N =N -96™ 5" = ¢(9™ g -N)=¢(N- 9™ 5’) =
¢i“"g’-N= N- q)i“"g’ & Vye ¢i“"g’ :gyN =Ny & Nis normal.

Suppose G[Z G is cyclic, then Ig* ZG e GIZG :(g* ZG)= G[/ZG,and
VgeG:dneN: »ge (g*ZG)n =4*"72G= 3JzeZG:g=4*" 3. Then

’ no _xn’ _s

z'=zg*" g*" 2’ =

’

Vg, €G:3z,2" € 2G,nn" eN: g5’ =(g*" z)(g*", z') gt g 2 =g

)n+n'

g gt = g s = (g0 0" 5) =g
so G is commutative. So if G is not commutative, G/Z G is not cyclic.
Since |G| =pyq , the order of any subgroup of G must (Lagrange) have order pg, p, 4, or 1, and the resultant factor
group must therefore have order 1, g, p, or pg. By Exercise 35, the factor group G/Z G is not cyclic. Since all
groups of prime order are cyclic, the factor group must have order pg, so |Z Gl =l1= ZG=E.
a. (z 7 k) = (z J )( 7 k) , so every 3-cycle is the even product of transpositions and is therefore in A4,. Obviously A,
only contains 3-cycles if # = 3.
b. A, consists of all products of even transpositions. Every type of even transposition
(ﬂ b)(ﬂ b) = (ﬂ b c)o; (ab)(a d) = (u plb); (ub)(c pl) = (uc Ia)(a ¢ d)
can be formed from 3-cycles, A,, is generated by the 3-cycles.
c.For any 7, s: (1/ si)z(r s k)(r s ]')2(1/ xi) = (Vi s)(r s k)(V J S)(V s i) = (z 7 k) , SO {i(V s z)} generates every 3-cycle in
A,, and therefore A, itself.
d.Let N be normal to A4,, and El(r .vz') € N, then Vj: ((V s)(z j))(r s i)z((V s)(i j))_l = (1/ sj) eN,so
[i(rsicN= N=4,.
¢. First, ‘canonicalize’ the elements of N into products of disjoint cycles. Then, one of the following cases must hold:
1 N contains a 3-cycle, so by (d.) N=A4,,.

2e N contains a product in which at least one of the cycles has length greater than 3, 0 = /.L(al Ay a3 ... ﬂy) . Then

_j0€N cleN
0'_1(111 Py ﬂg)()'(ﬂl P 113) = (h eN) o'h e N, and
O'il(ﬂl @ ﬂg)a(ﬂl 7% ﬂg) (,U(VI»] ap az. ))_1(ﬂ1 ay 01«3)6(01«] ay ﬂg)_l =
disjoint
(ﬂl a, az. r)_l,u_l(al a, ﬂg),u(ﬂl a,as ... a,,)(al a, ﬂg)_l =
(ﬂl ay a )_1(ﬂ1 a, ﬂ3)(ﬂ1 Ay iy ... ﬂr)(ﬂl a, ﬂs)_l =
( r)( )(3<k<1 ”‘k) (‘7‘1 az a )

so Case 1e applied.
3 N contains no single 3-cycle or products with cycles of length greater than 3, but contains a product of at least two
3-cycles, 0 = ,u(ﬂl a ﬂg)(ﬂ4 as ﬂé). Then

leN
O'_l(ﬂl @, VL4)G(VL1 P ﬂ4)_10 (heN)O' h € N,and
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38.

39.

40.

disjoint

= (PL4 ag ﬂé) (ﬂ’l a, ﬂs)_l(ﬂl 2, ﬂ4)(ﬂ1 a, PL3)(VL4 ag ﬂé)(ﬂl 2, PL4) =

(ﬂl a2y A, a4 ﬂ6)(ﬂ5)

o Nay ay a,)o(ay 2, a,)

so Case 2 applied.
4e N contains no products with cycles of length greater than 3, no products with more than one 3-cycle, and no 3-
cycles, but contains a product with one 3-cycle, o = /,t(ﬂl @, ﬂg) , where i is an even product of 2-cycles. Then

U are
ceN disjoint 5 transpositions

o’ e N, and o = yz(nl ay a3 = M ﬂg)z = (ﬂl a3 VL2), so Case ¢1 applied.
5e N contains no products containing cycles of length greater than or equal to 3. Since N is nontrivial and consists
solely of products of even transpositions, it must contain an element ¢ = ,u(ﬂl ﬂz)(ﬂs VL4) . Then
0 O'EN ocleN
o (ﬂl P ﬂg)O'(ﬁLl P ﬂg) (heN) o'h e N, and
disjoi
o Nay ay m3)o(ay my a5) = (as as) (a1 m2) (01 a2 a3) (2 35) a3 08 ) (01 25 13)

Call this product o. Since # =5, there is an a5, and let = (VLS m VLS) . Then

= a3)(as ay).

-1 ®€eN

ﬁ_laﬂa=(ﬁ_l)a(ﬁ_l) o = (yeN) yx e N, and

B~ o= (ﬂs m ﬂs)_l(ﬂl ﬂs)(ﬂz M)(ﬂs m ﬂs)(ﬂl ﬂz)(ﬂz ﬂ4) (ﬂl as ﬂs)( )(VM): (ﬂl a5 ﬂs),
so Case 1e applied.
So, Case 1 always applies, so N = As.
N normal
e (closure) Vhn,h'n’ € HN : (hn)(lo'n') =hnh'n’ = (n” eN,h" € H) hnn”h” = h(nn”)h” =
(w7 & N, < H) bir"n” = (" < HN
® (identity) Vhn € HN : (EE)(hﬂ) =eehn =ehn =hn .

¢ (inverse) Vhn € HN : (hn)_l(hn) =0 m =0T =c.
So HNc G. A subgroup containing both N and H must contain at least
(N v H) ({ n } ,}) - ({ i mibj }) =HN , so HN must be the smallest subgroup that does.

Misnormalto G= McG= NMc G. Then
N, M normal
Vume NM, g G: g(nm)Jfl = gng " gmg”" = (n' eN,m e M) n'm’ € NM,so NMis normal in G.
K normal
(b= et = (WeK) K eK
Vhe HkeK:hh™ k"' = I =¢,s0 C=E,

Wb 'KY) = (W eH) W eH
so EcC=> (H ] K)/E = (H ] K) is commutative.

§3.4 Series of Groups

1.

The two series
{o}cr0zcz (zhoz=z, 10zf{0}= 7))

{0} c252cz (2/252=2, 25Z[{0}=175)
have isomorphic refinements
{0} c250Zc10Zc 7

{0} c250Z2c 2577

The two series
{0} c60Z2c202c 72 (2,24,7,,)

o} c2452c 49272 (2,25,2,)
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have isomorphic refinements
{0} 147007 = 300Z c 60Z =207 = 7

{0} c14700Z < 73572 < 2457 c49Z c Z

The two series
0} cBB) ez, (252,)
o} c(8)cz,y (25,25)

are already isomorphic.
The two series

o} c(18)cB)cz,, (24,24,25)

o} c(24)c(2)c 2, (25,2,,2,,)

have isomorphic refinements

10} = (36) c(18) < (9) < (3) = 7,

0} c(24) c12) c (6) = (2) c Z,,

The two series

{(0,0)} c60ZxZ c10ZxZc ZxZ (ZxZ,Zs%E,Z,y xE)

{(0,0)} cZx80Z cZx20Zc ZxZ (ZxZ,ExZy,ExZy)
have isomorphic refinements
{(0,0)} € 60Zx80Z c 60Zx20Z c 60ZXxZ c10ZxZ cZxZ

{(0,0)} € 60Zx80Z c 10Zx80Z c Zx80Z c Zx20Z c ZxZ

(this is not the answer the book gives, but seems okay)

Because 60=2-2-3-5, the composition series are of the form

Zg>(2), o(2-2=4), >5(2-2:3=12), 5(2-2:3-5=60), =E

where the series of generators are formed from the following 12 permutations of the factorization of 60:
2235 3225

2253 3252

2325 3522

2352 5223

2523 5232

2532 5322

The series that are thus constructed are obviously isomorphic.

As in Exercise 6, the series of generators are formed from the following 5 permutations of the factorization of
48=2-2-2-2-3:

22223

22232

22322

23222

32222

I xZ;DoExXxZ;DEXE=E
I5xl30 ZsXxEDEXE=E

S;x2, 2A;xZ, D ExZ,DEXE=E
S3 X2y D83 xXxE>DA3xE DEXE=E

Isn't the following a composition series too?
SgXZZ DA3XZZDA3XE DEXE=E



10.

11.
12.
13.
14.

15.
16.
17.

18.

19.

20.

21.

22.

ZyxZgxl, CExZ; x4, cEXEXZ, c EXEXE=E
IyxZsxly; CcEXZsxZ; c ExXZsxE c EXEXE=E
Lyxloxl, cZyxExL, cEXExZ, CcEXEXE=E
DyXXs5xly C Iy XEXZ, Cc ZyXEXE Cc EXEXE=E
Lyxloxl, cZyxZoxE CEXZ;XxE CcEXEXE=E
Iy XX5xly; Cc ZyxZ5sXE c Z;XEXE Cc EXEXE=E
Z(S3xX74) =7 83X 27y =EXxZ,.
Z(S3xDy)=7Z S3x ZDy = E x{py,ps}.

EXE EXZ,,....

EXE,Ex{po,p2},ExDy, ...

Since D4/{p0 ,pz} is of order four, it is commutative, so Z(D4/{p0 ,pz}) = D4/{po ,pz} which maps to D, under
the canonical homomorphism.
Okay.
“A solvable group is one that has a composition series of which the factor groups are all commutative.’
a.true(Gi<1G=> GiQGi+l)
b.false (G; < G;;1= G;<G)
c.true
d. false
e.false (E c (3)ZIS cZys and EcC (5)le cZs)

2

(

f.true (E c G can be finitely refined)

g. false ( S, is not solvable (h.), but E c A; c §7 is a composition series with simple factor groups)
(

h.false (E ¢ A; c §7 is a composition series, but A; is not commutative)

1. true

j. true (Every finite group of prime order is cyclic and thus commutative. Every finite group has a composition series,
and each of the factor groups is commutative because each of the numerator groups is a commutative subgroup of a
commutative group.)

SgXS3DA3XA33EXE; S3XS3/A3 XA3 EZZ XZZ, A3XA3/EXEEA3XA3
is solvable because it has a composition series with commutative factors.
D, o {Po ’Pz} D E; |D4/{P0>P2}| =4, |{P0 7p2}/E| =2

is solvable because it has a composition series with commutative factors.

|Hi+1|:|Hi+1/Hi Hi| = |Hi+1/Hi :|Hi+1 /|Hz
H, :
|Hk|=%=~i % =S5 5

Suppose c; H; is such a composition series. Then Jk: |Hk| < oo, |Hk+1| = oo, But then H,,/H, is commutative
with infinite order, so by the Exercise it has a proper normal subgroup and is this not simple.
Concatenate the factor groups' composition series into a series for the product group:

E=X;E Cps Cis1 (xj<k Hj o X Hpi Xjsp Hj,O) cx;H,,,

§3.5 Group Action on a Set
v

It is simplest to think of a G-set as a group of functions, where the group operations is just function composition.
The functions operate as permutations on some set.
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o G w

N

10.

11.
12.

13.

14.

g€G X, 2. xeX G,

po=¢ X 1,3 {Po 752}

P1 {C} 2,4 {Po ,51}

P2 {mlaWLZ)”lladZ)C} 51593 {Po a.ul}

P3 {c} 5,55 {PooHa

My {51,83,m1,m5,C, Py, Ps} my sy {Po>Pastisks)
M 152,50 ,m1,my,C Py Py } sy {Pg>P2:6156,}
5 {2,4,d,,d,,C} C D,

5, {1,3,d,,d,,C} PPy {po,u}

P2>P4 {p() nu'Z}

{1’2’3’4}7 {51,52,53,54}, {WI’l»mZ}’ {dbdZ}? {C}? {PI)P27P3’P4}‘
Insert “Vx e X”.
Insert “ Vx € X” and delete “other”.
The G-set can be thought of as a direct product of its orbits. A sub-G-set consists of a subset of the orbits of the G-
set.
A G-set is transitive iff it has exactly one orbit.
a. false (the elements of a G-set are not associative)
b. true (Definition 1, Condition 1)
c. false (G may not ‘act faithfully’)
d. true (g are permutations, which are injective)
e. false (any number of distinct permutations may operate on any particular element in the same way)
f.true (Exercise 7)
g.true ( H ¢ G automatically abides by the same Conditions of Definition 1)
h. true (they are the same orbits, but not necessarily #// of them)
i. true (Example 2)
j.true (G consists of |Gx| cosets of |Gx| elements, each coset of which permutes x in a different way in its orbit)

a ¢: {51,52,53,54} - {Pl,Pz,Pg,P4} 15, P
b. 8, € G leaves 1 and 3 fixed in their orbit, but leaves no elements of the orbit {51 52,53 ,54} fixed.

c. {ml ,mz} and {dl ,dz} are not isomorphic. But trivially, any direct product of the two isomorphic sets of (a.) with
any other orbit, is again isomorphic.
a. Yes, there is only ¢ € G that leaves all the elemens of X fixed.

b. {1’27374}> {51752>53>54}> {Pl)P2>P37P4}'

o(identity) e e G:VxeX:ex=x= VyeY cX:ey=y= Gy

o (closure) V.5 €Gy: Vy e Yi(ag)y =ap’y =gy =y = a5’ € Gy

“(inverse) Vge Gr:3y " €G:Vy eXi(g 'y = =y= (s7a)y =0 (w)=0y=9> 4Gy
a. (identity) 0 e G = ([R,+): Vx e R? :rotg x =x

e (associativity) V0,0’ e G:Vx € R’ :TOtg I'Oty’ X =T0tg 49/ X.
b. The circle centered around the origin containing P.
C. Gp =2nZ.

a.Let X={ ] X;.
¢(Condition 1) e e G: Vx; €eX;:ex; =5, = VxeX:ex=ux

¢ (Condition 2) Vg,4 € G:Vx,; € X;: (gg’)xi =g(g’xi)=> Vx eX:(gg’)x =g(g’x)
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b. By Theorem 14, any G-set X can be partitioned into its orbits.

15. Let ¢9: L— X: gG,  gxg.
* (well-defined) Let g,4” € gG . be clements of the same coset of G, . Then g€ G, = 3 e CORRY & =,
s0 95 = g'xo =" )xo = 55" %0) = %0 =09
® (surjective) Because X is transitive, Vx € X: 3ge G: gxy =x = ¢(ﬂGxo) =gxg =X
* (injective) g’GxO #9G., = gilGxO -g'GxO =G, = gilg'e G, = (Jflg’)xo £X) =
g (gx0) 2 w0 = gxotgxo= 0%y
So ¢ is an isomorphism from { g6 Gy, }—) X.
16.  Every G-set is the union of its orbits (Exercise 14b). An orbit is a transitive G-set, so every G-set is (Exercise 15)
isometric to a union of G-sets of left cosets in G. By the Exercise, this union can be made disjoint.
17. a. G, aretheactions g€ G thatleave gox, fixed. If we move gox¢ into xg, act leaving xy fixed, and return

. -1 .
X0 O gox ¢, we have actions that leave gox g fixed,so G, . < g0Gy g0 - Conversely, any action that leaves

. . -1 .
Jox o fixed can be converted into one leaving x¢ fixed,so G, < 4o G, «, Jo, from which

-1 -1
ﬂOGxOﬂO gGngO = Gxogo :ﬂOGxoﬂO :

b. It seems reasonable that H= K if 3ge G: K = gHg_l, that is K is inner automorphic to H, that is (Exercise 3.27)

K is conjugate to H.

Applications of G-Sets to Counting
The group has one permutation that leaves all 8 elements invariant, and 3 others that leave 4 invariant:
1

ld
The group has one permutation that leaves all 8 elements invariant, one (1 3) that leaves 6 invariant, two (2 4 7)
and (2 7 4) that leave 5 invariant, and two more that leave only 3 clements invariant:

VzﬁUEG X,|=L1(8+6+2-5+2:3)=30=5.

= e X, =1 (8+3-4) =2 =5,

G is the group of 12 rotations of the tetrahedron, and X is the set of 4! markings. The identity rotation leaves all
markings invariant; because every face has a different color, every other rotation none:

r==(4)=2.

G is the group of rotations of the cube: there are six ways to fix one face, then four ways to fix a second, so |G| =24.

X is the set of 82! markings. As in the previous exercise, there is only the identity rotation leaving all markings
invariant:

8!
r= ib): 840 .

The identity rotation leaves all 8° markings invariant. The 9 rotations that leave a pair of faces invariant can be
divided in three groups (rotations along the x, y, and z-axis) of 3 rotations: one of which rotates the cube 180°
along the axis, which leaves four independent choices of color for markings that remain invariant under the rotation;
and two which rotate the cube 90°, and leave only three independent choices of color. The 8 rotations that leave a
pair of opposite vertices invariant are £120° rotations along the four diagonal axes that leave only two independent
choices of face coloring. The 6 rotations that leave a pair of opposite edges invariant are 180° rotations along axes
perpendicular to diagonally opposite edges, which leave three independent choices of face coloring;:

r=2(18°+3. (1.8 +2:8%) +8.87 +6.8%) =11712.

The identity rotation leaves all 4% markings invariant. The 3 groups of 9 ‘face-invariant’ rotations each have one
180° rotation leaving four independent colors, and two +90° rotations leaving two. The 8 ‘vertex-invariant’
rotations leave four independent colors. The 6 ‘edge-invariant’ rotations also leave four:
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§4.1
v 3.

v 5.

r=2(l4% 43 (1-4% +2.47)+8.4% 6. 4*) = 2916

The rotations are the fourth dihedral group.

. Only the identity rotations leaves all markings invariant:

|
r= %(%): 45 .

. Po leaves 4 choices of color, p; 3 leave one, p, leaves two, i , leave three, and &, , leave two:

r=d{l6"+2.6'+1-6*+2- 67 +2-6%) =231.

The tetrahedron can be rotated by fixing one of four faces and then one of three remaining faces, so |G| =12. The

rotation that leaves the first and the second face invariant leaves six independent choices of ‘color’. The two
rotations that leave the first face invariant and rotates the second leaves two choices. In each of the two remaining
groups of rotation for the first face, one leaves the second face invariant and leaves four choices, and two rotate the
second face also and leave only once independent choice of ‘color’:

721—12(1.26 +2.2243- (1.2 +2-21))=11.
What is the shape of a prism?
7/:%(6‘5 +1-6¥+2.63+1-6% +1'63+2-62) = 6246 is not correct.

Isomorphism Theorems

Homomorphisms preserve normal subgroups. The Lemma states that, in factor groups at least, this preservation is
bijective: there are no more or fewer normal groups containing the factor, then there are in the factor group.

Let N< G,and ¥ : G— G/N the canonical homomorphism. Then, the canonical correspondence ¢ given by

¢ : L— yL between normal groups containing N in G, and normal groups in G/N is bijective.

Note the fact that we have two names yand ¢ for essentially the same operation. yoperates on elements /4 to
produce y(4), but has an implicit ‘extended’ interpretation in which it operates on sets H to produce

YIH]= U, 7(h) . ¢issimply a name given to this interpretation. The book uses the special notation with square
brackets to indicate the extended interpertation.

First, show that ¢ is well-defined. If L< G ( L2 N is not really relevant here), and y : G — G/N is a
homomorphism, then by Theorem 3.3.16 ¢L=yL< GIN , so ¢ really does produce normal groups.

To show that ¢ is injective we need to be able to calculate inverses. By Theorem 3.1.15, the inverse of the forward
homomorphism of an element is the coset of its kernel containing that element, i.e. inverses of forward mappings of
elements g € G under yare of the form gKery. Let L< G,L DN . Since Kery =N < L and Lis a subgroup and
thus closed, Vge L: gKery < L,so LKery < L. Conversely, Vge L: g€ gKery so L< LKer¢, so

LKerg=L= L=y 'yL=y '¢L.

Now, show that ¢ is injective. Let L,M < G such that L= ¢M. Then from the above, L=y oL and

M=y ‘oM=y'¢Lso L=M.

Finally, show that ¢ is surjective. Let H< G[N, then y_ng G: oy H= W_1H= H, vy “'H> N and normal in
G by Theorem 3.3.16.

Given a homomorphism, Theorem 2 allows us to generate isomorphisms between the image of that homomorphism
and a factor group. Applying this procedure twice, this allows us to generate isomorphisms between factor groups.
Note that it is not even necessary to consider the canonical homomorphism 7y (the missing side of the triangles in
the diagram).
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921

Y |g homomorphism

Y |an homomorphism

KCI"J/ |H=HmN I<CI"}/ |HN:N
H HN
1 - HY -
a My isomorphism U, isomorphism
H HN
HnNN N
O
Q
Q
@)
O

A 9: 21> Z3:i— 24mod3; ¢l=2. I(erqb:%ZmZu.
b.{0,3,6,9},{1,4,7,10},{2,5,8,11}.
c.i:Z]K—2Z;:Kergp+ii.

a.9:Zig—> Z15:i > 10imod12; ¢1=10. Ker¢p =127 Z,3=1{0,6,12}.

b.{0,6,12},{1,7,13},{2,8,14},{3,9,15},{4,10,16}, {5,11,17}.
¢. By Theorem 2 it is isomorphic to ZgfKerdp =7,5]75 =7, .
d. u:Zyg— ¢Z,5: Kergp +i > 7.

H:(4)Zz4 ={0,4,8,12,16,20}, N:(6)ZZ4 ={0,6,12,18}.

a. HN=1{0,2,4,... .22}, HAN={0,12}.

b. %: ffo,6,12,18},{2,8,14,20}, {4,10,16,22}}.

{012}, {4,16}, f8,20}}.

“HAN

HN
d¢:—->

H N+i> (HAN)+2i.
N ~HnN

Note that the book gives a different correspondence. This is possible because Z3 is automorphic.

H:(6)236 ={0,6,12,18,24}; N=(9)Z% ={0,9,18,27}.

a. HN ={0,3,6,...,33}, HAN={0,18}.

b. %= {0,9,18,27},{3,12,21,30}, {6,15,24,33}} .

H
CHw = flo,18},{6,24}, {12,30}}.
4. BN H
N T HAN

H=(4)Zz4 ={0,4,8,...,20}; K=(8)ZZ4 ={08,16}.

:N+it> (HAN)+2i.

E
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a. %={{0,4,8,12,16,20},{1,5,9,13,17,21}, {2,6,10,14,18,22}, {3,7,11,15,19,23}}.

: I—i: {{o,8,16},11,9,17},{2,10,18}, {3,11,19}, {4,12,20},{5,13,21}, {6,14,22},{7,15,23}}.
H

= {{o,8,16},{4,12,20}}.

d.ﬂz{{{0,8,16},{4,12,20}}, {1,917},{5.13,21}}, {{2,10,18},{6,14,22}}, {{3,11,19},{7,15,23}}}.

G G/K . .
= ———:'H H /K .
e.¢ H_)H/K +1H( /()+z

Note that the book writes the correspondence as 7 (H /K ) + (K +1 ) . This gives the same sets using a different
computation.
H:(9)Zsé ={0,9,18,27}: K:<18)Z% ={0,18}.
{0,9.18,27},{1,10,19,28},{2,11,20,29},
A {3,12,21,30},{4,13,22 31}, {5,14,23,32} .
{6,15,24,33},{7,16,25,34},{8,17,26,35}
{0,18},{1,19},{2,20},{3,21}, {4,22},{5,23}, {6,24},{7,25},{8,26},

' I_G(_ {{9,27}, [10,28},11,29},{12,30}, {13,31},{14,32},{15,33], {16,34},{17,35}}'

. %: {{o,18},{9,27}}.
{{0.18},{9,27}}, {{1,19},{10,28}}, {{2,20},{11,29}},
d.%: {{3,21},{12,308}, {{4,22},{13,31}}, {{5,23}, {14,32}},;.
{{6,24},015,33}}, {{7,25},{16,34}}, {{8,26},{17,35}}
G G/K

[g]

€ ¢ ﬁ:H-ﬁ-iH (H/K)+i.
H:{0} c(12) c(B) c Z55; K:{0} c(18) c 7.
H, H, H, H; K, K, K,

Hy =Ho(H, nKy)=E((12) "E)=EE=E

(H, n K1) =E(Q2)n(18)) =EE=E
Hy, =Ho(H, nIG) = E((12) N Z36 ) = EQ2) = (12)
Hyy =H,(H, n Ky) = (12)() n E) = (12)E = (12)
Hyy =Hy(H; 0 Ky) = (12)(3)  (18)) =(12X18) = (6)
Hy, =H,(H3 0 K) = (12)(3) N Zs6 ) = (12)X3) = (3)
H,, =H,(H; " K,)=(3)(2Z;s N E)=(3)E=(3)
Hyy =H,(H; n Ky) = (3)(Z356 0 (18)) = (3X18) = (3)

(

Hy, =H,
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Ko =Ko(K, " H,)=E({18) " E)=EE=E

Ky, =K0(KlmHl)=E((18) (12))=EE=E

Ko =Ko(K, v 1) = E(18) o () = £(18) - (15)
Koy =K,(K, n H;) = E((18) N Z,4) = E(18) = (18)
Ko =K(K, 0 Hy) = (18)(Z36 N E) = (18)E = (18)
Ky =K (K, n Hy) = (18)(Z5, n (12)) = (18X12) =(6)

(
K, =K,(K, " H,
(

(
(18)Z35 0 (3)) = (18X3) =)
(

18)(Z36 M Z35) = (18)Z 36 = Z36

\_/\_/v

K3 =K5(K, N H;
This gives the chains
E = cE ©Of12) amd g =E cE O@8) c(18)

=(12) Of) OF c(18) o) OF) @2 =74

g(B) g<3) ©Z36 =23

orEc(lZ)c(é)c(S)cZ%; Ec(l8)c(6)c(3)czsé.

The factor group isomorphisms are:

A Q2)E=(6)/(18) =7,
B:  {6)/(2)=(18)[E =12,
c: Y6 =E)e) =1

D:  Z3[(3)=Z:[B)=2;

H;{o}c(lz) (4)cz24 K: {O}c(é) (3)cz24

Hyy =Hy(H, 0 K,)=E(Q12) nE)=E

Ho ~Hy(H, m<> 020 ()2}~
H,, =Hy(H, nK,) = E((1 ) ()): (12) = 12)
Hyy =Hy(H, N K;) = E({12) n Z,, ) = EQ12) = (

H,, =H,(H, nK,) 2)((4)m E) (12)E = (12)

(12)((4)  (0)) =(12K12) = (12)
(12)((4) ~ (3)) = (12X12) = (12)
(12)((4) " 2, ) = (12)4) = (4)
(V22 0 E)=(4)E = (4)
(D22 " (6)) = (4X0) =(2)
(4>(Zz4m(3)) (4)(3) (1) 2y,
(

4)(224 N Zz4 ( )Zz4 Loy

H, =H,(H, nK
H,, =H,(H, n K.
Hyz = (H4 N K;

)
2)
)
Hyy =H 2Hsﬁl(0)
)
)
)

E({6)nE)=EE=E
Ky, =K,(K, n H) E((é) (12)) = E{12) = (12)

)= E((6) n (4)) = E(12) = (12)
)=E(6) 0 Z,,) = K6) = (o)

(
Ky, =Ko(K, N H,)
(
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10.

11.

a.

A/B
b.Because B,C < A, Bc C, by the Third Isomorphism Theorem /

Ky, =K,(K, " Hy)

! =(e)E) E) = ()£ = ()

Ky, =K,\(K, n Hy) = (6)((3) n (12)) =(6X12) = (6)

Ky, =K,(K5 n Hy) = (6)((3) ~ (4)) =(6X12) = (6)

K3 =K4(K; N Hj) =(6)((3)m 224) (6X3)=(3)

Ky =K,(K3 N Hy) =(3)(Z54 0 E)=@3)E =3)

K, =Ky(Ky v Hy ) = (3)(Z,, 0 (12)) = (3X12) = (3)

Ky =Ko(Ky v Hy) = (3)(Z,y 0 (4)) = BX4) = (1) = Z,,

Ky =K3(K3 N Hz) = (3NZs4 0 Z54) = (3)Z54 = 754

This gives the chains

E =E )12) c2) <(2) and g =g f12) c(12) o) ;
c(2) <(2) < (2) O (o) <
g( ) @(2) @Zz4 Sy, =1y < (3) - (3) @Zz4 C Ly =12y

or EcC (12)c (4)C<2)CZZ4; E c(lZ)c (6)C (3)CZZ4.

A: (12)/E=(12)/E=17,

B: (4)/(12)=2,/(3)= 17,
C: o (2)/(4)=(6)/(12)=2
D: 7,,/(2)=(3)/(6)= 7,

IN =Ny

ATATAYE
N<G QD
WAV,

(left figure) Because H is a group, Vh e H: h(H N N) € H. Also, obviously h(N\ Hn N) ¢ H,so

WHAN)=hNAH. Similarly, (HAN)h=Nbh~ H. Because N< G, hN = Nh,so {HAN)=(HAN)h and
so HhNN< H.

(right figure) Let » € H N K. Then h(H* s K) € hH* n K. Also, obviously
Vi'e H\H N K: i'(H* "~ K) & hH* " K, so W{H* " K) = hH* A K. Similarly, (H*~ K)h =H* h " K.
Because H* <H, h(H*nK)=(H*"K)h,so HHNnK<HNK.

Prove that K /H< G /H. Now, this is the case it VJHe G/H, kHe K/H: y4H - ;’eH-(\gH)f1 e K/H. Since

coset multiplication is well-defined by H < G, this is true if ( gkg_l )H e K/H or gkg_l € K, which is just to say

that K< G. The same argument proves L/H< G /H.
Inclusion follows immediately from Kc L= 3/eIl\K:/IHelL/H,l[He¢eK/H= K/HcL/H.

C/B = A/ C, or writing the synonyms out,
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12.

13.

14.

15.

G/H

K/H L/H = = # = G /L. This exercise proves a sort of ‘transitivity’ of the Third Isomorphism Theorem.
K/H
KL K G K
By L 4 KulL=KL= h I hism Th —_—= —=—=K. M i
y Lemma 4, K U KL = G, so by the Second Isomorphism Theorem AR Y = 75 K. Mutatis

mutandis G /K.

Since G is solvable, there is a maximal (,- Gi) such that G; < G;,, and G,,,/G,; commutative. By Exercise 10,
KNG, <KnG;q,s0 (l- Kn G,-) forms a subnormal series. I don't know by what argument the factor groups
are simple, so that this is also a composition series. G; are commutative, and thus so are K N G; and

KNG [KNG;. So KN G is solvable.

(See figure) (,- H,N ) is a composition series iff it is a subnormal series with simple factors. Obviously

H; <H;, N<G
HyN =E < H,;N. For all other subgroups in the series, Vhn € H;, N : (lm)(H,N) = i(hn)N = (H,N)(hn)

so H; < H;, and the series is subnormal. To see that the factor groups are simple, we evaluate

Hi+1N_Hi+1'Hz'N2ISiTh Hi+1 3ISiTh Hi+1/Hi
HN =~ HN - H;nHN ~ (H, nHN)/H,

denominator must be either trivial or nonproper. Obviously H; c H;,1, = H;,; " H;N c H;,, so the

. Now H;,, /H, is simple, so the

denominator is proper and must therefore be trivial. So the fraction as a whole is isomorphic to just H; | /H;, and
thus the factor groups of our series are simple also.

~ N

MIAYER

~

)

\\\ \\\/// )

(See figure relating to Exercise 14, repacing H;N with H; /N ) (i H;/N ) is a composition series iff it is a
subnormal series with simple factors. H; /N<H;,,/Nitt VhNe H;,, /N : hN(HZ- /N) = (HZ /N)IoN.

canonical

N<G homomorphism LN - H: H. - HIN
H;<H;,, =hH;=H;) = hH; N=H;sN = IN-H;=H; hN = N S = 1N

N<1 G

coset multiplication
well-defined

= IN-H,/N=H,;/N-hN
Hiy /N _H;uN
H,/N =~ HN

so the series is indeed subnormal. To see that the factor groups are simple, we first find that

(*) which (we saw in Exercise 14) is simple. The isomorphism follows from the fact that
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H i+l / N
H;/N
Vim,h'n’ eH;, N: y (Im) -y, (b'n’)=(hN-(H; /N))- (’N-(H; /N))=hN-I’N-(H, /N) =
W'N-(H; /N) =y, (hn-b'n’)

By the First Isomorphism Theorem, the range of the homomorphism is isomorphic to the kernel factor group of the
range, which is the beforementioned (*) isomorphism above.

16. Let G be solvable by (,- Gl-) , and ¢ be a homomorphism. By the First Isomorphism Theorem, ¢G = G / Ker¢.
Then by Exercise 15, G /Ker¢ has a composition series also in the distinct groups of (,- G,/ Kerq)) . Since
G,/ G, are commutative, then so are G,,,; /Ker¢/G; /Ker¢. So G /Ker¢ and ¢G are solvable.

v, H;, ]N— :hn— hN - (Hi/N) is a homomorphism:

§4.2 Sylow Theorems
v The normalizer NH is the largest subgroup of G in which H is normal.

v 1. This theorem applies the obvious fact that when a G-set X is stripped of its ‘irrelevant’ part, the remainder reflects
something of the structure of the group. In particular, if G is a p-group, the important part of X has a multiple of p

clements.
orbits of X
This is the ‘important’ part of X that
actually says something about G
|X| - |XG eNp
X6
* . This is the ‘irrelevant’ part of X that is
o invariant for all 4 and says nothing about
°
. G
p-group G G-set X

v 3. This applies the previous theorem. The entire X also has a multiple of p elements, so we can conclude that the
irrelevant part does too. That irrelevant part happens to consist of p-tuples of one single element, and because there
is at least one, there have to be at least p.

v 6. Now the theorem leads to conclude that there is a multiple of p cosets of H outside of the normalizer.

. > D
D
PR

-
o

v 8. Since there is a multiple of p cosets of H in the whole of G, and (by Lemma 6) a multiple outside of the normalizer,
there must be a multiple of p inside it as well. Inside the normalizer, we can then find one that has exactly p, and if
H s of order p’, this new one will form a subgroup of order p**'.
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e

=0 %N

11.

12 =27-3' 50 by the remark following Definition 9 the maximal 3-subgroups have order 3' = 3.

54 =2-3°, so the maximal 3-subgroups have order 3°* =27.
By the Third Sylow Theorem, the number must be in (2N + 1) N {1, 2,3,4,6,8, 12} = {1, 3}.

The number must be in (3N+1)m{1, 3,5,17,3-5=15,3-17=51,5-17=85,3-5-17 = 255} = {1,85}.
|S4| =41=24=233" 50 a maximal 3-subgroup has order 3' =3. There are (3N + 1) N {1, 2,3,4, 6,8,12} = {1,4} of
them. Now <(1 2 3)> = {( ), (1 2 3), (1 3 2)} is a 3-subgroup and maximal, and so are the other three 3-cycles. By

example, <(1 2 4)> is conjugate by (3 4) :

-1 -1 -1

(34) ()34)=( ) (34) (123)34)=(124); (34) (132)34)=(142).
The rest follow similarly.
The order of a maximal 2-subgroup of 8, is (Exercise 5) 2° =8, and there are (Exercise 3) either 1 or 3 of them.
There are 4//01-4 = 6 4-cycles, 4//11-3 =8 3-cycles, 4//21-2=6 2-cycles, 4//4-2 =3 2x2-cycles, and 1 1-cycle. The
3-cycles have order 3 and cannot participate in 2-subgroups. Every subgroup must contain the 1-cycle identity.
Conjecture that the remaining 7 elements of each of the three 2-subgroups result from some ‘symmetric’
distribution of the 4-, 2-, and 2x2-cycles. One such distribution is to assign all 3 2x2-cycles, and one-third each of
the 4- and 2-cycles to each 2-subgroup. Since the 1- and 2x2-cycles are the only even permutations, they are closed
in each subgroup. It remains to be shown that the product of any odd and even permutation results in one of the
four odd 4- and 2-cycles from its distribution. Assign to a 2-subgroups the two component 2-cycles from one of
the 2x2-cycles, for example, (1 2) and (3 4):
1 2)3 4)-12)=3 4, 12)@ 4@ 49=(12)
132 4-12)=1423), A324-34=013 24
142 3)-d2)=1324, d492 3)-34H=14 2 3
Hence the two 4-cycles that need to be distributed to the 2-subgroup follow naturally. Note that the two 2- and 4-
cycles are each others' inverses, so the entire 2-subgroup is closed and thus well-defined.
The other two 2-subgroups follow directly from mechanical substitution of letters in the permutations.
To show conjugacy, note first that the subgroup of even cycles (which is contained by each 2-subgroup) is normal.
Finally, verify that the odd cycles of one 2-subgroup are conjugate to those in another under one of the 3-cycles:
12311 2-123)=03; 1231132412 3)=71432);
1237134 123=24); A23)"0423-023=1234).
“order power of p”
“the maximal set of elements by whose inner automorphisms”
Correct— this uses Corollary 4.

a. true (by the Third Sylow Theorem)

b. true (by Example 13)

by Corollary 4)

(
(
d. false (a 2-subgroup of a group of order 2% could have order 2')
e.true (any subgroup of a commutative group is invariant under conjugation)
f. false?
g. true (Definition 5)
h. true (by the Second Sylow Theorem all maximal p-subgroups are conjugate and thus not invariant)
(
(

C. true

i. false (for a commutative group NoH=G)
j. false (but it is true that it has no proper p-subgroup)
B J'eGy J€Gy
closure) Vg, 5" € Gy (' VHlaw') =m’'Hp''s™ = gHp™' = H = g9 €Gy.
H H
(identity) e G: e¢He'=H =eeGy.

-1
(inverse) VgeGy: gHy '=H =Hy'=y4'H =H=4"'Hy= g_lH(g_l) =5 eGy.

08



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

.By Theorem 1,

By the Second Sylow Theorem, all maximal p-subgroups are conjugate. If G has only one such subgroup, then it
must therrefore be invariant under conjugacy, which is to say, it is a normal subgroup. Assuming that |G| ¢ p", this
subgroup is proper; and assuming that p >1, it is not trivial. Then G is not simple.

45=325! 50 the maximal 3-subgroups of such a group have order 3% =9 and their number is in

(SN + 1) N {1, 3,5,9,15, 45} = {1} . So by Exercise 12 the subgroup is normal.

If a group is divisible by a prime other than p, then by Cauchy it has a subgroup of that order, which is cyclic and
thus has an element of order of that prime, so the group is not a p-group. Conversely, suppose that a p-group has
an element of order of a power of some other prime. Then that would generate a subgroup of other prime power
order which would hence not divide the order of the group, which is impossible by Lagrange.

P<aNgP= VgeNgP:i,P=P soby the Second Sylow Theorem, NP has only the p-subgroup . Now,
suppose NoGNoPD NgP= 35e NgNGP\NgP:i,P#P= i, PZ NP, so there is another p-subgroup outside
of NgP. However, g€ NopNoP= i, NoP=NgP and Pc NoP= i,Pci, N;P=NgP so this other p-
subgroup would have to be inside of N P. This is a contradiction, so NoNgP p NiP. Therefore NoN P = NgP.
By Cauchy, H is contained in some maximal p-subgroup P’ of G. By the Second Sylow Theorem,

JgeG: 4Py =P= »4Hy'cP.

|G| =35% =5%7° 5o the 5-subgroups in G have order 5° =125. The only divisors of 125 that can be in 5Z+1

cannot contain powers of 5, and (SZ + 1) ) {70 =1,7'=7,7>=49,7% = 343} = {1}, so the only 5-subgroup is
normal.

The only divisors of |G| that can be in 177 +1 cannot contain powers of 17. The largest remaining divisor of G is
3-5=15<18 also cannot possibly be in 17Z+1. Therefore there is one normal 17-subgroup.

p <
7mt_1

The number of p-subgroups divides p"m and isin pZ+1, so the divisors p’= cannot contain any powers of p.

The only possible divisors therefore are m>!, but since m < p it cannot be in pZ+1. So there is one normal p-
subgroup.

Go={geGlvreGiig = =a}={scGlvreGiy =)= 26,

G| - |GG| is divisible by p, and because G is a p-group and thus divisible by p, so is G;. Because G is

nontrivial, p>1. Since ¢ e G,

GG| >1so G; =7G is nontrivial.

By the First Sylow Theorem, we know that a group G with the given characteristics has a subnormal series. The
Exercise asks us to prove that it has a normal series. We will prove this by showing that any subnormal series is itself
a normal series.

Let (OQS” H,-) be a subnormal series of G; we show that these are the only subgroups of G. Let H be a subgroup of

G. Since Gis a p-group, H is a p-subgroup and F7:0<i<#n: |H| = ', so we may reasonably refer to this subgroup
as Hj. By the First Sylow Theorem, this group is contained in an Hj,; and so on. Obviously for some k, H, = H},
. By the First and Second Sylow Theorem, H,_,, H,_; are normal conjugate maximal p-subgroups of H,, so

H,_, =H,_,,and so forth.

Now we show by induction that every H; <G. Obviously Hy = E < G. Consider ZG. By Exercise 20,

2G=H,, forsome 0<ky<n. Nowfor Vi:0<i<k,:H,cZG so VheH:NgeG:hy=yh= H;aG. If
ko = n we are done. Otherwise, consider G/Hko , and since |G/Hk0 | = |G|/|Hk0 | = p”/pko = p"*0 it is again a p-
subgroup. The same argument shows that Z(G/ H,, ) =H, / H, forsome ky <k, <n. For

Viiky<i<k:H [H, cZ(G/H,) =.. =H, [H, <G/H, . Ify:G—G/H, isthe canonical
homomorphism, then y™ H, / H, =H, <G. Since k; >k;_,, this procedure terminates under induction.

Let H be a normal p-subgroup of G, so H is invariant under conjugation by G. By the First Sylow Theorem, H is
contained in at least one maximal p-subgroup. Since by the Second Sylow Theorem every other maximal p-
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subgroup is conjugate to this one, and since H is invariant under conjugation, H is also contained in every

conjugate.

§4.3 Applications of the Sylow Theory

1. a. The table lists the conjugations 7,x = gxg "

X

P1
1%)
P3
Hy

ﬂ_l P1

J

b.8=2+2+2+2.

00
10
20
30
40
50

N45

P3
Py
%)
P3
Hy

0 1
- .
v ¢
A v
E12 .
N40 .
A v
prime
Example 9
Theorem 7
Exercise 2.19

40 = 235 has one 5-subgroup
45 = 3?5 has one 5-subgroup

P2

P3
Po
P1
Hy
gl

2
)

2
.

> >+ €

1Y)
P1
%)
P3
My
gz

1
5,

* 6 € 6 6o

P3

Po
P1

<€ B

> €

Hy

Hy
0, P3
My P>
0, P1
Po My
1%) gz
P3 2
P1 ]

€Z€C P €O

3. a.true (159=53-3,and 53=27-3+2 so cyclic by Theorem 7)

b. true

102=2-3-17, not simple by Exercise 2.19)

c. false (Example 3.4.17 shows §; is solvable, and |83| =31=6)

(
(
(
(

d. true (Theorem 1)

c. true

f.true (Theorem 7)

g. true

(
(
(
(

1253

Hy

%)
Po
P1

€ & & 2 oo

€T € > > P ©

—

* P € o o PO

125=5%, by Exercise 21 has a normal subgroup of order 5', i.e. commutes with every element)
h.true (42=2-3-7, by Exercise 2.19)
i.false (42 =2-3-7 cannot by Lagrange even have any subgroup of that order)

j. false (trivially, Az is simple)

4. Let G be a group of order 5-7-47 . By familiar reasoning, it has one 5-subgroup H; and one 7-subgroup H,.
Then |G / H;| =7-47 and |G / H7| =5-47 so both factor groups are cyclic by Theorem 7. Then by Theorem

3.3.20, H;, H, o CG contain the commutator subgroup of G, so |C G| € {1, 5} N {1,7} so CG = E. Therefore
G /CG =G /E=G is commutative, and each of its subgroups is normal.

5. Let G be a group of order 96 = 2°3. The number of 2-subgroups of order 2° =32 must be 1 or 3. Suppose it has
3, and let H and K be two distinct ones. H N K is again a 2-subgroup of order a power of 2. If |H N K| =23 then

by Lemma 8 |HK| =

25.2°
23

[HAK|=2*. Then |H|[/|HAK|=2%/2*=2,50 HAK<G.

=27 =128 >96 = |G| which is impossible. Since H# K= |HNK|<|G

, SO

6. Let G be a group of order 160 = 2°5. The number of 2-subgroups of order 2° =32 must be 1 or 5. Suppose it has
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5, and let H and K be two distinct ones. H N K is again a 2-subgroup of order a power of 2. If |H N KI =27 then

2% =256>160= |G| which is impossible. Since H # K = |Hm KI < |G , SO

by Lemma 8 |HKI =

28.2°
2
|~ Ke {23,24}. By Exercise 221, HANK<H,K= Ng(HAK)> H,K and (why?)

‘NG(Hm K)‘ = %-2%, n>1 and divides the order of G, so ‘NG(Hm K)‘ =|6|= No(HAK)=G,s0 HAK<G.

a. tot! = T(VLO ay ... ﬂm_l)‘:_l, so the only letters affected by o are the 7a; and all other letters are invariant under the

entire product. Vi: (wr‘l)(mi) = (1'0'11‘1 )ﬂi = (”L’G)ﬂi = T(O‘ﬂi) = T(;41) modm> SO tor! = (mo T ... mm_l).O

b. For any two cycles of the same length o = (PLO a ... ﬂm,l), B= (bo b ... hm,l), let o’ = (ﬂ(’] a ... ﬂ;,l) be any cycle

Jitx=0;, x>0

,?

i ' which is a bijection and a
ditx=a, x>0

of all the letters not in ¢, and f similarly. Then define 7: {

permutation. By (a.), ot = T(,- ai)f_l = (i mi) = (,» h,-) =f,s0 a~f.

c. Write the products of cycles as o =-;_ o; = 'z‘<s(j<r,- ﬂt-]-), B=-.B;= 'z‘<s(j<r,- bl-]-), and let o, = (]»qj VL]-) be any
cycle of all the letters not in any «;_,, and fsimilarly. Then define 7:3:<s,j <7 :x=a; > b;, whichisa
(b)

:'("is.c ﬁi):ﬁ‘

d. Differently factored disjoint products cannot be conjugate. Any disjoint factoring into cycles is unique: disjoint
factors cannot be combined into a cycle, and a cycle cannot be split into disjoint factors. For any disjoint
permutation, every letter must be in exactly one cycle (perhaps a 1-cycle). So pn as described gives the number of

o; disjoint
bijection and a permutation. Then tot™! = T(’is: 05,»)1_1 = (-igs Tocir_l)

ways permutations of S, are factored into disjoint cycles, which are (by c.) the conjugate classes.
e.pl=1 1

p2=2 11,2

p3=3 111,21,3

p4=5 1111,112,22,31,4

p5=7 11111,1112,122,113,23,14,5

p6=11 111111,11112,1122,222,1113,123,33,114,24,15,6
p7=151111111,111112,11122,1222,11113,1123,223,133,1114,

124,34,115,25,16,7

By Exercise 7, S, has 5 conjugate classes:

4!
g=1 (1)(2)(3)(4)
4!
55=6 (12),(13),(14),(23),(24),(34)
4
TR (12)(34),(13)(24),(14)23)
§=8 (123),(132),(124),(142),(134),(143),(234),(243)
§= (1234),(1243),(1324),(1342),(1423),(1432)

24=1+6+3+8+6
The class equation can be found as follows. First, find the structure of each of the conjugate classes as in Exercise
7e. To find the number of distinct permutations in each conjugate class, imagine listed in a table the #! different

ways of writing the letters of §,, and draw dividing lines between the columns of this table so as to separate each
row into cycles according to the partition of the conjugate class. This surely represents every possible element of the
class, although each element may be overrepresented. In particular, if the conjugate class has m,; cycles of a certain
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length /, the m,! rearrangements of these cycles within a permutation are equivalent. Also, every cycle of length p
can itself be written in p different ways by ‘rotating’ its letters. So the number of cycles of a conjugate class is

!

+. With the help of the partitioning found in Exercise 7,

1M Py
| ! ! ! ! 15

S 5!:E+L+L+i+i+i+é < 120=1+10+15+20+20+30+24

’ 5 3.2 212.2 2.3 23 4 5
6 ol 6! o! o! o! 0! o! 6 o6 o

S : Ol=—+—+ + +—+—+ + + +—+—=
6 4.2 2121.2.2 31.2.2.2 3.3 2-3 21.3-3 214 2.4 5 6

720=1+15+45+15+40+120+40+90+90+144 +120
10. By Theorem 2.4.12 the commutative groups of order p” are isomorphic to x; Z e where

5 p" =p" = +; m; =n. Therefore the commutative groups of order p” differ only (up to isomorphism) in the
distribution of %, which can be done in pzn ways.

11. 7S, = {G €S, |VteS§, or= TO'} = {G €S, |o= Tcn'_l} , so the center of §, is the permutations that are invariant

under conjugation of all S, , which is the conjugate classes of S, that have exactly one element. By Exercise 7 the

conjugate class consisting only of 1-cycles contains only the identity. Also, any permutation containing an #-cycle
will be conjugate to every other permutation with an z-cycle. If #> 2 two distinct #-cycles can always be found, so

that the conjugate class has more than one element. Therefore, for n>2 ZS§, =E.

§4.4 Free Abelian Groups

Lo o, 0,2,,0,1,2)})

2. {20,6,0)=(2,1,0,0)=(0,1,0,0)=ZxZ

- 20+ 3(-a)=-a=0 =
a(2,1)+ B3, = (0,0 |2 F3F=0_ [ (-a)=-a=0_ Ja=0
la+15=0 B=—a B=0

So this does form a basis.

3. (2.1, 1) =(2,1),(2,0))=((0,1),(2,0)) # Zx Z does not form a basis.

4. {(a,0), (¢,)} is a basis for Zx Z iff (Theorem 1, Condition 2) ((a,4), (¢,4)) = Zx Z and
o(a,b)+ Bc,d) =(0,0)= o,B=0. Show that these conditions are equivalent to being able to generate (1,0) and
(0,1).

al(”’) b) + BI(C) ﬁl) = (1’ O)

0oy (a,b) + By (c,4) = (0,1)

it satisfies Condition 2 of Theorem 1. For any (¢, f)e ZxZ,

(e,.f) = e(1,0) + £(0,1) = e[y (a, 6) + By (e, d)) + £ (00 (a, b) + B (e, ) = (e, + fr, )(a, &) + (2B + 1B, )(e, )
50 <(u, b), (c, d)) =ZxZ. Next,
ala, )+ Ble,d) =(0,0) = afa(1,0)+5(0,1))+ B(e(1,0) +d(0,1)) = (0,0)
= (0@ + Be)(1,0) + (0 + BA)(0,1) = (0,0)
San+Pc=0rab+Pd=0
=(@=0va=0)A(B=0ve=0)a(a=0vbs=0)r(B=0vd=0)

= Suppose that e ,, B, : { . Prove that this implies {(ﬂ, b), (c, pl)} is a basis by showing that

Suppose o #0, then 2=0 and & =0, but then {(VL, b), (c, d)} cannot possibly generate Zx Z. Similarly f#0 is
impossible. So a,=0.

<If {(VL, b), (c, d)} is a basis, then obviously they can generate (1,0) and (0,1).

0y (a,6) + By (¢, d) = (1,0)

, that is
o (a,b) + By (c,4) = (0,1)

Now, find conditions on 4, &, ¢, 4 such that 3¢, 5, 5 : {
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® N wo

10.

11.

12.

13.

o+ fie=1 N on+ Pre=0

= = + = =
e First, suppose 2 =0. Then [l Bre=1= Py,e==1 A [2] Bre=0= B, 0, SO {(O,il), (il,pl)} are possible
(4] totd=0=>d=%a; |[3] ob=1=b=%1

bases. Similarly for &, ¢, or 4 = 0.
¢ The remainder of the cases have a,46,c,d4 #0. Then

(2] (-By-d/b)a+Bie=1= (-ad/b+c)B, =1A{... :{_M/H#OA{
] oo=-Pd= oy=—P, dfb b—adfc#0

This is the familiar condition of linear independence that the determinant formed by a basis be nonzero.

Replace “generating set” with “basis.”

Correct.

27 c Z both have rank 1.

a. true (Exercise 10)
b. true (any minimal generating set is a basis)

(
c.true (Z7")
d. true (the condition implies that the group is torsion-free)

= ad # bc

e.true
f.false (if ¥ o X the expression of elements in terms of Y'is not unique)

g. false ( Z has only {il} as bases)

h. true (Theorem 9)
i. true (why?)
j.false ( Z/2Z =7, is not free commutative)

« (injective) 3g, 4’ € G g =@’y Im,nl: g =+ mx, g/ =+ mx; = (;m)=(;n)= g=4"

« (surjective) V(; 7)€ 2" :3g e G: g=+; mx;, 95 =(; m).

e (associative) For all Vg, 4" € G:3n, n: g =+, mx;, 9" =+; njx;,
G+ = ([’(i nixi)+¢(i ”fxi) = (i ”i)+(i ”f) = (i "+ ”z") = ¢(;‘ (”z‘ + nf)xi) = ¢((i ”ixz‘)Jf(i ”fxi)) = ¢(ﬂ+ﬂ')~
If Ghad an clement g € G of order 7, and g =+; a;x; for some basis {, x,}, then
Jg=mg+g= (n+ 1) g = (n+ 1)(+,» aix,-) =+ ((n+ l)a,-)xi, contradicting the uniqueness of the expression of g in

terms of its basis elements.
Let X and X’ be bases for G and G’, respectively. Show that Condition 2 of Theorem 1 holds:

. V(g,g’)erG’:geG,g’eG'z An;n)g=+; nyx;, 9 =+, njx; = (g,g')=(+i X+ nl'x,’) so
<u,- (xi,O)ui (O,x;)>:G><G’.

7

. (+l~ n;%x;,+; nlfx;)=(0,0):> +,mx;, =0A+, nx,=0= n,=0An,=0.

=If Gis free commutative of finite rank, then by Condition 2 of Theorem 1 the finite basis generates it. By Exercise

10 it has no elements of finite order.

&Let X be a minimal generating set of G. We just have to prove ‘the uniqueness of zero’. Suppose +; #,x; =0, and

let K partition the coefficients such that 7, g, # 0,7, =0, and +,.x #;4; =0. Suppose there is 3% € K, and thus

Xy = +iex iz W% W +ick iz mi%; #0 then it and n,x, are different expressions of the same element so X could

not have been minimal. If +; g ;. #;%; =0 then x, is an element of finite order 7;,. So K=9.

Since for any prime p, 1/ p" cannot be formed from 1/ g™ for any other prime ¢, or from l/ p" for n’ <n, abasis

for @ would have to contain at least { pep lim p_”}, but no element can have a definite expression in terms of such
n—roo

a basis.
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14.  Clearly the torsion subgroup is finite. By the First Sylow Theorem, T has a p-subgroup 7, of elements of some
power of p, and p does not divide |T/ 7},| So T/ T, has no clements of order p, which must therefore all be in 7,,.
15.  Since T'is isomorphic to its prime-power decomposition, the subgroup 7, of all elements of power of p has a

corresponding subgroup of all elements of power of p in the decomposition, which is exactly the direct product of
the cyclic factors of order some power of p.

16. G[#] c G follows from:
o (identity) 0 G:#0=0 = 0eG[n];
commutative

e (inverse) VgeGnl:ng=0 = (ng)_l =0 = n(g_l) =0 =y4'eqMH;

commutative

e (closure) Vg,g9 €Gln]:ng=0,n9"=0 = (ng)(ng') = n(gg’) =0 = g9 €G[n].
17. JE Zpr [p] =0 odn:py=np og= np“l = ‘ZP" [p]‘ =p,and Zpr [pl < Zpr is commutative, so
Zpr (pl=2,.
18. (x,. z, )[p] =x; Z,[pl =%, Z,.
19 alf %2, =X, 2,0 = (%2, pl=(x 2,0 ol =% 2, 2%,2, =222, =m=n
b.Let j 20 such that Vi< j:#; =5;7; <s;. Certainly P X, Zpri =p" -x; Zpsl. =x; p" Zpr,- =x; p" Zp,l . Now,
for any g < rj,prf Z,=E,s0 % ;E X ;E X P L, =% E X P Ly; X, P Z,; with
P prj #E <<7; <s;, but this is impossible by (a).
20.  Factorize each of the torsion coefficients m; =-; ij, , pjePg;e N*, then G =Xx; X ij,,j . For example,
T=ZynexZy =my=2"3m =2 =G=0,;%xLyx7L,.

21.  From Exercise 2.4.42, m ;= ;_, 27 =my = p""

;. where g,, is the highest power of p; in the decomposition.

22.  From Exercise 2.4.42 (not really proved there).

§4.5 Free Groups

1. a. 2?0?2302 b2 a0a b a WRatlat alc a0t
2. a. ﬂSL’S; a3 b. a3 atn3cS.
3. By Theorem 12, there is exactly one homomorphism for each selection of 2 elements in the range G’, so there are
2 2 2 2
G| homomorphisms: a. |G| =47 =16; b. |G| =67 =36; c. || =37=6”=36.
4. In this case, the ¢a; must also generate G”. a. (2~(2-4)— 22) =12; b. (2-(2~6)— 22)+ 2~(2-1) =20+4=24;
c. 2:(2:3)+2:(3-2)=24.
5.
6.
7. Correct.
8. Insert “free” before “generators”. I don't think it's been proved that there are no other generators.
9. “It would seem obvious that this operation of multiplication is well-defined and associative.” I think this is obvious

too. Can't think of anything that might throw a spoke in the wheel.
10. a.false (Eis not free by definition)
b. false (a subgroup of a commutative group is commutative and thus not generally free)
c. false (the image of the trivial homomorphism is not free)
d. true (by Definition 4.2)
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11.

12.

13.

e. false (torsion groups are finitely generated but not free commutative)
f.false (is this a trick question?)
g. false (a free group generated by one element is free commutative on the basis of that element)

h.true (a free commutative group of rank greater than one must have more than one generator, but any free group
with more than one generator is not commutative)

i. false (Theorem 9)
j.true (Theorem 4.5)

a.1:2+2-3=0, 1-2=1,2-3=2. {1} isa basis for Z,, certainly <1> =7, and any one-clement generating set is a
basis under the definition.

b. {1} is a one-element generating set and hence a basis. Also, <{2,3}> =Zs.
+,mib; =0 =my-24+m-3=0 = 2my=-3m, so my is a multiple of 3 and s, is a multiple of 2, so 2m,, and
3m, are multiples of 6, s0 2m; =0, 3m; =0.

¢. No, because a basis of a free commutative group induces unique expressions in terms of it.
d. A finite commutative group has an expression in terms of torsion coefficients, one dividing the next, where each
factor in the direct product has an element of the order of its coefficient.

> G’

G v
92¢1 1¢2 isomorphism

G/K —» G/Kery

Gl*,Gz* can each be factored in terms of the other, so ¢, =6,¢,, ¢, =60,¢,. Then
¢ =610, =60,6,0, = 1=6,0,; ¢, =0,0, =6,0,0, =i=06,6,. Now

kcr@l:{ger*|91g:e:>9291g':e:>ig:e}:E; VgeGl*:Bzger*:Ol(ezg)z(eﬂz)g:ig:g

so 6 is injective and surjective, so is an isomorphism, so Gl* = Gz*.
b. Consider all possible homomorphisms of G into commutative G, and let K be a minimal set contained by the
kernels of all these homomorphisms. If K , <G are kernels of two homomorphisms such that G/ K, are

commutative, then K; N K, <G must be the kernel of a homomorphism with G/K; N K, commutative, so K is the

minimal kernel of all commutative homomorphisms.
Refer to the figure on the right. By Fundamental Homomorphism Theorem, any homomorphism y can be
factored into a homomorphism onto its kernel factor group and an isomorphism from this group. By Exercise

3.3.35. K< G = kery n K=K < Kkery, so there are canonical homomorphisms G — G/K and G/K — G/kery
. G/K is thus a blip group.
¢. The blip group of G is its commutator subgroup.

S f’ P =0r, N1 G =05 /2 Gl

f \»G ‘/¢f f\»Gl \»Gz
Refer to the figure on the left for the adjusted naming. Suppose f is not injective. Then
51,5, €8,5 #5557 = f5,. Then thereisa group G” and f':8§— G’ such that g7 = f§,95 = f%, and g7 # g5.
But then there cannot be a homomorphism ¢, such that f"=¢, f, because then
fa=00fsi=0,00 =00 fS5=0pf=0p9,=0p91=gand ¢, would not even be a function.
Now, suppose fS does not generate G. Then there isa g € G that is not generated by £35, and then for any G, f”’
and @ : f'=¢, f wecanlet ¢, g equal any element of G’ without affecting ¢, f', contradicting the uniqueness
of ¢p.
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Now let G , be blop groups. The figures on the right illustrate how f , can each be factored in terms of the
other,so f1 =0, f5, fo=07f1- Then f1 =0, 0, f1 =0, 0, =15 fr=040s fr = ¢p¢s =i. Then
kerg, = {ﬂz €G, | brd2=¢ =00, 0,=0p¢ SUYr=¢ =yg,= 3} =E;
Vg1€G1:39,€Gy 00, =01 204,00 0:=00,01 D U2=0p01 = I2=0p01,
SO @p isan isomorphism and G, =G,.

b. Let F[S] be the free group on §= {,- si}. Then by Theorem 12, for any group G” and f’:S— G’ there is a

unique homomorphism ¢, such that ¢, f§; = £'5; Since <fS> =G, it follows that ¢, f = 7, so F[§] is a blop
group on §.
c. A blop group on Sis the free group on S.

14. A group Gis a free commutative group if it is isomorphic to Z” for some neN".

§4.6 Group Presentations
1. o7, = (a : ﬂ4)
e Trivially, Z, = (ﬂ, b:a*, b) is akin to saying that & does not generate anything at all. Also Z, = (ﬂ, b: ﬂ4,ﬂ2b_l)
which implies 2=1,6=a%=2.

e Trivially, Z, = (VL, b,c: ﬂ4,b,£). Also, Z, = (ﬂ, bye:a*,a?b™ m) implies 2 =1,b=2,c= at=3.

b

;
2 S E(Pbﬂl’ﬂz : plsaﬂlzaﬂ22>ﬂlﬂ2pl_l)~
3. 1 a a4 b ab a*b b 1 o a® 4 b ab a*b b
a? Al 1 ab a’b a’b b a| a? A 1 ab  a’b a’b b
a® | ad 1 a a*b 2°b b ab 2’| Al 1 a a*b 2’6 b ab
ad 1 a a* b b ab A% ad 1 a a* A6 b ab A%
b | db a*b ab 1 a® Al a b| 2% a*b ab  a? a 1 ad
ab | b a’b A*b a 1 2 4P ab| b a%b At A AP a 1
a’b | ab b Ab At a 1 a’ bl ab b A 1 2 Al a
Ao\’ ab b A ar a 1 a0 2?6 ab b a 1 2 A
4. The commutative groups of order 14 are isomorphic to Z,, =7, X Z,. Suppose G is a noncommutative group of

order 14. Then G contains normal subgroups G, ; of order 2 and 7 respectively, and both cyclic so
neG: <ﬂ> =Gy,a’=1; beG: <17> =G,,b7 =1. Since G, <G, i, is an automorphism of G so 4,& must also be
an element of order 7, so i,b=aba™" € {2956 b’}. 2 =1 is not possible, because this would imply
aba™ = b' = ab = ba that G was commutative. By Exercise 13b. this gives a group of order 14 iff i =, 1= i =6.
So this leaves (VL, b:a?, 177,ﬂ1m_1b_6).

5. The commutative groups of order 21 are isomorphic to Z,, = Z; xZ,. Suppose G is a noncommutative group of
order 21. Then G contains normal subgroups G; ; of order 3 and 7 respectively, and both cyclic so
neG: <ﬂ> =G;,n°=1; beG: <17> =G,,b7 =1. Since G, <G, i, is an automorphism of G so 7,& must also be
an element of order 7, so i,b=aba™" € {2956 b’}. 2 =1 is not possible, because this would imply

aba™ = b' = ab = ba that G was commutative. By Exercise 13b. this gives a group of order 21 iff
PP=,1>ic {2,4} . Why are these isomorphic?
0. “Raised to powers” is redundant.
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This appears to be completely incorrect. Example 3 shows that presentations with different numbers of generators
(between which hence no one-to-one correspondence can exist) can still give isomorphic groups. Rewrite the
definition as: “Group presentations are isomorphic ift they give isomorphic groups.”

a. true (remark before Example 4; by Theorem 5.13 every group is homomorphic to a free group, and the generators
of the kernel are the relators of its presentation)

b. false (depends how you define “different”; E has only (ﬂ ‘a= 1))

c. false (if the presentations are not isomorphic then neither are the groups)

d. false (the question is unsolvable by the remark after Example 3)

e. false ( (ﬂ :) = Z has a finite presentation)

f.true (every cyclic group is isomorphic to Z, = (ﬂ : ﬂ"))

g. true (the relators form a normal subgroup that is thus invariant under conjugation)

h. false ((ﬂ:ﬂz)zzz,(ﬂ:ﬂs)’:‘zg)

10.

11.

12.

13.
14.

§5.1

N o oo e

i. true ( F[A]/R is isomorphic to the group and thus commutative, so R contains the commutator subgroup)
j.true (I think so...)

A noncommutative group G of order 15 would have normal subgroups G; 5 of order 3 and 5 respectively, and both
cyclicso neG: <n> =G;,a° =1, beG: <b> =G, b°=1. Since Gs <G, i, is an automorphism of G, so i,b must
also be an element of order 5, so i,b = aba™ € {293 4 bi}. By Exercise 13b. this gives a group of order 15 iff

i% =5 1, but this is not so for any i.

By Exercise 13b, (VL, b:a®,b* ba= uzb) has 2% =4=; 1 so is a group of order 2-3=6. If this group were

commutative, then ab = ba = ab=n*b = 1= a, but then the group would have one generator of order 1 and one
of order 2, which cannot possibly generate a group of order 6.
By familiar reasoning, aba ™ € { 2<i<a bi} and from Exercise 10 we know 7 =2 yields S;. So this must be the only

noncommutative group of order 6.
A, consists of the even permutations on 4 letters, so disjoint products of 1x1x1x1-cycles (order 1), 2x2-cycles

(order 2), and 3x1-cycles (order 3), and no elements of order 6, so cannot be isomorphic to Z.

83 has two elements ( p; ,) of order 3 and three elements ( 4, , ;) of order 2. Suppose A4 has two elements of
order 3, that is two 3-cycles. To form a group, these elements have to be each other's inverse. Without loss of
generality, let (1 2 3), (1 3 2) be these two elements. A, would have to contain three elements of order 2, that is

all three 2x2-cycles. But then (12)(34)-(12 3)=(24 3) and A, would have to contain at least three elements of

order 3, so cannot be isomorphic to §; either.

Rings and Fields
12:5 16=192mod24=0.

165, 3=48mod32=16.

115 —4=-44modl5=1.

205, -8=-160mod26=22.

(2,3) z.x2, (3,5 =22, 3,32, 5)=(6mod5,15mod9) = (1,6).
(=3,5)z,xz,, (2,4 =(=3z, 2,57, —4)=(-6mod4,-20mod11)=(2,2).

nZ are commutative groups. Check multiplication:

77



10.

11.

12.

o (closed) Vna,nbenZ :na-nb=n*abenl

e (associative) Vua,nb,nce nZ : (ﬂﬂ . nb) ne=nab-nc=nabc=na-n*bc=na- (nb . m)

o (commutative) Vna,nb € nZ : na-nb=n*ab=n’ba=nb-na
So they are also commutative fields. Do they have a multiplicative identity?

o (multiplicative identity) 3na € nZ :VnbenZ :na-nb=nb = n*ab=nb =na=1 =n=la=1
So only 17 = 7 has unity. Which elements have a multiplicative inverse?

e (multiplicative inverse) Vae Z:3beZ:ab=1 =a==xlb=n
So not even Z is a division ring.

Z* under addition is not even a group.
Zx Z is a commutative group. Checking the multiplication:

 (closed) V(ag,m ),(by, 01 ) € Zx 7+ (ag, ) (b, b1) = (agbg, mby ) € Zx Z

o (associative) v(ﬂo, ﬂl),(ho, bl),(co,tl) eZxZ:

((05m2)- (80, 1)) (c0-e2) = (b, ) {0 ) = (moboos i) = (0, ) (oo bir) = (30,1 ) (80, 1) (0,61
« (commutative) V(ag,m ),(b9,0,) € Zx Z: (ag,m)- (b9, 01) = (a0b9, b1 ) = (oo, bymr ) = (b, 1) - (29, 1)

« (identity) 3(ag, )€ Zx Z:9(by,b,) e Zx 7

(a0,m1) (80 00) = (B0,81) = (mob, a11) = (0, 1) :{Z;’Zf::f :{Z‘l’:i
 (inverse) V(ag,ay) € Zx Z:3(by,b0,) € ZxZ: (ag,m)-(b9,0,) = (L)) = (agby,mby) = (1) = (a9, )= (*1,£1)

So it is a commutative ring with unity, but not a division ring.
27 x 7 is a commutative group. 27,7 are both commutative rings by Exercise 7, so 2Z x Z is a commutative ring
by Example 7. 2Z does not have a unity by Exercise 7, so neither does 2Zx Z.

G= {ﬂo + ﬂlxs‘g |2y, € Z}. It is obvious that X = {l,xg} is a generating set for G. Now
EigeG,g:(a+b\E),u,beZ:g=O =>ﬂ+b\/5=0 =a,b=0

since there is no common multiple of 1 and \/5 , s0 G is free commutative on X. Check multiplication:

« (closed) v(ao . ﬂlﬁ),(bo . blﬁ) €G:

(PLO + 111\/5) . (bo + blx/g) =ayb,y + (nobl + nlbo)\/z +2mb, = (ﬂobo + Zﬂlbl) + (ﬂobl + ﬂlbo)\/g eG

Multiplicative associativity and commutativity follows from the operation in R. Since R is a commutative group
under addition, G is a commutative ring. Obviously 1., = 1 is the multiplicative identity.

e (inverse) Va = (ﬂo,ﬂlw‘g) eG*:3b = (bo, hlx/g) e G*:
ab=1 = (ﬂo,ﬂlv‘g) . (bo, bl\/g) = (ﬂobo + Zulbl) + (ﬂobl + ulbo)\/g =1 = Aoy +2mb =1
ﬂobl + ﬂlbo = 0
From the first equation, #yf, must be odd, but if #, is even this is not possible, so G is not a division ring.

From Exercise 11, G is a commutative ring with multiplicative inverse. Also from that exercise,

e (inverse) Va = (ﬂo,ﬂl\/g) eG*:3b= (bo, blx/g) e G*:

ay#0 2 5 -1
{ﬂoZO + Zﬂblbl = 1 0:;; {ﬂobo + 2%1(— ﬂlbo/ﬂo) = 1 - (ﬂo - Zﬂl /ﬂo)bo = 1 - hO = (ﬂo — 2%1 /ﬂo)
+ =0 =_
20y + 109 by =—m by, by = —a,0, /g

. . 2 2 2 2 )
So a has inverse bif ay #0 A ay —2a, /VLO 20 =ay=2n /ﬂo =2a #ay; = a #0,thatis, forall G*;s0 G
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13.

14.
15.

16.

17.
18.

19.

20.

21.
22.

23.

24.

25.
26.

27.

28.

29.
30.

31.
32.
33.

is a field.

G= {m' |7 e R} is not closed under multiplication because 7-7=-1€ G, so G is not a ring.

The identity of Z*is 1. VaeZ:3beZ:ab=1=a=11.

From Exercise 9, (il,il) have inverses.
From Example 17, {1,2, 3,4} =75 * have inverses.

The identity of @Q*is 1. Va/beQ*:b/acQ: a/b-b/a=1,s0all of Q* have inverses.
{il} xQ* x{il} have inverses.

{1, 3} have inverses.

a M, z|=[z, =2*=16.

b. Under matrix multiplication, the identity is obviously the identity matrix, and all matrices with nonzero determinant

have an inverse:

o 1][1 ol[r1 o1]f0,1 1
1 o1flo,1 1ffo 1 [[1 o
q):Z—)ZXZ:nl—)(n,O) is obviously a homomorphism, and has (1)1:(1,0)7:0’,1’.

For det to be a ring homomorphism, it must preserve addition as well, but

10+1 0=20, 1+1=2#4,
0 1| [0 1 0 2

s0 it is not even a group homomorphism.
0—0

By Theorem 4.5.12, since Z is free on {il} , 0, > 1 {1 “:a > ia are all the group homomorphisms.
i

Va,bel: (P(ﬂb) =¢a-0b = i(ﬂb) =in-ib=i*ab = i=0vi=1,so the only ring homomorphisms are trivial or
the identity.

From Exercise 23, the ring homomorphisms are ¢;;: Z — Zx Z: (PL, b) — (m,jb), i,7=0,1.

The projection maps 7; (Example 25) or the trivial homomorphism.

From Exercise 25, there are 3+1=4.

1 0
The problem is that 26=0=2=0v & =0. For example, . = 0 .
1 0

Is there some more effective way to do this?

-2 3)=0 = =-3=
X2 4x-6=0 (x-2)(x+3) el4Z = (v =2)(x+3) :{x pve=—3=1l

(x—2)(x +3) =n-14

x =211
x-2e7Zrx+3€27 =\xe{2,9n{1,35,..11}] ={x=9 = xe{2,4,9,11}
x-2€2ZAx+3€77Z x €{0,2,4,...,12} n{4,11} x =4

That is the definition for a division ring. A field also needs commutative multiplication.

The concept of “magnitude” has not been defined in the context of a ring. A unit in a ring is an element with a
multiplicative inverse.

23€Z¢:2-3=0.
Z has multiplicative identity 1, (3) € Z¢ has identity 3.

a. true (a field is a commutative division ring)
b. false ( 2Z, by Exercise 7)
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34.

35.
36.

37.

38.

2]

39.
40.

4].

42.

43.

44.

45.

46.
47.

c. false (E)
d. false (R)
e.true (22 c 7)
f.false (they relate its two operations)
g. true (by Definition 16)

(

h. true (the operation is associateive by definition of ring, the identity exists and is nonzero by definition of field, and
every nonzero element has an inverse by definition of division ring)

i. true (by Definition 1)
j.true (because a ring is an additive group)
e (associative) Vf,g,h e F :Vx e R:

(F(gh))x = fo- (gh)x = fic- goo- oo = () e = ((f)0) - = £ (a0) = ()b
o (distributive) ‘Left distributivity’ follows from Vf,g,h € F : Vx € R:
(Fo(g+m)e =fi (g+h)x = fio (g +he) = fi- g+ fio- b = () + (M) = (fy+ e = £ (a+h)= o+ 0
and right distributivity be a similar evaluation.
Vg eF Ve eR: 0. (fy) =(f)v = fe- g2 =9, 0.5
e (reflexivity) Obviously under the identity isomorphism Va,b e R: i (ﬂb) =ab=in-ib.
¢ (symmetry) Let ¢ : R— R’ be a ring isomorphism. Va',6" e R’ :3a,b eR :pa=a',0b=10":
oab)=ga-gb=a’- v =™ (") = 9"™0(a) = ab = (0™¢ )a- ("0 )b = gu- g1
s0 ¢™ : R’ R is a ring isomorphism also.
o (transitivity) V¢: R— R ,w :R"—>R” :Va,b eR:
o(ab) = ga-¢b = (y9)(ad) =y (¢(ad)) = v (92- 98) =y (9a) - w(98) = (v )a- (v )o.
*(closure) Va,b €U :3a’,b" e R:aa’ =1,60"'=1 = (ﬂb)- (b'a') =abb'a’ =an’ =1 = abelU.
e (associativity) by definition of a ring
o(identity) 1eR: 1-1=1 =1eU.
e(inverse) VaeU:J e U an’'=1 = a" €U.
so Uis a group.
(ﬂ+b)(ﬂ—b)= (ﬂ+b)(ﬂ+(—[7)) =(ﬂ+b)ﬂ+(ﬂ+b)(—h) =a-a+b-a+a (—b) +b- (—b) =* -0’ +b-a-ab
=0 ob-a-0b=0 Sab=b-a
Clearly this multiplication is associative and distributive, and hence forms a ring.

27 has an element such that 2- 2= a+ a (for a=2), while 3Z does not. C has an element of multiplicative order
4 (7), while R does not.

Since Z, is distributive and commutative, the binomial expansion holds: (ﬂ + h) =+; ( )ﬂlb" . So
7

o o |
(ﬂ+b)p =+0<icp [p }ﬂ’bp_l =a +0’ +0<icp a'b"™" . Now since p is prime, (p]= (pp—)" is always a multiple of p
1 —1)t.

for 0 <7 < p, so that any such term is always zero.

A field is some closed collection of units of a ring, and by Exercise 37 forms a group under multiplication, so the
identity of any of its subgroups is its identity.

By Exercise 37, <U,-) is a group, which has unique inverses.

a. VabeR:a*=1,b"=1: (ﬂb)Z = (ﬂb)(ﬂb) = abab = aabb = 2’1’ =1.

b. ({0,1,3,4},{0,1,4,9}).

commutative

VabeR:In,meN’ 2" " =0 = (ﬂb) = 2”0 =0"0" =0 is easy. How about a+5&?

= 3w #0: x> = 0= xis nilpotent
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48.

49.

50.

51.

52.

53.

54.

& Jx # 0: xis nilpotent = Iminimal » #0,4" =0 =

= (additive identity) 0 € S
* (additive inverse) Va,b € S:a-beS = 0-b= O+(—17) =-be S
e (additive closure) Va,b € S = -beS = a-— (—b) =a+bes
So Sis a subgroup.
e (multiplicative closure) Va,b € S:ab =S8
o (multiplicative associativity, distributivity) follow because R is a ring.
So §is a subring.
a.Let Ry, € R be subrings. From Exercise 48,
0eR;,0eR, > 0eRNKR,
Vab eRiNR, = abeR ArabeR, =a-beRra-beR, =>a-beR NR,
= abeRArabeR, =abeR,NR,

so R} N R, is a subring.

b.If R is a field, then it is multiplicatively commutative and every element has a multiplicative inverse. Obviously,
multiplication remains commutative in Ry N R, and becuase it is closed, every element has an inverse in R} N R;.

So it is a subfield.

Using Exercise 48. Vx,y €1,,

A0=0 = 0el,

ax,ay =0 = u(x—y)zﬂx—ayzo =>x-yel,
ﬂ(xy):(ﬂx)-y =0y=0 =>x€l,

so I, c R is a subring.

Consider the isomorphism from Example 15 ¢: Z,, > Z, X Z,: x x(l,l). Obviously

nop:2,— Z,: x> xmodr and m¢: Z,, - Z,: x — xmods. So the problem amounts to finding x such that

Topx =mmodr, midx=nmods,i.c. gx = (mmodr,n mods) € Z,xZ,. Since ¢ is an isomorphism and thus

surjective, such an x exists.

a.Foraset §= {i si} of relatively prime positive integers. By the Fundamental Theorem of commutative groups,

L., =X; Z,, are group isomorphic. Since they are generated by 1 and (Z 1) respectively, with Theorem 4.5.12

i

0: 2, > X L x> x(,- 1) is a group isomorphism. Multiplicative isomorphism follows from

Y,y eZ.i 5; :(b(xy): (xy) (i 1) =(Z~ xy)= (,- x) (i y)= x(i 1)-y(i 1) =¢x - ¢y . So ¢1is a ring isomorphism.

b.Let 7;,5; eN with 7; relatively prime, show that Ix e Z" : Vi: x =, 7;- Consider the isomorphism of (a.),

¢0:Z ;. - Xx;Z; . Obviously m;¢: Z. ; — Z, : x> xmods;, so the problem amounts to finding x such that

ipx =7;mods;, i.e. Px = (i 7; mod xi) € X; Z, . Since ¢ is an isomorphism and thus surjective, such an x exists.

e (additively commutative) Va,b € S :
(+1)(as5) {(1+1)ﬂ+(1+1)b=ﬂ+ﬂ+b+b
+1)(a+08) =

=Sa+a+b+b=a+b+a+b = a+b=b+a
H(a+b)+1(a+b)=a+b+a+b
so §is a commutative group.

e (multiplicative associativity) Even though we haven't shown Sis a ring, the proof of Theorem 8 shows that

multiplication is associative when either of the operands is 0, so multiplication is associative over all of § (that is,

including the additive identity).
Distributivity holds by axiom, so Sis a ring.

e (multiplicative identity and inverse) Since § is a group, it has an identity not the same as the additive identity, and
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55.

56.

cach element has an inverse.
So §Sis a division ring.
Since every element is idempotent, Va € R:

a+l
(ﬂ+1)(ﬂ+1)= N =atl=a+a+a+l =a+a=0 = a=-a
a“+a+a+l=a+a+a+l

so then Va,b € R

b
(ﬂ+b)(ﬂ+b) ={ﬂ+ >atb=a+ab+tba+b = ab+ba=0 =>ub=—(bu)=lm

P t+ab+ba+b®=a+ab+ba+b
so R is commutative.

S={ab}, PS=1{@,(a},18,(a,6}.

@+ |@ a boab | D a4 b oab
DND a b ab O|D D O
ala D ab b a | D a D a
b |\b ab T a b | D D b b
ablab b o O ab| D a b ab

b.We show that PS= BN by ¢: BF 5 ps:(,0,) s s, €510, =11
¢ (additively homomorphic) Vx,y € BH:
¢(x+y)={sieS|(x+y)i:1 =>x;+y;=1 :x,-zlvyizl/\xﬂtyi}
={s eS|z =1}u{s eS|y, =1\ {s eS|x; =1}n{s eS|y, =1}
={sieS|x;=1}+{s eS|y =1}=gx +9y
¢ (multiplicatively homomorphic) Vx,y € BH:
¢(x)’):{3i65|(x)’),-:1 =x;y;=1 :>xi=1/\yz=1}
={s eS|x;=1}n{s eS|y, =1}
={s;eS|w; =1} {5 eS|y; =1}=¢x gy

So ¢ is a ring homomorphism. Clearly gpx = 0= x = 0= ker¢ =E and VSe PS:Ix e BM tox =§,50 @is
injective and surjective, so ¢ is a ring isomorphism.

Now Ve B":6°=b-b= (l- b,--bi) = (,- bi) =b so [BISI,PS are boolean rings.

§5.2 Integral Domains

1.

11.

12.

x® =25 —3x = x(x2 -2 —3) = x(x —3)(x +1) € Z1,. This holds if any of the factors is 0, or the product

contains the factors of 12 =2-2-3. It seems easier to just try x € {0,3,5,8,9,11}.

3x=,2 <=x=,2[3=,2. 3™ =, 2-5=,10=;, 3. Since 3 does not divide 7, there are no other solutions.

3x =332 & x=y; 2f3=5; 2 3™ =53 2-8 =53 16. Since 3 does not divide 23, there are no other solutions.

24v4-421 -2+
2

2

x? +2x+2 =0 <«x= has no integer solutions.

x4 2x+4 = (x + 2)2 = 0 = x =¢ -2 =4 4. There arc no other solutions.

char2Z=0; 6. charZxZ=10; 7. charZ3x3Z=0; 8. charZ3xZ3=3; 9. charZ3xZ4 =12;
10. charZ4 x 7,5 = 30.

(ﬂ+b)4 =t +42°0+60°0 + 4ab® +b* =" 12470 + 0"

(ﬂ+[7)9 =((a+b)3f = (ﬂ3 +3a°b+3ab +b3)3 = (a3 +b3)3 = (ﬂs)s +3(ﬂ3)2([73) +3(ﬂ3)(b3)2 + (173)2 =’ +0°.
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13. (u+b)6 =((a+l7)3)2 = (VL3 +3a’b+3ab’ +b3)2 = (113 +b3)2 = (a3)2 +2(ﬂ3b3) + (b3)2 =a® +22°0° +1°.

1 2 1 2(]2 2 0 0
14. det[ 4:| = 0 so the row vectors are linearly dependent: |:2 ]|: :|=|: ]

2 4([-1 -1] [0 O
15. “If a,b € R are elements of a ring R...”
16. “If » is the least positive integer...”

17. a.false (#Z does not have a multiplicative identity for »# > 1)
b. true (Theorem 9)
c. false (they all have characteristic 0)
d. false (Z has multiplicative inverse but 2Z doesn't)
¢. true (Definition 6 and Theorem 5)
f.true (if it was finite #- 2= 0 for some z € R)
g. false (Example 7)
h.true (Va:36: ab=0:3c: ac=1= ab+ac=1= ﬂ(b +£) =1 and because the inverse is unique, b +c=c= b =0
so a would not be a divisor of 0)
i. false (#Z does not have a multiplicative identity for »# > 1)
j. false (Z is not a division ring or a field)

18. .
ring
M, 27
+ multiplicative identity
+ commutative
multiplication . ) .
ring with unity
M, R
i+ multiplicative inverses
commutative ring division ring
27 M, R| det = 0
.. + not multiplicatively
+ no divisors of 0 commutative
integral domain field strictly skew field
z R
19.  The matrix is not invertible, has a zero determinant, linearly dependent row or column vectors. (Book says
something about eigenvalues.)
20.
commutative
rin .
5 K strictly skew
field
21. VaeR :a’=0 =an=0 = aaa' =00 =al=1 =a=1. Also, for 0 e R: 0% =0. So the additive
and multiplicative identities are the only idempotent elements of a division ring.
22. By Exercise 1.49a, an intersection of rings is a ring, and therefore an intersection of commutative rings is again a

commutative ring. Since the multiplicative identity is unique, it is contained in each of the domains and hence in
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their intersection. Finally, none of the domains have divisors of zero so neither does the intersection. Therefore,
the intersection is itself an integral domain.

23. It remains to be shown that each element has a multiplicative inverse. Let R = {i 1, ﬂi} , and consider
. cancellation
aR = {i ul,zm,-}. Each of these elements is distinct, because aa; = aa; = a;=a; =>i=j and

cancellation
A =an; = a;=1. Now R has no divisors of zero, so Aa; : an; = 0. Thus aR= R, and either

M=1=a=1=a"=1o0r an; =1 = at =a;. Suppose Ja; :aja=1 = ajan;=0n; = a;=a;,so the left
multiplicative inverse’ is also the ‘right multiplicative inverse’.

24. a.Suppose dJae R :dbeR:ab=0 = aba=0a= 0+ a,so R cannot have divisors of 0.
no divisors
cancellation of 0

b.VaeR :3beR:aba=n = abab=ab = abab—ab=0 = albab-b)=0 = bab=0b. If

b=0 = a=aba=a0a=0,so beR .

C.
d.VaeR :3beR :aba=n = ﬂbﬂ—ﬂ=ﬂ(bﬂ—l) =0 =ba=1 =a'=0b.

25.  Using Theorem 15, the smallest # such that % -1 = 0 must be the same in any subdomain.

26. {,,E zn- 1} c D is a commutative ring with unity and no divisors of 0, so is itself an integral domain. Since any

subdomain of D contains unity and is closed under addition, it must certainly contain {nEZ " 1}.

27.  We know that charZ = 0. Suppose that 3D: 3n,m eN™ :charD =n-m. Then
distributive distributive
(D)0 1) = (4w Dticn 1) = Hics U ticnl) = Ficuu 11 =416 120
and (Theorem 15) #-1,m-1 # 0, which would show that D has divisors of 0. So the characteristic has to be prime
or 0.
28. a.ltis fairly obvious that multiplication is closed on §, and we know that S is a commutative group because R and Z,

are. Multiplicative associativity follows directly from the definition by observing that swapping indices yields the
same expression. Multiplicative distributivity obviously holds for the second component. For the first,

V(Vl,nl),(rz,nz),(r3,n3) €eRxZ,:

(7/’1,741)- ((Vz,nz) + (73,7’1«3)) = (7/’1,741)- (72 +73’7/Lz +7/LS)
= (ry(ry +73) +my - (ry +75) + (my +m3) 7y ymy (my +13))
= (7172+7173+7417’2 +7’l17"3 +7/l271 +7L37"1,7’l1712 +7’l1n3)
= (7"17’2"!‘7/1/172 +n271,n1n2) + (7’17"3"{‘7/1/173 +n371,n1n3)

= (r1,m)(rayma) + (1m0 ) (r3,5)
Surely right distributivity follows similarly. So §Sis a ring.

b. El(rl,nl): V(rz,nz) :(Vl,nl)- (1/’2,7’12) = (1/'2,742) = (VIVZ +an2+n27fl,nln2) = (1/‘2,7’12)

ny=1
{7172 +7y F o =1y S+ nsn =71(72 +n21) =0=7=0

so 1g=(0,1).

¢. The characteristic of S is the minimal #zsuch that #-13=0< »- (0,1) =0 n-1z =0, which is the characteristic
of Z,, by axiom.

d. Show that ¢ is a ring isomorphism so that gRc S isaring. Vr,7,:
or=¢r, = (7/1,0) = (72,0) = 7] =, (injective)
(D(V] + 1/2) = (71 + 72,0) = (Vl ,0) + (VZ,O) = ¢ + ¢, (group homomorphism)
¢(rl : 72) = (7/’1 : 72,0) = (Vl 734+ 07 +0-7; ,0) = (71,0) . (72,0) = @7y - ¢, (ring homomorphism)

29.  There are |Z 3|4 =3* =81 code words and |23|2 =9 message words. (Note that the terminology used in this

exercise appears to be inconsistent with that in §2.5).
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30.

§5.3

10.
11.

12.

There are |F|4 =16* =2'° =65536 code words and |F|Z =167 =2% =256 message words.

Fermat's and Euler's Theorems

38 =17 16, 39 =17 14’ 310 =17 8, 311 =17 7’ 312 =17 4’ 313 =17 12’ 314 =17 2, 315 =17 6’ 3]6 =17 1} _ 217*
2
347 =23 (322) 33 =23 12 . 33 =23 27 =23 4
8
374 =, (376) 37' =, 18.37' =, 37 =, 2.

n 3 3
= 2V =18+ =2"=0-9+0
2
216 =, (26) 2122t 5y 72V = 14

217
27 +1l=196+1=97

Ox 1x 2x 3x
x0 4 8 8
x1 1 10 12
x2 1 4 10
x3 2 12 22
x4 2:1=2 6 8
x5 4 8 54=20
x6 2 8 12
X7 6 16 18
x8 4 6 12
x9 32=6 18 28
op” =p(p-1).

o(pa)=pg-p-q+1=(p-1)7-1).
71000 -, (78)125 - (7(p24)125 s 11251
2x=, 6= x=, 3:>xe{ke{0)l}(3+k-2)+42}.

22.9(: =15 5 [= 7x =15 5 =X =15 7_15 =15 55:15 10
7-(1,2,4,7,8,11,13,14) =5 (7,14,13,4,11,2,1,8) = 7' =5 11
10+157
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13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

36x =, 15; gcd(36,12) =15 12, 15=), 3#0.
45x,,15= 155 =3 5= 7x =g 5> x =g 7 5= 7-5=35=; 3
7-(1,3, 5,7) = (7,21,35, 49) = (7,5,3,1) =717
xe{3+32}+82

39x =, 125; gcd(39,9) =3,125=; 1#0.

5.(1, 2,4,5,7,8) :(5,10,20,25,35,40) = (5, 1,2,7,8,4) =512
X=5'-8=2-8=16=,7

X € {7+9Z}

58=40=;1=5"=,8

x=35'2=,82=16=; 3

xe {3+137}

39.9(7 :130 52 = 3x :lo 4:

3.7=21=,1=3"=,7

x=y93 4=, 7-4=28=),8

X € {8+IOZ}

By Exercise 26, (p-1)'=, -1= (p-1)(p-2)=-1=p-1= (p-2), L.

-1
(37-2)1=; 35l=3, 35-341=3; 1= 34!=;;, 357 =(5.7) =5"77"=;; 15.16=240=3, 18

515=75=3,1=5"=,,15
7-16=112=3,1=7"=,,16

(Ex 19) a
5U=51-50-49! =5; 1= 49!=; (51-50) =567 =9
51-50=2550=5; 430 =5, 6
9.6=54=,1=6"=9

(Ex 19) a
(29-2)1=271=27-26-25-24! =55 1=>241=y (27-26-25) =517 ' =5 8
27-26-25=27-650=,, 27 -2=54=,,17
817=136=5;1=17"=8
a.false (2 #, 0 & p does not divide 2)

b. true

c. true (by definition)

d.false (p1=1%£1-1=0)

e. true

f.true (a product of two relatively prime numbers is still relatively prime)
g. false (the product will not be relatively prime)

h. true

iLfalse (ifa=p=ax=, px=,020)
j. true (what is an “incongruent solution?”)
The units of Z;, are 1,5,7,and 11.
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1

5 1 11 7
7| 11 1 5
11 7 5 1
Its multiplicative group is isomorphic to the Klein 4-group.

25. LetxeZ, xt=1=x?-1=0= x’ +x—x—l(ri:g>x(x+1)—x(x+1)(ri:g)(x—l)(x+1):0. By Corollary 2.4, Z,

has no divisors of 0, s0 x=, lvx=,-1=p-1.
26.  Since pis odd, p—1is even, so ‘{2,..., p— 2}‘ is also even. Since by Exercise 25, 1 and p—1 are the only elements
who are their own inverses, the even number elements in {2,. cp- 2} cach have their inverses in that same subset,

so 4_,i=pl=, 1 (cf. Bxercise 19), 50 (p—1)i=(p-1)(p-2)'=(p-1)=, -1.
383838=37-19-13-7-3-2

1
n37—n=(n36) n-n=, n—-n=0
2
n37—n=(n18) n—-n=, n—n=0
3
n37—n:(n12) n-n=, n—n=0
27. s = n" —n=333838 0.
n37—n=(n6) n-n=, n—-n=0
18
n37—n=(n2) n—-n=, n—n=0
36
n37—n=(n1) n-n=, n—-n=0
37 Y 51\ 37
28. —nz(n ) n-n=, (n—) n—n=, n—n=0;383838-5=1919190 = 1% — 1= 19,9109 0.

§5.4 The Field of Quotients of an Integral Domain
1.

In the same way that the field of quotients Z x Z was reinterpreted as Q) this field of quotients D x D can be
interpreted as @ x Q.

2. Q+Q \E :

3. A field is a division ring, in which by definition every nonzero element is a unit. Since the zero of Dis the zero of F,
that last part of the definition is redundant.

4. a.true

b. false ( V2 is not a quotient of Z)

c.true (R/R" c R)

d. false (7 is not a quotient of R)

e.true

f.true (otherwise + and - could not be defined)

g. false (see h.)

h. true (every nonzero element of a division ring is a unit, and a field is a division ring)
1. true

j. true (Corollary 9)

5. 27 c 7 is an integral domain. Its field of quotients includes [(2,4)] ,and
[(2, 4)] + [(2 4)] - [(2 414.2.4. 4)] - [(16, 16)] - [(16 1,16- 1)] - [(1 1)] so its field of quotients is at least a subset
of Zx Z . Similarly, for any element [(u, b)], neZ,b” e€Z in the field of quotients of Z, [(2%, 2)],[(2, 2[7)] are in the
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field of quotients of 2Z and [(2%,2)] : [(Z,Zb)] = [(Zﬂ 2,2 217)] = [(4%,417)] = [(ﬂ, b)] , so the fields of quotients of Z

and 27 are equal.
6. Prove tht addition in F is associative.

([l ][]

afdf )+ b{cf + de), (df))]
M] [f+pl plf]

=[le )« [l ]+ [l

s an additive identity in F: v[(ﬂ b)]eF (ﬂ b)] [( )] [(n-l+b-0,b-1)]=[(u,b)].

|
(
(actf + bef + e, bdf)]
(
all

0

1)
ab] is an additive inverse in F. V[ﬂb]
ﬂb

| +[(.0)] =[(-a- b+ 0-a,6-5)] = [(( a+a) b M)]=[(o-b,b~b)]=[(o,b-h)]=[(0,1)]

+
=0-1= ( )0@0 0

[t
8. [(
-

9. Multiplication in F is associative. V[(ﬂ,b), c,d)||le,

]
({2 e d)]){(af)]=[<M>w>]~[(e,f>]=[
= (e, ] = [ 0]l = (-2}

10. Multiplication in Fis commutative. V|(a b),( ,pl)]eF

11.  Distribution laws hold in F. V[(ﬂ b)] [( pl)

|
()]s ) = (o] e et ] = (e + e, ot )] = (e + ). )
[(bncf+lmde bbﬂlf)] [(m bf + bd- e, bd.- bf)]:[(m zmz)] [(ﬂe bf)]:[(a, Za)]-[(c,d)]+[(ﬂ, b)][(e f)]
12. a Vre T:[(t, t)] is unity.

13. By Exercise 12, Q|R, <ﬂ> is a commutative ring with unity.
14 Qzufuaf)=fi=4t
1

5. Q2 f, 2w {0
16. Q(3Z,{nez+6”}) are {3/6"}={3n/6.

17.

”—1} = {% n/6”_1} =... all fractions n/2m + 0/317 .

§5.5 Rings of Polynomials
v R[x] is the set of formal polynomials with coefficients in R and indeterminate x. ‘Formal’ means that the

indeterminate is to be seen as purely a symbol with no algebraic interpretation. A polynomial is an infinite sum
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f [x] =+, f,x" with a finite number of nonzero coefficients. R c R[x] are the constant polynomials. The

finiteness enables or simplifies some kinds of operations (see for example Py, in the section on ordered rings) but

isn't necessary for the polynomial ‘concept’ itself. In fact, that same section defines power series rings and
Laurent series fields which modify this restriction in different ways.

The evaluation homomorphism assigns a value from some superfield E to the indeterminate:
Oy +i fix" =+, fin".

f[x] =4x- S,g[x] =2x%—4x+2 in Zg[x]:

Fl*]+ al+] =(4x—5)+(2x2 —4x+2) =207+ (4-4)x+(-5+2) = 262 +5.
£l o] = (42~ 5)(2x2 _dx+ 2) - 4x(2x2 _dx+ 2) - 5(2x2 _dx+ 2)

=8x° —16x% +8x—10x% +20x —10=8x° — 265> +28x —10 =4 61 +4x+6

flx]=x+1,g]x|=x+1in Z,[«]:

Fla]+ ax] = (x+1)+ (s +1) =26 +2=, 0
f[x].g[x]:(x+l)(x+l):x(x+1)+1(x+1):x2+2x+1:2 x2+1.
flx]=207 +3x+4, g x| =357 + 20 +3 in Zy[x]:
f[x]+g[x]=(2x2+3x+4)+(3x2+2x+3)=5x2+5x+7=6 5x% +5x+1
£l = (2x2 +3x4 4)-(3x2 +2x 3)

- 2x2(3x2 +2x+3)+3x(3x2 +2x+3)+4(3x2 +2x+3)

=6xt +4x% +6x% +9x° + 652 +9x +11x2 +8x+12

=6x* +13x° + 2452 +17x+12

=4 x° +5x
f[x] =2x% +4x? +3x— Z,g[x] =3x*+2x+4 in Zs[x]:
f[x]+g[x]:(2x3+4x2+3x+2)+(3x4+2x+4):3x4+2x3+4x2+5x+6:5 3at12x% +4x? 11
f[x]g[x] = (2x3 +4x? +3x+2)-(3x4 +2x+4)

_ 2x3(3x4 +2x+ 4)+ 4x2(3x4 + 2x+4) + 3x(3x4 +2x+ 4)+ 2(3x4 + 2x+4)

=6x +4xt +8x% +12x° +8x% +16x% +9x° +6x% +12x +6x* +4x+8

=6x" +12x° +9x° +10x* +16x° + 224> +16x+8

= 27 +2x0 +4x% + 5%+ 257 4 +3

3+1

z,|" =2* =16.

2+1

lzy| " =5 =225.

¢2(x2+3):22+3=4+3=7=70.

¢0(2x3—x2+3x+2):2~03—02+3-01+2:2:72.

89



10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.
23.

o) sl
=¢3(x4 +2x)-¢3(x3 342 +3)
=(34+2-3)-(33 ~3.32 +3):(81+6)~(27—27+3)
=,3.329=,2
¢5((x3 + 2)(4x2 + 3)(x7 132 +1)) - ¢5(x3 + 2)-¢5(4x2 + 3)~¢5(x7 432 +1)
=(53 +2).(4-52 +3)-(57+3.52 +1)
=5127-103-(5+75+1) = 2:3+1=6 =51
¢4(3x1°6 +5x5%° + 2x53) =, ¢4(3x4 +5x° + 2x5)

=3-4"+54°+2.4°=3.256+5-64+2-1024
=,3:0+5-0+2-0=0
¢(0’1)(x2 + 1) =(1,2)=,=(1,0)= Ker(x2 +1) =01},
Bo...q(+" +25+2)=(2,5,14,35,74,137,230) = (2,5,0,0,4,4,6) = Ker(x* +2x+2) = {2,3}.
Bo..a) (6 +35% +a% + 2x) = gy (357 + 57 +3) =(0,7,34,99,220) = (0,2,4,4,0)

= Ker(3x3 +x2+ Sx) ={0,4}

%o...q)(£¥] o]x]) = (ie(o).__())qbif[x]-q)l-g[xD =(5-0,8-5,21-16,50-33,101-56,230-85,293-110)
=, (5:0,1:5,0-2,1:5,3-0,6-1,55)
=(0,5,0,5,0,6,25) =, (0,5,0,5,0,6,4)
= Ker( f[ ] g~])={0,2,4}

¢3(x231 + 35117 253 +1) = ¢3(x3 +3x1 — 25! +1):¢3(x3 +x+l):27+3+1: 31=1.

2021 4357 12057 4+ 3% =, 24° + 352 + 20" +3x°

Bo....(26° +3x7 + 25" +35°) =(0,10,35,90,187) = (0,0,0,0,2)

Ker(zxm +3x74 124 4 3x4‘*) ={0,1,2,3]

Replace “coefficients #;” and “ a; # 0 for a finite number of 7”.

Seems okay.
(3x3 +2x)y3 +(x2 —6x+l)y2 +(x4 —Zx)y +(x4 -3x?2 +2)
= 3x3y3 +2xy3 +x2y2 —6xy2 +y2 +x4y - 2xy +xt-3x% 42
= (y +1)x4 +(3y3)x3 +(y2 —3)x2 +(2y3 —6y2 —2y)x+(y2 +2)
{EN éx”l —xi} c Ker¢x : @[x] - R.

-1
1 is unity in Z, =1 is unity in 24[x]. 1+2x ¢ Z4[x] has (1+ Zx) =1-2x.
a. true
b. true (Theorem 2)
c. true (If D has no divisors of zero, then D[x] cannot possibly have them either)

d.true (if 4 € D is a divisor of zero with 4’ € D:dd’ =0, then dx-d’x=0x>=0)
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e. false

f.false (2x° - 2x* =2.]+] 4x” =0)

g. true (because 9, ( £|#] g[x]) =0, f[x] 6.0]x]=0-0,4]x]=0)

h. true (if Fis a field it has no divisors of zero, so a product with a polynomial of degree > 0 can never have degree 0)
i. true (because 1€ R is never a divisor of zero)

j.false ( 2x € Z,[x] is a divisor of zero, because 24+ 2x = 457 =0)
24 Theorem 2 says that if Fis a commutative ring then F[«] is also. Remaining to be proved that if D has no divisors
of zero, ncither does Dfx|. Vf[x]e D[« f[x]# 0= flx|=+;cn fix' :3ieNia; 20. Forany
g€ D[], glx|=+cngix’ let £, 4, be the first cocfficients of f[x], g[x] such that f;,4;#0. Since Disan
integral domain, f;; # 0, and since this the only term of degree i+ j of f[x]- g[x], f[x]- g[x]#0.
25. a.Since an integral domain has no divisors of zero, suppose f[] is of degree > Land f[x] =+ fix’, gx]=+ 7.+,
let £;,4, be the highest cocfficients f; # 0,4, #0;4,7 > 1. Then f[]- g[x] will contain a term
fi5;#0= f]x]- glx]#1. Forevery f[x] of degree 0 f[x|= fy,s0 f[x] s[x]=1[x]iff f, € D isaunit. If the
degrec of f[x]20, then f[x]=0= f[x] g[x]#1[x]. So the units of D[x] are exactly the units of D.
b. The only units of Z are 1 and -1, so by (a.) 1[x],~1[x] are the only units of Zx].

c. By Corollary 2.12, Z, isafieldso all i e Z7* are units, so by (a.) all {
26. ‘v’f[x],g[x],h[x] € R[x]
f[x](g[x]h[x]) = +,-fl~xi(+,-g,-xi ++,-lal~xi)

. z[x]} are units.

i€,

definition
= % fixi'+i(ﬂi+hi)xi
definition ) )
= % (+lj:0 fj(ﬂi—jhi—j))x1
Def 5.1R3

=+ (+§':of i+ o f fhi—f)xi
= +i((+§.:0f].ﬂi_].)xi + (+j-=ofj-hi_]~)xi)
= +i(+'i7‘:0 fjﬂi_]*)xi + +i(+;=0 f]»hi_j)xi

= 4 i gt fix
- el sl ol
27. a. ‘v’f[x],g[x]eF[x :
D(f[x]+g[x]) = D("'ifixi ++iﬂixi) =D+ (f;‘ +ﬂi)xi

5.1R3

-1 - - i-1
= +i+1(¢'fi+1'ﬂi)x

_ . i—
=+t '(fi +JL‘)x
definition

= tia (i'fi)xi_l ++i(i'gi)xi_l =D+, fix' + D+, g;x'
= Df[x]+Dg[x]
So Dis a group homomorphism. But Dx-Dx=1-1=0# Dx> = 2x, so D s not a ring homomorphism.
b. Vf[x|e F[x]: Df[x]=0= D+, fix' =+,,ifix' =0 Vi>0: £;=0, 50 KerDz{foeFfoxO} ~F.
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c.(=) Vf[x] eF[x] : Df[x] =D+; fix' =+, ifx"" eF[x]

=) Vf[x]eF[x] [x] +flx :D+; zil ' =+i21i%xi_l=+i21fi,1xi_1=+ifixi=f[x].

bi n Ppi

2. a9, ) Fiw ] B flrn] - Hop)(en) T8 P o) o) 7

2 4
b. ¢_3,2(x12x22 +3x14x2)=(—3) 2% +3:(-3) 2! =9-4+3-81-2=36+486=519.
¢. A zero of a polynomial f[fxl] is an #n-tuple (;’ai) such that (/) - [ ] 0.

29, R*={ p wf}
« (associativity) Vo, y,p € RX,Vr e R: ((¢+y/)+ (p)V =(0+y)r+or=gr+yy+or=gr+(y+o)r= (¢+(1//+(p))7f.
 (additive identity) 0€ R :7 > 0; Vg e R™:(p+0)r = ¢r+0r = gr.

« (additive inverse) Ve RR: 397 € RR:Vr e R: 7 > —pr = (¢ + ¢_1)V = gr+¢7r = pr+(~9r)=0

o multlphcatwe associativity) Vo, w,¢ € R :Vr e R:

( )”_ ¢ ‘//)’” or=or-yr-or=4¢r- (W-¢)V:(¢.(W.¢))V

Raring
o-(wro)lr=or(v+o)r=or-(wr+or) = oy grgr=(0- ) +(0-0)r = (0-v+o-0)r

(
o (left distributivity) V¢, w,¢ e R®:Vr e R:
* (right distributivity) id.

Ex. 29
30. e (additive closure) Vo, € Pr: ¢y € P, Elf,geF[x]:Vﬂ eF:ga=fa,yn=ga

VﬂeF:(qbl//)n:qm-l/m:fn-gn:(f~g)ﬂ:>¢l//ePF.
* (additive identity) 0, € F¥:a50. 05 €Pei+,0-x" a0 =05 =0,
e (additive inverse) V¢ € Py :Elf[x]eF[x]:VﬂeF:(pﬂ:f[x]ﬂ:
¢_1 eF*f :VueF:dflpL:—dm =>‘v’ueF:((I)+¢_l)ﬂ=¢ﬂ+¢_lﬂ=¢a+(—¢ﬂ)=0
= eF[x|:VacF: fla=-famVaecF pn=fa=¢ ' b
e (multiplicative closure) V¢, y € Py :Eif,geF[x]:‘v’ﬂeF:WL:fﬂ,y/ﬂ:gﬂ
=>VVL€F:(¢-I//)ﬂ=¢ﬂ-I//ﬂ=(f'g)ﬂ,f'gEF[x]ﬁd)W/IEPF.
e (left, right distributivity) ...

b. It seems obvious that every polynomial can be interpreted as an element of P under the evaluation

homomorphism, and conversely. So they can be not isomorphic only considering ‘tricks’ such as letting x? and

2 . . .
(—x) be ‘different functions’ in F¥.

31 a.(2,"|=]z, EPTIN E =|z, 7l 33 -9y,

b. <ZZZZ,+>522 xZ,:; <zgz~*,+>z Zyx 5% Zs.
¢. It remains to be shown that Vpe Ff = g e Py

fl-[x] eF[x]:a > (a—ul)(a—uz)...(a—ai_l)(a—nm)...(a—u‘F‘) so that



a#a;: fxe=0

o=n;: fi[x]o= ﬂi_ﬂl)(%._%)...(ﬂ,._ﬂi,l)(ﬂ,._nm)...(ﬂi_ﬂw)

Let f e F[x] o +‘ZF‘ ox; M (exists because Fis a field), so
fi[‘x]az
Va,eF: fa,= +‘f‘(pﬂj ﬁj[[z}:; =, ;}jz =pn;and fe P =>Ff cP.=Ff =P,

§5.6 Factorization of Polynomials over a Field

vi. Let flx|=+7fix’, glx]=+"gix" €Flx]; f,,5,%0. Then flx]=glx]glx] +7[x], where dx],/x] e F[4]
are unique and r{x] =0vdeg V[x] <deg g[x] . Roughly:
Ay
A T ]
1. x?+2x-3 x®+3x° +4x7-3x+2

s +xd+x’+x+5
x® +24° —3x*
x®+3x* +4x? -3x+2
x® 425 =347
x* 43x% +4x? -3x+2
xf +2x% - 342
23+ 7x%—3x+2
x4 2x% -3«
5x%+2
5x> +10x —15
-10x+17 =4x +3
3x2+2x -3 x®+3x° +4x2-3x+2 5x* +5x7 + 6«
x® +3x° +6x*
x* +4x? -3x 42
xt +3x° + 647
45> +5x% —3x +2
453 +5x7 +3x
X +2
2x+1  x°—2x* +3x -5
x° +6x?
3x* +3x -5
3x* +7x4°
4x° +3x -5
4x° +2x°
9x% +3x —5
9x% +10x
4x -5
4x+2
4

6xF +7x3 +2x% +10x +2
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10.

11.

5xl—x+2 xt45x°-3x7 9x?+5x+10
x4 2x° +7x2
3x% + w2
3x° +6x° +10x
6x% +x
6x>+x+9
2

(2)=5{2°=1,2" =2,27 =4,2°=3}= 7", 50 75" = (2" =5 2) = (2% =5 3); {2,3].

= {30 =13 =337 =233 =6,3* = 4,35 =5} =7," 50 2," = (3" =, 3)= (3° =, 5); f3,5].

(3) =17 {30 =1,1,3' =173,3° =, 9,3° =, 10,3% =, 13,35 =1,5,3° =;15,3" =, 11, > 8O

*

3%=,16,3" =,14,319 = 831 =732 =438 = 123" =_23%=, 6}: z,

), = (3" =17 3),(3° =1, 10),(3° =17 5),(37 =1, 11),(3° =17 14),(3" =1, 7),(3" =1, 12),(3"% =1, 6);
{3,10,5,11,14,7,12,6} .
(6) =05 {5° =55 1,51 =555,5% =55 2,57 =,5 10,5% =, 4,57 =,: 20,5° =,,8,5” =,, 17,5% =,,16,

57 =311,5" =,39,5M =53 22,52 =); 185" =53 21,5 =,;13,5"° =), 19,5'% =53 3,

517 =0315,5"% =53 6,57 =53 7,57 =3 12,57 =3 14}

50 Zps =(51 s 5):(53 s 15):(55 s 20):(57=23 17): (59 s 11) :

{ - <513 —23 21) - (515 :? 19) - (517 =23 15) - (519 =23 7) :(521 =23 14)
5,10,20,17,11,21,19,15,7.,14¢.

4
¢1(x4+4)=5 0; x—+4:x3+x2+x+1
x—1
Wl rx+l
x—=2
2
¢3(x2+3x+2):5 4+4+2=,0, Lx;zzx.ﬂ
x—

= x*+4= (v-1)x-2)(x-3)(x-4)

¢2(x3+x2+x+1)=53+4+2+1=50; =x?+3x+2

22 +2x7 +2x+1
x+1

=x?+x+1

¢,1(x3+2x2+2x+1)=7 “1+2=2+1=,0;

x2+x+1_

¢2(x2+x+1):74+2+1:70; x+3

x—
=x°+2x% +2x+1=, (x+l)(x—2)(x+3)

243 +3x%-7x-5

¢3(2x3+3x2—7x—5)=11—1+5+1—5=110; ; = 2x2 1 9x49
e
2
¢,3(2x2+9x+9) 18-2749=,,0; 2 ¥I%H9 5013
x+3
04(2x+3)=),8+3=, 0, %:2

=2x°+3x? - 7x-5=, 2(x—3)(x+3)(x—4)
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12.

13.

14.

15.

l6.

17.

18.
19.

20.
21.

22.

23.
24.
25.

26.

3

¢2(x3+2x+3):53+4+3:5 0, X F2XHS_ 2ot
x_

x2+2x+1_

x+1

¢_1(x2+2x+1)=51—2+1=50; +1

= x° +2x 43 =5 (x—Z)(x+1)2

Bo...) (26" + 67 + 25+ 2) = (2,2,1,1,4) s irreducible.

If f [x] is reducible over Q, then by Theorem 10 it has a zero in @, and by Corollary 12 it has a zero in Z that

divides —2, which should therefore be one of {il,iZ}. But ¢{J_r1’i2}f[x] = {7,—9,18,—1 6}. The roots of f[x] are

887 —41.22
2-1

g[x] is an Eisenstein polynomial with p = 3, so it is irreducible over Q. Since D=v6%—4-1-12 =+/36-48 it is

irreducible over R but reducible over C.
By Corollary 12, if it is reducible over Q then it has a zero in Z that divides —8, which should therefore be one of

[#1,42, 4] Bur ¢{ﬂ’ﬁ,ﬂ}(x3 +3x2 —8) ={-4,-6,12,-4,104,-24].

=—4 i%\/64+ 8, s0 f[x] is reducible over R and C.

Likewise, it should have a zero that divides 1, which should therefore itself be 1. But
Bra(+* 2247 +1) = {-20,-22}.
YCSfOI‘ p=3, ﬂ2=1¢3 0, ﬂl =3 O, ﬂ0=_12¢32 0.
YCSfOI‘p=3, ﬂ3=8¢30, ﬂ2=6=30, ﬂl=_9=30, ﬂ0=24¢32 O.
No. Because a; = -9 =-37, the only possibility is p =3, but 2, =-18 =52 0.
Yesfor p=5, a0 =2#;0, a;=-25=;0, a,=10=0, a,=-30#.0.
5 2
X G{—E, 3 ,}
6x* +17x° +7x* +x-10

x+2
2

6x° +2x% +2x—4

2
3

=6x°+2x2 +2x -4

=6x2+6x+6

x—

/7 !
6x2 +6x+6=0= x’+x+1=0; V1>-4-1-1=+-3, so there are no other roots in Q.

“nonconstant polynomial.” Insert “and g, # both of lower degree than f.”

a. true (of degree 1, so both factors can't have degree less than 1)
b. true (same reason)

c. true (both roots are in R\ Q)

d. false (because 2 is a zero, so by Theorem 10 is reducible)

e.true (The degree of a product of nonzero polynomials is always the sum of the degrees of the factors, so a nonzero

polynomial can only have an inverse if it is of degree 1. The zero polynomial has no inverse.)
f.? (whatis F(x)>)
g. true (Corollary 3)
h. true (Corollary 3)
1. true

j. false (because of the zero polynomial; however, the book gives “true”)
x + 2 is a factor if -2 is a zero, so

¢_2(x4+x3+x2—x+1)=0=> (—2)4+(—2)3+(—2)2—(—2)+1=16—8+4+2+1=14=p 0, so pe{2,7}.
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27.  xP+x+l.
28. x3+x2+1, 2 +x+1.
29. x?+1 257 +2

X2 +x+2  2x%+x+1
X2 +2x+2 2x2+2x+1

30 x¥+2x+1 2x° +x+2
X% +2x+2 258 +x+1
2 +x’+2 2x° +2x% +1
2 +xlFx+2 2x% +2x% + 25 +1
0 +x?+2x+1 2% +2x% +x+2
X +2x%+1 258 +x% 42

X +2x2 +x+1 24 42 +2x+2
A 42x2 +2x+2 2x%+x?+x+1
31.

32. By Euler's Theorem, x?™* =, 1= x'+a =, x+a. Thus, forany a€Z,, —ais a zero of x? + a so by the Factor

Theorem x + a is a factor of x? + 4, so it is not irreducible.
a#0
n—i

_n i_ i\ _ n i) _
waill  =Figa;n =9, (ﬂz‘x ) =0= ¢y, (+i:0 I~ ) =0.

33. o’ Py, (+?:0ﬂn—ixi) ="+ gm, 07 =+l gn
34. f[x] = q[x] . (x - OC) + V[x] Then obviously, for x =a: fo=qgo- (OC - OC) +ro=ra.
35. a.0,: Z[x] - Zm[x] +;0;5 > +;0,a;-x' . Forany f[x] = +ifixi,g[x] =+, g% € Z[x]:

i

Ql

m(f[x] g[x]) = Em(+ifixi 'ﬂ'ﬂixi) = Em(+i +j‘ fjﬂi—jxj) = +i0m(+j'iji—j)x
=m +i(+j'o-mfiﬂi—j)xi =m +i(+j'6mfi 'Gmﬂi—j)xi = +io-mfixi '+io-mﬂixi =0, +; fixi 0+ Jhxi
=0uf|+]-Gusx]

b. Vf[x] € Z[x]: deg f[x] =deg Emf[x]. Suppose Emf[x] = g’[x]-h’[x], deg g’[x], deg Io’[x] <deg Emf[x].

Since &, is a homomorphism, Elg[x],h[x] € Z[x]: 6mg[x] = g'[x],&mh[x] = h’[x], sO

homomorphism

c_rmf[x] = c_rmg[x] . c_rmh[x] = Emg[x]h[x]. Suppose f[x] is reducible in Z[x] and by Theorem 11 then in
@[x] as f[x] = g[x] . h[x] Then amf[x] = amg[x]h[x] = c_)'mg[x] . c_)'mh[x] would also be reducible in Zm[x] (o,
does not affect the degree).

c. Consider 53(x3 +17x+ 36) =x°+2x= x(x2 + 2)

§5.7 Noncommutative Examples

1. (2¢+3a+00)+(4c+2a+3b)=1c+0a+30.
2. (20+30+00)(4e+2a+35)=(2-4+3-3+0-2)e+(2-2+3-4+0-3)a+(2-3+3-2+0-3)p=2¢+1a+20.
3. (36+3ﬂ+3b)2 =(3:3+3:3+3-3)e+...a+...b=2e+2a+2b
(3;:+:«m+3b)4 =(2e+2ﬂ+217)2 =(2:242:242:2)c+..a+...b=2e+2a+2b.
4. (z’+3j)(4+2j—k) :(0~4—1~O—3~2—0-—1)+(0-0+1~4+3-—1—0-2)i

H0-2-1--14+3-4+0-0)7+(0-~1+1-2-3-0+0-4)k =—6+1i+13j+ 2k
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10.

2
270 = 22 () i =11 k(1) i = ki == .

(i+7) =iiviojrjivjj=-lvk-k-1=-2= (i+j) = zi]:j = i;j =1(i+j).
(

1+ 3i)(4j +3k) =1-4j+1-3k+3i- 4 +3i-3k =4 + 3k + 12k —9j = =5 + 15k = 5~ + 3k

(—j+5k)2 =—j—j—j-3k+3k-—j+3k-3k=—1-3i+3i-9=-10

N - -1 1 1 —j+3k ,—j+3k .
((H&)(s”sk)) :5(—]'+51e)=é—j+3k'—j:sk=é ]-Jlro =550 =34)

(OPO +1py +0py + 0y +1u, + 1#3)(1/)0 +1py +0py +1uy +0u, + 1#3)
= (OPO +0p; +0py +0u; +0u, + O,Us) + (lpl +1p,y +0pg + 143 +0u, + 1#2) + (Opo +0p; +0py +0uy +0u, + 0.“3)
+0py +0py +0p; +0p; + 0, +0p5 )+ (1t + 15 +0pty +1p, +0pg +1p; )+ (Letg + 1y +0p, +1p; +0p, +1py |

=1py +1p; +0p; +1py +0p, +1p13
RcH is commutative, so ZR=R. Now consider H\ R, that is all the quaternions that are nonzero in at least one

of i, j, or k. Considering just these three components, we can show that they form a group isomorphic with R?
under vector cross product: Vg,h e H\R:

olot) =055 3,7-518) (35,58
= ¢((—g,-h,~1+g,~h ik —gihkf)+(—gjhik — b1+ gjhki) +( Jihij = b i gy 1))
o+l b i (s )i, )
:[ﬂjhk —gh; =gl 8, _ﬂjhi]
:[ﬂi I ﬂk]x[hi h, hk]
=g b

This shows that for any g € H\ R we can find an » which is noncolinear under its vector interpretation. Since

gxh#hxg for g,h#0 and not colinear, we have that for any [gl Ji I, gk], [gl hi b Iak] will not
commute. So Z(IH] \ R) =E,and ZH =R".

Let Hy;,Hy, < H such that Hy; ={,, , o1+ byi+hj+bk} and M, :{hi’h],=0h11+h,-z’+h]-j+hkle}. In the

following, consider j, % as quaternions but let 7 be the complex root of —1. Show that the field of complex numbers
is isomorphic to one of these subsets of the quaternions under a simple projection

7t Hy; = C: (b 1+ iy + b +Ok) > Iy +hji. Then Vg, heC: g= gy +gi, bh=h+hi:

. 7;1],_14; + nlj_lh = ﬂlj-_l(gh + J]ﬂ') * ﬂlj_l(hl + hii)

=11+ 0i+ g;7 +Ok)+ (g 1+0i+ b, +Ok)
:((gl +h1)1+0i+(gi+hi)j+0k)

nlj_l((gl +h1)+(gi +h,-)i) :nlj_l(g+h)

-1

. ﬂlj-_lgwlj_lh :nlj_l(gl +gii)-7t1j (hl +hiz’)

(gll—i-Ogi+gi]‘+0gk)'(hll+0hl~+hij+0hk)

(ﬂlhll +ﬂ1hz‘f'+ﬂih1f—ﬂihi1)
((glhl - giloi)l + 0z + (glhi + gihl)j + Ok)
-

=m 1((ﬂlhl _ﬂihi)"'(éhhi +ﬂzh1)i) = ﬂlj_l(ﬂ'h)
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11.

12.

13.

14.

15.

16.
17.

18.

SO T, ]fl is a ring homomorphism. Obviously Ker ]fl =0¢ and 7, jilC =H,;, soitis an isomorphism and
C=H,,. Similarly, C=H,;,. Obviously H,; # Hy,.

a. false (Example 2.8)

b. false

for Ae M, Z, to have an inverse, A| #0)

End E has only one element and can therefore not have a nonzero multiplicative identity)
EndR has nonzero multiplicative identity)

c. false
d. false

e. false

o~ o~ o~ —

isomorphisms under addition are generally not again isomorphisms, e.g. fR>R:x—>-x, f—f =0r_g)
f. false ( R<Z, +> as a group ring has elements that are formal sums that can't be combined under +; and is therefore
infinite-dimensional)

R is commutative)
h. false (H is not commutative)

i.true (- is associative by the definition of a ring, generates inverses because the field of quaternions is strictly skew

by Theorem 9, and thus commutative with multiplicative identity 1 by definition; and thus meets all of the
requirements for a group)
j.false (RcH is a field)

a.In H, x?+1=0 has solutions 7> +1=0, ]'2+1:0, k2 +1=0.

b. Consider the multiplicative subgroup of H. This is indeed a group because it is associative by definition of a ring,
and each element has an inverse because it is strictly skew. None of the elements of this group are generators:

(il)2 =1, (ii)2 =-1, (J_rj)z =1, (ik)2 =-1.
o€ End<Z X Z> : ¢(m, n) = (m +n, O), and let y € End<Z X Z> : ;((m, n) = (m,—m). Then
((I)}()(m, n) = q)(;((m, n)) = q)(m, —m) =m+ (—m) =0, so @ is a left divisor also.
Since Fis a field, 0,1 € F. An element of M, F has a multiplicative inverse iff its determinant is nonzero, which
: [1 0} [1 0} [1 1} [o 1} {1 1} {o 1}
includes R , > s > .
01 11 01 1 0 1 0 1 1
Characterize all the endomorphisms ¢ of Z. First, 0 =0. Second, let ¢1 = #, then ¢ =»-7 and this fully

determines ¢. So ¢,,n € Z are all the endomorphisms. Also, if # e 7" then ¢,, is an automorphism. Now consider
the map w:EndZ— Z:¢,+— n. Then V¢,,9,, € EndZ and Vie Z:

O it i=mitmei=(ntm)i=0,,0= 0,40, =0, = YO, +Y0, =ntm=yp,. =vy(s,+0,).
© (000,)i=0u(0,8) =0, (m-i)=(n-m)-i=0,i = 6, 0,=0,= VO, V0, =nm=8,,=v(d,0,)

so ¥ is a homomorphism. Furthermore, Ve 7 - 3¢, e EndZ so yis surjective, and Kery = ¢, so y is injective
and bijective, so Y is an isomorphism.

vV +; uixi eF[x]:
(TX—XT)(+inixi) = (TX) +i“ixi) - (XT)(+iﬂixi)

- T(X(—k,-u,-xi )) —X(T(+iaixi))
= T(+~ﬂ~xi+l) - )(("’Z iﬂixi_l)

= +i(z' +1)a;xt —+inx’ = +,0,x0

so YX-XY =1.

If G=E= {e} , then by definition RE = {nea VEB} . Let ¢:RE— R:7,et>7,, then Vre,r’ee€ RE:
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19.

o(re+r7e) = ¢((V + 7’)5) =r+7" =¢(re) + 9(rc) and 9(re-r) = ¢((W')e) = 17 = 9(re)-¢(),

so ¢ is a homomorphism. Since V7 e R: Jree RE: ¢rg =r, @ is surjective and because

q)(rg) =7r=0x = 79 =0y, we have that Ker¢ = {O RG} so ¢ is injective and bijective, so ¢ is an isomorphism and

RE=R.

Va,byceH: a=ml+ai+aj+mk, b= c=. .

(wb)c :((ﬂ11+uii+ﬂj'j+akk)»(1711+bii+b]']'+bkk))»(£11+cii+:]‘j+ckk)
= ((ﬂ1b1)1+(ﬂlbi)i+(ﬂlb]')j+(ﬂ1bk)k +(ﬂibl)i*(ﬂibi)l+(ﬂibj)k 7(»1,‘17;3)/'
+(ﬂ]'l71)j7(a]'hi)k 7(a]'l7j)1+(u]‘bk )i +(ukb1)lz + (ﬂkbi)j*(ﬂkbj')i *(ﬂkbk )1)-(511+£ii+ z:]‘j+£kk)

= ((ﬂlbl —ajb; —ajb; —ﬂkbk)l+(ﬂlbi +a;by +aby —ﬂkb]’)i+(ﬂlb]’ —abp +ab; +ﬂkbi)j+(u1bk +ajbj—agb; +ukh1)k)<(511+£,‘i+£]‘j+ckk)

§5.8 Ordered Rings and Fields

1.
2.

=0 % N O vk

0.

= (ﬂlbl —ajbi—ab; *ﬂkbk)[ll+(ﬂlbl —ajbi—ab; *ﬂkbk)tii‘i‘(ﬂlbl —ajb;—ajb; 7ukbk)cj'j+(a1b1 —ajb;—ajb; *ﬂkbk)[kk

+(ﬂ]bl’ +aib) +ajby —ﬂkbj)fli_(ﬂlbi +a;by +aby —ﬂkb]')ti1+(ﬂ]bl' +ajb) +a;by —akb]‘)c]’k—(mbi +ajbl +aby —ukbj)c;zj
e i1
7

+(ﬂ1b/' —ajb) +a b +ukbi)qj—(u1bj —aib) +a b +ukb,’)c,‘k —(ﬂlb/' —ajb +ajby +ajb )c
+(u1kk +ajbj—ajb; +ukh1)£1k +(1zlhk +ajbj—agb; +ﬂk171)£,‘j—(ﬂlbk +ajb;—ajb; +tzkhl)c
2

= (ﬂlblcl —ajbic) —ajbjel —apbpel —a1bic; —aibic; —ajbpe; +apbje; —aybje; +ajbpe—abyc; —apbicj—aybpep —aibjcp +ajbicy —akbltk)l

+ (ﬂlbj' —ajbp +ajh +ﬂkb,')cki

j
]‘i—(ﬂlhk +ajbj—ab; +ﬂk171)£kl

+(u]b1£i —ajbjc; —ajbjc; —apbpe; +a1bic) +abyel +ajbpel —apbjel +aybjcp —ajbpep +ajbycp +apbicy —aybpej—ajbjc;+abic 7ﬂkb1¢:]‘)i

+(ﬂ1b1£/' —ajbicj—agbjc; —apbpej—abicy —ajbycp —ajbpcp +apbjcp +a1bjel —ajbjel +abicy +apbicy +albpe; +abjc; —ajbic; +ukb1£i)j

+(u1k1£k —ajbich —ajbjcp —apbpcp +aybicj+ajbicj +asbpe; —apbjci—aybje; +ajbpe; —agbyc; —apbic; +a1bpey +ajbjey —ajbicl +ﬂk171£1)k

= 111(171:1 —bijc;—bjc; —bk[k)l+ﬂi(—17ifi +b1c) —bpep —b]'fj')i+ﬂj(—l7]'£]' —bpep +b1c1 —bi[i)j+llk(—bk£k —bjcj—bjc; +171£1)lz

+ﬂ1(b1£i +bic] +bj’:lz —bkcj)ifui(biq +bycg —bkc]' +bj:k )l—ﬂ]'(b]'fk —bkc]' +0b1c; +bic1)k +ﬂk(fbkc]' +bj::k +bjicq +b1£i)j

+ﬂ1(b1£j —bicp +bjc1 +bk£i)j+ﬂi(—biﬂk +b1cj+bpe; +[7]'51)k —a]'(b]'rl +bpei +bycy _biflz)l_ﬂk (bkﬂi +bje1 —bjcp +b1£]')i

+u1(h1£k +bic; —bje; +bk£1)k—ui(h,‘£]‘ +b1cp +bpey —bjﬁ,‘)j+u]‘(—17j£l‘ +bpey +bycy, +hi£]‘)i—ak(hk£1 —bjci+bjcy +b1£k)l

= (ﬂ11+u,'i+11jj+ukk)«((blfl —bjci—bjc —bkck)l+(b1£,‘ +bicy +bjcp —bkcj)iJr(blc]‘ —bjcp +bjc1 +17k£l‘)j+(hlfk +bjcj—bjc; +bk£1)k)

= (a11+u,‘i+ujj+ukk)- ((k1c1)1+(blc,')i+(b1£j‘)j+(b1£k)k +(b1£1)i —(hici)l+(b,'£]‘)k —(h,‘zk)j

+(b]‘c,')j— (h]‘c,‘)k - (hjﬁj)1+ (bjﬁk)i + (bktl)k + ([kal‘)j—(hkfj)i —(bkck)l)

=(all+uii+ujj+nkk)z((b11+bii+bjj+[7kk)-(cll+c,’i+cjj+ckk)):u~(b-:)

1
i
i
1
1

X—a€bB = a<x; xz—xlePhigh:> xl<x?yso a<al <x? <.

o o
x'-x""el,,=> x'" <x';s0..x

All the positive elements of Z[xg]

3 3

<xl<xl<x=lcaxtlacx2<x3....

n>0Am<0

ntm\2el ¢i“"(n+mx/2)eP & n-mi2eP o n-m2>x0=> vin>0Ar2m?<n® .

.acdeb
.acedb
.cabed
.dabce
.eacbd
.caedb

bdace

1-x

ii.dbaec
ii.ecbad
ii.ecabd
ii.dceab
ii.cdaeb
ii.ecbad

=1l+x+x>+...; b:

m>0An®<2m?



3-2x 3 -1

: =3x'-Ly  dbaecc.
4x+x° 4 2
_ _ a2
12. a: 5i=5x_2—22x_1+...; b: 2+4x=—i+§x+...; c: 7+2x=z+...; d: -3« =24 .
x2 +3x° 4-3x 28 4-3x ¢ 2+6x 2
e: 3= 5x =—Litys  abecd.
-6+2x 2 6
13. a: 1_—x=1—2x+...; b: 3_5‘%=1—Eﬂc+...; c: 1 =Lyt Ly od ;z—lx_l—lh..;
I+x 3+5x 3 4x+x2 * 1o —3x+ &2 ?
2
e: 4f+x =4x+5x+.... debac.
—-x

14. The smallest subfield of the field of complex numbers containing %2 is %/5 c R and hence has the induced

1+z\/—

ordering from the field of real numbers. By Theorem 10, a subfield of C containing 3\/> has an ordering

induced from the isomorphism.
15. a.true (discussion after Example 2)
b. true (id.)
c. false (?)
d. true

e.true (both P, and Bygp)

f.false (e
g. true

(

(even in R, if 2 <0 there is no such »)

(i
h. false ( ( ) is positive)

(

(

it b <0 it's always true; if &> 0 it's a restatement of Definition 7)

i. false (neither 0,—0 are positive)
j. true (Theorem 3)
16.  With the ordering B, Vq€Q:g<7.

17. Nm,n,m' n' € Z: m+%w‘5,m’+n’\s’gez[\5];
¢((m i ”6) * (’” * ”6)) = ¢((m + ')+ (n+ n)ﬁ)
= (m+m’)=(n+ w2
ol
= ¢(m+ n\E)+¢(m'+ n’\E)
¢((m " ”6) ' (’” + ”6)) = ¢((mm + 2mn')+ (i’ + mn)\g)
= (mm” + 2mn’) = (mn’ + m'm 2
= (m— nﬁ)(m— nﬁ)
= ¢(m + n\g) . ¢(ml N n\g)

Theorem 5

18. aelP =a-0el = 0<a.

Definition 1

beP: a-beP = c¢eP
19. Lemma: Va,ce P;beR;, ab=c: vi-beP: a--beP = -abeP = —ceP(contradiction) = beP.
b=0: a-b=0¢P = c¢ P (contradiction)
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20.

21.

22.
23.

24.

25.

26.

27.

beP=b+#0
ec=0 =ac=0 =0b6d=0 = d4=0.

Lemma

ecelP =aceP =bdelP = deP =cdelP.
e —ceP :n-(—c)eP :—(nc)eP :—(bpl)eP :b-(—d)eP ch;m—pleP =>-—c-—d=c-deP.
a<b =b-nel :>—(—b)—aeP :(—ﬂ)—(—b)eP =>-b<-a.

2<0 =0-a2eP =-ael
0<b =b-0eP =bel

Lemma
from Ex.19 Definition 1

b-b'=1b6,1eP = bleP; alb=ab e P

}:—abeP =0-abeP = ab<0.

a<l =l-aelP .
Lemma iﬂ_l(l_ﬂ)ep =a-1leP =l<a
O<a =a-0=anelP = aleP

-l<a =a+lelP
a ? =
2a<0 =0-a=-aelP :>(—VL) eP :—(ﬂ’l)eP

1

:—(ﬂ_l)(pHI)GP =s-ala-at=-1-aleP =a'<- :>1/17L<—1

First, show that P’ defines positive numbers as per Definition 1:

o (closure) Va’',6’ e R’ :3a,be R:¢pa =a’,¢b =" . Because Pis positive, a+b,ab € P so q)(a + b), ¢(ﬂl7) er.

Because ¢ is a ring isomorphism, (I)(VL + b) =ga+db=n"+0b"€ P’ and q)(ﬂb) =¢a-9b=0a"-b" € P’.
o (trichotomy) Va’e€ R’ :dn € R:¢a=a’. Because Pis positive:

aeP =o' =¢aecP
?

vi—a € P :>—ﬂ’=—¢)%=¢(—u)€1”
a=0 =a'=¢a=0
Then, show that the ordering induced by P’ is the same as <:
Va'b’e R :3a,beR:pa=a",0b=1b":
a<b & b-nelP & ¢(b—u)eP’ = ¢(b—ﬂ)=¢b—¢ﬂ=b'—ﬂ'el)' S a'<b.
o (closure) Va,be S:a,b e P:

ring Definition 1
a+beS A a+tb € P =a+tbePnS
ring Definition 1

a-beS AN ab € P =a-bePnS
e (trichotomy) Va e S:
aeP =aePnS§

group
aeR =i-aeP =-a € § =>-aePnNS§

a=0

Let Pbe such that p e P if and only if 0 < p. Show that Pis a well-defined set of positive numbers:
® (closure) Va,be P:

isotonicity transitivity

O<a,b = b<a+b =0<b<a+b = 0<a+b =a+bel
isotonicity transitivity
O<a,b = a0<ab =a<ab =0<a<ab = O0O<ab =abePl
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28.

29.

§6.1

e (trichotomy) Va e P:

a<0 O-—ael -aelP
via=0 =via=0 =wvia=0
O<a a=0eP ael

Now Va,beR: a<b & 0<b-a & b-aeP & a<pb,so Pimplies the same relation.

For all a, &:
vﬂ:b :>vﬂ_b:0 :>(ﬂ+[7)(ﬂ—b)=ﬂ2—b2=0 =a’ =0
a=-b a+b=0

/\ﬂib :/\ﬂ_bio =>(ﬂ+b)(ﬂ—b)=u2—b2¢0 =a’ % b
az-b a+b+#0

so a’=6> o a=+b. So ot =Pl :(ﬂz)nﬂz(bz)nb =a=b.

Ordering the following elements of R[x,y]: x 1 x

R]o]

A% low xy<x<xy*1<y<1<y*1<x71y<x*1<x71y71
low high a7 <x<ay<y'<l<y<ay<xt<axly
high low sy <xt<xly Ty <lay T ey <x<ay!

high high sy T exn Tt <xy <y <<y <y <<y

Ry [+

low low sy <y<xly<x<l<xt<wmy<yt<xly
low high ax'y<y<wy<a'<l<x<aly'<yt<ay™
high low oyt <yTax Ty T an<lcn Tt <y <y <aly

high high ™y '<ylaymtaxt<l<w<aly<y<uwy

Homomorphisms and Factor Rings

The concepts of normal and ideal didn't accidentally result in factor groups and rings— their requirements were

defined precisely so that the resulting groups and rings would be well-defined:
Nanormal group: VgeG: g+ N=N+ g4 (Definition 3.1.19)

Nanidealring: V7e R: r+Nc N, N+rc N (Definition 6.1.10)

A ring endomorphism ¢ of Z by Theorem 3 has to have ¢0=0, and ¢1 =1 iff ¢R hasunity 1 #1 orelse #1 =0. So

9(0,0)=(0,0) and:
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10.

#:0)=(19)
9(1,0)=(1,0)
o1.)=(0.1
o1.0)=(0.1)
9(1,0)=(1,1)
.0)=(09)
9(1,0)=(0,0)
9(1,0)=(0,0)
0)=(09)

completely define the only possibilities.

For all even n thereisa Z, / Z, =2, =12,,whereas for all odd » there is no element 7 such that i* =0 and so

2
will never have a coset such that (z + H) = H or a subring isomorphic to Z,.

The ideals and their isomorphic subrings are:

o o L2 o

~— —— _~ _ ~— - o ~—

==

~——

127, c 7, 7,,/127, =74,

67, C 7, 7,,/67, =17

47, c 7y, 7,/42,=17,

32,c 7, 7,,/37,=17,

274 7y, 7,/22,=17,

12y, c 7,, Z12/1212 =7,

2z={...,—4,—2,0,2,4,...}, szz{...,—16,—8,0,8,16,...}; zz/sz={0+sz,2+sz,4+sz,6+8z}
+10+8Z 2+87Z 4+87Z 6+8Z 0+87 2+87 4+8Z 6+8Z

0+872|10+8Z 2+87Z 4+87Z 6+87 0+87|10+87Z 0+8Z 0+87Z 0+8Z

2+87|2+87 4+87Z 6+87 0+87 2+487|0+87 4+87 0+87 4+87Z

4+87|4+87 6+87 0+87 2+8Z 4+87|0+8Z 0+87Z 0+8Z 0+8Z

6+87|6+87 0+87 2+87 4+87Z 6+87Z|0+87 4+87 0+87 4+8Z

27/87 % 7, because while Z, has a multiplicative identity, 2Z/8Z does not.

Insert “is a #ing homomorphism”.
Change “additive subgroup” to ‘subring’.

Change to {7/' € R|q>7f = 0'} .

Vf,gekF: 5(f+g):f’+g':5f+5g; 5(f-g):f-g'+g’-f:f5g+g5f,so d is a group but not a ring

isomorphism. The subring C of Example 12 is the kernel of é. If d would have been an homomorphism, then C
would have been an ideal in F.

Let 9:Z—>7ZXZ:n+— (n,O), then ¢l = (1,0) ¢ (1,1) =1,,, but V(m,O) ey (m,0)~(1,0) = (m,O) o) (1,0) is the
multiplicative identity of ¢Z.

a.true (Theorem 17)

b. false (cf. last paragraph of the section)
c. true (Corollary 6)

d.false (Vge@: g2¢Q)

e. true (Definition 10)
f.false (Example 12)

g. true (because multiplication is defined by means of multiplication of representatives, which is commutative)
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h. true (Example 8)
i.true (Obviously, if N =R then 1€ N. Conversely, if 1€ N then V7e R:»=7-1e N = R=N)

j. true
11.  No. (See discussion after Example 2.4)
12.  See Example 2.1.
13.  See Example 2.4.
14. See Example 2.2.

15. <(11)> c ZxZ, but from (1,0)-(1,1)=(1,0)e <(1 1)> is not ideal.
16. a.Because the expression “7s=s7” is a statement about the ring R and not about the quotient ring.
b. “Then (7/ + N)(:+ N) = (s+ N)(V + N) forall »,se R”
c. Suppose R/N is commutative. V7,s€ R:
(74 N)(s+N)=(s+ N)(r+N) = (r+N)(s+N)=(s+N)(r+N)=0gy =N
so Vu,,n,n.,n,e N: dneN:
(1/+ n,,)(s+ n:)—(s+ n;)(1/+ n;) = (V.Y+ n, +n,5+ nmx)—(51/+ s, +nr+ n;n;) =n
Srs—sr= n—(mx +m,5+ nrn:)Jr(m; +ur+ n;n;) eN
because Nisideal. Conversely, suppose that V7 ,se R: 7s—sr € N. Then Vu,,n ,n,,n, € N:
(r+ n,)(s+ nj)—(s+ n;)(7+ n;) =..= (VS—S?")-F(VVLX +m,5+ n,nx)—(m, +ur+ nxn,) eN

(N M) (s M)+ N) = N O = (- N 4-4) = (s N+ 5]

and R/N is commutative.

17.  First, show that R = {ﬂ’ﬂ,ez a+ ﬂ'\/g } is well-defined as a ring. Additive closure, associativity, identity, and

inverse follow fairly obviously and directly from those properties in Z, so R is a group. Multiplicative closure and
additive commutativity are similarly obvious. Additive associativity follows from Va,a’,b,b" c,c’ € Z:

((n + p/x/g) : (17 + b'\/g)) . (c + 5'\/5) = ((nb + 217/!7’) + (ﬂb’ + n'b)ﬁ) . (c + 5'\/5)

ubc +2a’0'c+2ab’c’ + 2a’bc’ ) (ﬂb’c +a’bc+ abc’ + Zﬂ'b'l:')\/g
(ﬂ +a \/>) ( bc + 2b'c’) + (bc’ + b'c)\/g)

(ﬂ+ﬂ \/>) ((b+b’\/5)-(c+c’\/5))

Left distributivity follows from Va,a’, 6,6 ,c,c’ € Z: B

(u+ﬂ’\/5)~((b+ b’\/5)+(c+c’\/5)) =(ﬂ-‘rﬂ'\/g)'((b+t)+(b'+£')\§2)
= u((b + c) + (b’ + 5')\5) + n’«B((b + c) + (b’ + c’)«B)
=(n+ﬂ'\/5)(b+ b’«/3)+(u+a’\/5)(c+c'«/5)

2 ’
Right distributivity follows similarly. Therefore R is a ring. Now, showing that R’ = { na'el |:ﬂ, g ]} is a ring.
a  a

Again, additive associativity, additive identity, and the additive inverse follow fairly directly from their corresponding
properties in M, Z and Z, so R’ is a group. Additive closure follows from Va,a’,b,0" € Z:

e e

and multiplicative closure Va,a’ b, b’ € Z:

4

e R
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18.

19.

20.

’

a

a 24 . b 20| |ab+2a’b" 20b"+2a°b| (ﬂb + 29"17') Z(ﬂ'b + ﬂb') <R
a |00 b Wh+al' 20 +ab | | (ab+al’) (ab+2a70)
Additive commutativity is again similarly obvious, and although multiplicative associativity follows directly from
M, Z and Z, it is derived in analogy to the additive property: Va,a’,b,b",c,c’ € Z:

a 2a _ b 20 | 2c [0 20 ' be+2b'c’ 2bc”+2b'c
a  a b b ¢ ¢ a2 a b'c+bc” 20" +be
Fn(ba + 2b'c’) + Zﬂ’(b’c + bc’) ﬂ(2bc' + 2b'£) + 2%’(2b'c’ + bﬁ)
a’(bc + 2b'c') + u(b'c + bc') ﬂ’(2b£' + 2h'£) + ﬂ(Zb'c' + hc)

abc+2ab’c’ +2a’b’c+2a’bc”  2abc’ +2ab’c+4a’b’c’ + 20 be
a’bc+2a’b’c’ + ab’c+ abc’ 2a°bc" +2a’b’c + 2ab’c’ + abc

:(ﬂb + Zﬂ’b')c + (Za’b + Zﬂb’)/:’ (2ﬂ'b' + ﬂb) 20"+ (Zub’ + 2u’h)c
| (ﬂ’b + ﬂlﬂ’)c + (ﬂb + Zﬂ’b’)c’ (ﬂlﬂ’ + ﬂ’b) 2c"+ (Zﬂ’la’ + ub)c
[ab+ 200 2ab"+24'b e 2c

a’'b+ab’ 24’0 +ab

Lo

Distributivity follows directly from M, Z,so R’ isaring. Let ¢: R—> R’ :a+ A2 |:

c

a 24’

. Then:
a  a

’

e (additive homomorphy) Va,a’,b,5" €

((umf b+bf) (D((VL+[7 ﬂ+b')ﬁ)

e 210 7
- ¢(ﬂ+ﬂ’\/5)+¢(b+ b'\s"z)

¢ (multiplicative homomorphy) Va,a’ 6,0 € Z:

¢((ﬂ+ﬂ'ﬁ)-(z;+b'ﬁ))= ((ﬂb+2ﬂ'b) (ab"+a'0) \2

(ﬂb+2u’b ﬂb’+ﬂ'b ﬂ 2ﬂ b 25
- (ab’+u’b ab+2a’b vob

—¢(ﬂ+ﬂ \/7) (b+b \/7

e (isomorphy) Va,a’ € Z: ¢(ﬂ+ﬂ'\/§)=OR/ :>[ﬂ’ 2”:|=[0 0:| =a,0’=0 = Ker¢p=0;

a a 00

so @ is a ring isomorphism, and R= R’.

Following Theorem 2.5, if N < R is ideal and contains any nonzero element of R, it contains a unit and therefore

unity, and then N = R. So a field contains no proper nontrivial ideals, and by the Fundamental Homomorphism
Theorem any field homomorphism is either trivial or identity.

Exercise 3.1.49 already shows that y¢ is a group homomorphism. Vjg,s € R:

¢ homomorphism y homomorphism
vo(ah)=v(o(a)) = wleson) = gy,
Va,beR:



21.

22.

23.
24.

25.

26.
27.

28.

29.

¢(ﬂ * b) - (ﬂ + b)p = Fo<izy (pJﬂp_ibi =+to<igp (ZJ—LL)U' a7y

Z

-1) . |
+ +0<Z<P p'p—.).ﬂp_ibl +%ﬂobp
(p-i)a 0! p!

=a’ + (+0<i<p 0)+ bt =a? + !

= L!ﬂpbo
210!

The middle terms vanish because p is the characteristic of the ring.
commutative

q)(ab) = (ﬂb)p = b =¢a-¢b.
¢Why does it matter that p is prime?
Suppose that ¢1 #1’. Then V7 € ¢R : (¢)1 - 1')V =¢l-r—1"-r=r—r=0,where »,¢1 —1"#0" so that R” has

divisors of zero. Consequently, if R has no divisors of zero, then ¢1=1". (Due to Doug Rosenberg)

.Va'edpR,w' e¢gN: JaecRneN:pa=a',¢n=n":

aneN =>¢(m¢)e¢N =S¢a-gnedN =a"-wedN =a" §NcC¢N.
Similarly, ¢N-a2" c 9N, so ¢N < ¢R.

[2Z<Z. Let ¢:Z—>ZxZ:nt>(n,n). Then ¢2Z={nez(n,n)},but (1,0)-(1,1)=(1,0) € 022 s0 $2Z 1 Zx Z.

Jf N’ <R, then also N'n @R < ¢R, so we only need to consider the case of N’ <¢R. Consider the isomorphism

1: R/N — ¢R from the Fundamental Homomorphism Theorem. By isomorphism u™ N’ < u™¢R = R/M, so any
clement 7+ M € R/ M multiplied by g™ N’ is again in g™ N’. Then obviously any element 7 € R multiplied by
Y™ U™ N’ = ¢™ N’ is again in "™ N’ s0 ¢"™ N’ < R.

VfeNg,geF|; 5] VseS: o (f5)=0.f0,5=0-05=0 = freN; =N;<F[, 5]

By Exercise 18, any homomorphism from a field is either an isomorphism or trivial. Since every ideal subring gives

rise to a homomorphism, the only ideals of a field are the field itself or the trivial field, so the only factor rings of a
field are trivial or the field itself.

If Nc R then R/N o E has more than one element. Since R has multiplicative identity, 1 multiplies any such

clement to itself, and since in the factor ring multiplication happens by representatives, 1 must be a representative of
a multiplicative identity in the factor ring.

commutative

VﬂeR:Iﬂ:{xeRx|ﬂx:0|}. SoVxel,,reR: a-vx = 7r-ax=7r-0=0 =mel,,and I, <R.
Any element multiplied by either ideal is again that same ideal, so the subset must multiply to itself:
VieRneNNN': neNaneN =meNArmeN =meNNN’.

Lemma. A ring homomorphism/isomorphism induces a ring homomorphism /isomorphism on any of its quotient
rings. Let R, R’ be rings, N < R, and ¢: R— R’. By Exercise 22a, N < R’. Let 7,7’ be the canonical

homomorphisms 7: R—> R/N,y’: R’/¢N. Then ¢. = y'9y™ : R/N — ¢R/¢N is a homomorphism. Furthermore,
if ¢ is an isomorphism then Ker ¢. = Kery9y™ =™ Kery’ =™ ¢N=yN=N = Ep/y and ¢ is an
isomorphism.

Back to the Exercise. ¢:R— R’ induces a homomorphism ¢. : R/N — R’/¢N. Because N’ < R’, under the

’ ’

canonical homomorphism y: R’ — R’/¢N, yN’ < yR’ & ;\]N <

so there exists a canonical homomorphism

B.: R M = x by the Third Isomorphism for rings (proved in Exercise 38). So
ON ~N’/opN N’
¢« = Bxo0t : RIN — R’/N’ is a ring homomorphism.
Suppose there is a unit of R in the kernel of ¢, then 0” would have a multiplicative inverse in R’, but then the
multiplicative identity in R” would be 0’, which is counter to the definition of unity of Definition 1.16 and ¢«

cannot therefore have a multiplicative inverse in R’. Conversely, suppose no unit of R is in the kernel of ¢. Since
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u,u”",1 are units of R, ¢u, (])(1[1),(])1 #0 and ¢l = (])(uuil) =¢u-¢u', 50 puisa unitin R’.
30.  Let A be the set of all nilpotent elements of R. First, A is a subring because 0 is obviously nilpotent and

Va,be A:InmeZ" :a” =0,0" =0:

° (additive CIOSUI'C) Consider (p[, + b)n+m = +0Si§n+m (7’1/4‘ mJﬂ(M+m)ibi. Since the sum of the powers of # and &4 in
7

cach of the terms is always 7+, either the power of # is at least # or that of & is at least m, so that the terms all
vanish and &+ & is nilpotent.

commutative

¢ (multiplicative closure) (ﬂb)wrm = A" =a"a"b"b" =0a™ +5"0=0, so abis nilpotent.
commutative
Then Vae A,VreR:AneZ* :a” =0, s0 (pW) = a"7" =0r" =0 and aris nilpotent. So A is ideal.
31.  The elements in the nilradical of Z,, are those that contain all the prime factors of #:

7,,:12=2"3 has {0,6}
Z3:32=2" has {0,2,4,...,30}
7=7.” has {0}
32.  Obviously, 0+ N is nilpotent in R/N. Since multiplication in the factor ring occurs by representatives in N, and no

clements in R\ N are nilpotent, it is also the only nilpotent element of R/N.

33.  Let e R. Since the nilradical of R/N is itself, there is an 7y such that 7 € ry + N and 7y nilpotent, and there is

an n € N such that » =y +» and » nilpotent. By the proof of additive closure of nilpotents in a commutative ring
in Exercise 30, 7 is also nilpotent. Therefore R is its own nilradical.

34. First, show that the radical in fact forms a subring. Va,b € VN InmeZ :a",b" € VN

¢ (identity) Since Nis an ideal and a subring, 0 € N and because 0'=0, Oe VN.
e (additive closure) Consider (ﬂ + b)mm =+o<i<nim (”+ m)a(%m)_ibi. Since the sum of the powers of # and & in
Z

cach of the terms is always 7+, either the power of 4 is at least # or that of 4 is at least m, so each of the terms is
commutative

of the form a/a"b* ™ = a'n,b*n, =  a/b*n,m, =a’t*n,,, where n,,n,,n,, € N. Because 7, is an element

of the ideal, #/#*n,, € N so each of the terms is as well. Because the ideal is a subring and closed under addition,
the entire sum is in the ideal.

n+m
¢ (multiplicative closure) (ﬂb) =a"""y"" =a"a” + b"6" = n,a” + b"n,, where n,,n, € N. Similarly,

n,a” 6", and the sum is in the ideal.

. commutative

So @Nisasubring. Vne\/E:ElieZ+:ni:nneN. Then V7 eR: (1/%) = r'n'=r'n,eN,so0 \/E<1N.

35. a.R<C; ievR,7¢R.

b. 27«2, ~N2Z=27.
36.  The radical of Nis the set of all the elements that by some power end up in N. The nilradical of R/N is the cosets

of N that by some power equal the coset 0+ N. So N is precisely the elements of R that are representatives of an
clement of the nilradical of R/N.
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37.

MnNN

MnNN

First, show that M+ N isaring. Vm+n,m' +n e M+ N :

* (identity) 0=0+0e M+ N;

e (additive closure) (m + n) + (m’ + n') = (m + m') + (n + n’) €M+ N;

¢ (multiplicative closure) (m + n) : (WL' + n') =mm’ +mn’ +nm’ +un’ =m, +m,+n,+n,=m,, +n,, € M+ N,
where m,,,m,,m,, €M, n,,n,,n, €N.
Then show that M+ N<R: Vm+ne M+ N,VreR: V(WL+7L)=VWL+W’L=WLV +n, € M+ N, where
m,eM,n, eN.
Now, follow the proof of Theorem 4.1.5. Let 7: R— R/N be the canonical homomorphism. Under ¥, then,
McR = yMcR/N. First, consider the restriction }/|H : M — yM which is a homomorphism with

Ker)/|H = NN M. By the Fundamental Homomorphism Theorem there exists an isomorphism g : 7 —>yM
M

Second, consider the restriction 7/|M+N :M+N—> y(M+ N). Now Vne N:yn=N=1g/y,s0 y(M+ N) =yM and

}/|M+N M+ N — yM with Kery|M+N = N and there similarly exists an isomorphism u, : M+ N — yM . Therefore,
M _M+N
NAnM~ N =

38.  Follow the proof of Theorem 4.1.7. Let ¢:R— ig/z;; > (7’ + M) +N/M. First, show that ¢ is a ring
homomorphism. Va,b€ R:

¢ (addition) ¢(ﬂ + h) = ((VL + b) + M) + %(;)((a + M) + (b + M)) + %?((a + M) +A_A/;J + ((la + M) + %) =¢a+ ¢b , where

«

(*)” holds because coset addition in a ring is well-defined.

e (multiplication) (I)(ub) = (ﬂb +M) +%:((ﬂ +M) . (17 + M)) +%=((ﬂ + M) + %)[(b +M) + %J =¢a- @b, where

«

(*)” holds because coset multiplication in a ring is well-defined.

R/IM

The identity element in N /M is (O +M ) + A_Z\/; and Ker ¢ = N, so by the Fundamental Homomorphism Theorem

R _R/M

N N/M’

39. Showthat ¢:C—>M,R:a+a" H[ ﬂ, ﬂ:| is an isomorphism. Va+a's,b+0"i€C:
-2’ a

e (addition)
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¢((ﬂ+ﬂ',~)+(;,+b',-))=¢((ﬂ+b)+(ﬂ'+b')i)=[ el :iH HZ f;’]=¢(ﬂ+ﬂ',~)+¢(;}+b’,-)
¢ (multiplication)

o((a+a'i)-(0+ 1)) = 9((ab - 2’0"+ (at + '0)i)

ab—a’t’  ab’+a'b a a b b ,. ,.
- |:—ﬂb’ -a'b ab- ﬂ’b':| - [—ﬂ' a :| . |:—b’ b } - ¢(ﬂ e l) . ¢(b v l)
40. a. Vx,ye <R,+>: yﬂ(x+y) = ﬂ-(x+y)ri:gﬂx+ﬂy =Y, X+Yx.

b.Show thatitis aring: Vy,,y, € R’:
e (identity) 7;: R— R’ : x> 1-x = & is the identity of End<R,+>;
* (additive closure): Vx € R: (yﬂ +yb)x=yﬂx+ybx=n~x+b~x=(ﬂ+b)«x=yﬂ+bx, SO ¥,y + Yy =YVass ER;

¢ (multiplicative closure) Vx € R: (}/ﬂ -yb)x = ya(}/bx) = yﬂ(b : x) =a- (b : x) = (ﬂ : b)x =YX 80 VoV =Vay €ER.
c.let 9:R>R:avy,. Va,beR:

* (addition) ¢(a+5)=14,.; (i),lﬂ + A, =da+0b;

e (multiplication) ¢(ﬂ-b) =,, t)lﬂ Ay =0a- b,

¢ (isomorphy) The identity of R" is A4, s0 Ker¢ = {1}

So R=R’. A, isa permutation, and every ring R is thus isomorphic to a ring of permutations.

§6.2 Prime and Maximal ldeals
v 9  Asa proof of concept, restate Theorem 9 in a format that shows the hierarchial top-down structure of the proof.
This is truer to the 1 % -dimensional nature of a proof than the flattened linear text, and more consistent than the

alternating bidirectional ‘imply/infer’ logic of the text stream. Because it obviates mentally reconstructing the true
structure of the proof and permits the reader to selectively ignore details of the proof; it should theoretically be
casier to understand.

M is a maximal ideal of R < R/M is a field
(R/M is a field < M is a maximal ideal) (<

R/M is a commutative ring with unity ( <
R is a commutative ring with unity

)

R/M has multiplicative inverses ( &
Let VaeR:N, = {,,ER’meM m+m}.
N, is a group under addition ( <
N, is closed ( <
Vra+m,r'a+m’ eN,: (m+m)+(7"ﬂ+m’) =(V+V')17L+(m+m') eN,
)
N, has idC/I\ltity (&=
‘v’m+m:(0ﬂ+0)+(m+m) =(0+7/‘)ﬂ+(0+m)= ra+m
)
N, has inv/;rses (&
Vra+me N,: ((—V)ﬂ+(—m))+(m+m) =(—7/’+7’)PL+(—WL+WL) =0a+0=0y

)
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N, <R (&

Vra+meN,:

VgeR:g(m+m)=(gV)u+gmeNﬂ (&

JgreR,
gmeR (&
M<R
)
)
)
N,=R (&
N,oM (&<
N, oM (&
VmeM:m=0a+meN,
)
N,zM (&
aeN, (&
a=la+0eN,
) A
neM (<=
a+M#0g/y
)
)
) A
M maximal
)=
leN, =

Foa+meN,: ba+m=1 =
b+ M=(b+M)a+M)=1+M

)
) A
(M is a maximal ideal & R/M is a field) ( <
Suppose M is not maximal: AN<R: RO N> M
R/M is not a field ( <

R/M contains a proper nontrivial ideal ( <

Let y: R— R/M be the canonical homomorphism:
N<R=

yN<1yR=R/M =
R/M>yN>{0+M}

)
)
)

We can compact the presentation with a few simple heuristics. Roughly, let ‘=’ or * A’ be implied between two
lines at the same indentation level, and ‘<’ at increasing indentation:

M is a maximal ideal of R < R/M is a field
(R/M is a field < M is a maximal ideal)
R/M is a commutative ring with unity

R is a commutative ring with unity
R/M has multiplicative inverses

Let VaeR: N, ={7€R’meM m+m}.

N, is a group under addition
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vll

v 16
v 18

closed: Vrva+m,7’a+m’ e N, : (m+m +(V’ﬂ+m’)=(V+V’)ﬂ+(m+m’)e
identity: VVPL+WL:(OPL+0)+(7/’PL+WL)=(0+7/’)ﬂ+(0+m)=Vﬂ+WL

inverses: Vra+m e N, : ((—V)VL + (—m)) + (m + m) = (—7/ + V)PL + (—m + m) =0a+0=0y

Vra+meN,: VgeR:g(m+m):(gV)ﬂ+gmeNﬂ
greR, gme R=M<R

N,=R
N,oM
N,oM
VmeM:m=0a+meN,
N,zM
aneN, <a=la+0eN,
ngM =a+M#0g,y
M maximal

leN, =3ba+meN,: ba+m=1
lm+M=(la+M)(a+M)=1+M

(M is a maximal ideal & R/M is a field)
Suppose M is not maximal: AN R: RO NDODM
R/M is not a field
R/ M contains a proper nontrivial ideal
Let y: R— R/M be the canonical homomorphism:
N<R =yN<R=R/M = R/M>yN>{0+M]

R is a field < R has no proper nontrivial ideals
R is a field = R has no proper nontrivial ideals
Corollary 6

R is a field & R has no proper nontrivial ideals
Theorem 9

R= R/ Eisafield <«  E< R maximal <& R has no proper nontrivial ideals

N is prime < (ﬂb eN =aeNvbeN ), so a prime ideal is such that the corresponding factor ring has no divisors

of 0. In other words, N < R prime iff R/N is an integral domain.
Masximal and prime in factor rings correspond to field and integral domain.
Let ¢:Z — R be the homomorphism from Theorem 17.

(R contains a subring isomorphic to Z,, < charR> 1)

Ker¢p=nZ
Kerp < Z
N<Z =3I5eZ:N=sZ
n is the smallest integer such that #-1=0 < Theorem 5.2.15

02 =7/nl=17,
(R contains a subring isomorphic toZ <« charR= 0)
Ker¢=E
VmeZ :m-1#20 <« charR=0
0Z=7/E=7

If Fis a field, then every ideal in F [x] is principal
(N principal &N« F[x])
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Noprincipal & N=E= {0} F[x]
N principal & N> E
Let g € N be of minimal degree.

(deggzO :Nle[x])
Theorem 5
degyg=0 = geF = N=F[x]=lF[x]
(degg>0 :N:gF[x])
VfeN

f =yg9+7r where r =0vdegr <deg g < Theorem 5.6.1
r=0
reN
J9€N
feN

JeEN = g9eN = ggq+reN
4 € Nis of minimal degree deg g >0

f=ua1
v 25 pF [x] maximal & pirreducible over F [x]

=
Vf,geF[x]:p=fg =deg f>degpvdegg=degyp
f epF[x]vg epF[x]
pF [x] prime & pF [x] maximal
pepF[x]
—

Let N<F[x|: F[x]> N> pF[x]
EIgeN:N:gF[x]
Theorem 24

N principal & N«F [x]
EIqu[x]:p=gq

peN cpeF[x]cN
deg y=0vdegg=0 <« pirreducible
(deggzO =>N=F[x])

N=gF[x]=1-F[x] cgeFisaunitofF[x]
(dengO :N:pF[x])

gepF[x] =>gF[x]=pF[x]

g=0/1,0¢F

contradiction.
v27 rs=,0 = r=,0vs=,0
7sE pF[x] =rs=,0
pF [x] is prime < pF [x] is maximal

By Example 2.7.
Not a division ring because it doesn't have a multiplicative inverse.
By Theorem 2.11.

Not an integral domain because it has a divisor of zero
By Theorem 2.9.

QN UL W~
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10.
11.

12.

13.

T and isomorphic subrings

subring factor ring int dom?  field? prime? normal? subring
17 7,174 =17, no3 no® no no
27, 26/223 =7, yes1 yes4 yes yes {0,2,4}
37, 24/37,=17, yes] yes? yes yes {0,3}
67, Z,/67, =17, nol no® no no
subring factor ring int dom?  field? prime? normal? subring
17, 7,,12,, =7, no3 no® no no
27 212/226 =7, yes1 yes4 yes yes {0,2,4,...,10}
37, 7,,/37,=17, yes! yes? yes yes {0,3,6, 9}
47, Z,, /423 =7, nol no® no no
67, Z,,/6Z, = Zg nol no® no no
127, 7,127, = 7,, nol no® no no
subring factor ring int dom?  field? prime? normal? subring
17, %17, Ly X2, =7, no3 no3 no no
17, %127,
1Z,%x27, =7,% LX2, Z, yes! yes? yes yes {O 1} X {0}
17, %27, ’
27, %27, =7, LaXZy =7,%X12Z, no® no® no no
27, %27,
subring factor ring int dom?  field? prime? normal? subring
17, x17, VAR VARV no3 no0 no no
17, x27, Z,x2,=17, yes1 yes4 yes yes {0,1} X {O, 2}
17, x 47, Iy x2y=7, yes1 yes4 yes yes {0,1} X {0}
27, %17, Z,x7,=17, yesl yes? yes yes {o}x{o0,1,2,3}
27, %27, Zyx 2, nod® no® no no
27, %47, Iy X2, no® no® no no

Zs[x]/<x2 +c> is a field ift <x2 +c> < Zs[x] is maximal iff x? +¢ is irreducible in Zs[x]. If %2 +¢ is reducible,
then it has at least one (i.c., actually two) factors of degree one x —a and by the Factor Theorem then has a zero
for x =a. By calculation, the sets A, of zeroes a for given care: A, = {0} , A =9, A, = {1, 2}. So the
polynomial is irreducible and the factor ring a field for ¢=1.

Following the procedure of Exercise 5— if x° + x? +¢ is reducible, it has to have at least one factor of degree one
and a corresponding zero: A = {0, 2} , A = {1}, A, =. So the factor ring is a field for ¢=2.

A ={2}, A, ={1}, Ay =@; c=2.

A, ={0,4}, A =0, A =D, A, ={1,3}, A, ={2}; c=1,2.

A ={2,3}, A =0, A, :{4}, A, ={1}, A, =@; c=14.

“is a properideal”

The given definition is valid only if R = Z because prime elements have not been defined elsewhere.
Comparing to Definition 20, Z, and @ can contain no nontrivial proper subfields, and any other field properly

contains either of these fields— so the definition is indeed equivalent.

Since a principal ideal consists of all products of the field with the geneator, it is certainly the smallest ideal
containing the generator. Since this defines minimal ideals for every element, all minimal ideals are principal—
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14.

15.
16.

17.
18.

19.

20.

21.
22.
23.

24.
25.

26.
27.
28.
29.

30.

therefore the definition is equivalent.
a. false (should find a counterexample of a factor ring that is an integral domain but not a field)
orollary 16)
c. true (by Theorem 19 because the characteristic of Q is zero)
d. false (by Theorem 19 the characteristic of R is zero, so Q is the prime subfield)
e.true (Theorem 19)

(C
(
(
(
firue (QcQxQ)
(
(
(
(

b. true

g. true (Theorem 19)
h. true (if F has no divisors of zero then F [x] and F [x] / N don't either, so N is prime)

i. true (Theorem 24)
j.false (by Theorem 25, only if the generating polynomial is maximal)

2IXTZ<IXZL. IXZ[2ZXx7Z=7,xE=1Z,isafield, so 2Zx Z is maximal.

ZXE<QZxZ. ZxZ/ZXxE=EXZ isnotafield, so Zx E=Z is not maximal. Since Z has no divisors of zero,
Zx E is prime.
47XT<QIZXZL. IxXT[4ZX7Z =7, x E =7, has divisors of zero, so Z, x E is not prime.

@[x]/<x2 —5x+ 6> is a field ift <x2 —5x+ 6> is maximal iff x% —5x +6 is irreducible in @[x] By the Factor

Theorem it is irreducible iff it has no zeroes in Q. The roots are

I \2
—(-5)£4(-5) -4-1-6 =,
x= ( ) \( ) 25_ﬁ=2,3€@,
2-1 2
so the factor ring is not a field.
Following the procedure of Exercise 18:

[o\2
—{—6)*(-6) —4-1-6 + —
o) exl2 Lo
2-1 2
and the factor ring is therefore a field.
Since R is finite, so is N < R and R/N. Since R is prime, R/N is an integral domain. By Theorem 5.2.11, R/N

is a field, therefore N is maximal.

Z,%x7Z,, is a ring with multiplicative identity containing Z, x E=7Z, and ExZ,, = Z,, as subrings.
Idem.

If a ring contains subrings isomorphic to Z,,Z,, then it should contain a subring isomorphic to Z,,, which is not

an integral domain. So any containing ring cannot be an integral domain either.

N <R maximal < R/N simple
(suppose Nnot maximal = R/N not simple)
AM:RoM>N,M<R
Let y: R— R/N be the canonical homomorphism
7/|M :M— R/N
M<R =yM<R/N and yM c R/N
(suppose R/N not simple = N not maxirnal)

Let ybe some canonical homomorphism.
R/N notsimple =3IM’<R/No>M' 50+N =y™M <Rand Roy™M SN.

A+B:{ﬂ€A’h€Bu+b}.
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a.Show that A+ Bc R is a subring:
e (additive identity) 0 e A,B =0=0+0€ A+ B.

e (additive inverse) Va+be A+B:—ae A,-beB =>(—ﬂ) (—b)eA+B:

(

(a ) (( ﬂ)+(—b))=(n+(—ﬂ))+(b+(—b))=0+0=0
e (additive closure) Va,a" € A; b,b" € B: (ﬂ+17)+(ﬂ'+17’)=(ﬂ+ﬂ’)+(b+la’)eA+B,where a+a’' e A,b+b"eB
(

o (multiplicative closure) Va,a’ € A; b,b" € B:
A,B<R
(VL + Ia) . (ﬂ' + 17’) =aa’+ab’+ba’+bb" = a”"+a”+b"+b"=a""+b""€ A+ B where a” =aa’€ A,n"" =ab’' € A
and similarly in B.

A,B<R
Now show that A+ B< R isanideal: Va+be A+B: VreR: V-(u+b):m+rb = a'+b' ,where a’€A,b'eB

b. Because A, Bare ideals they are subrings and contain the additive identity. Then Va € A:
a=0+0€A+B = Ac A+ B and similarly Bc A+ B.

_ n
31. AB—{n€Z+ i n cAb <B ﬂibi}.

a. Show that ABc R is a subring.
* (additive identity) 0=+%a,4; € AB.
e (additive inverse) VneZ",n; € A,b; € B: +!a,b; e AB: -, e A = +?(—ﬂi)bl~ =+7 —a,b, € AB:
(+?ﬂibi)+(+? _”ibi) = +?(uib,- +( a;b; )) +70=0
e (additive closure) The sum of both sums of terms is just a larger single sum of terms.
e (multiplicative closure) Vu,n' € Z"; a;,a] € A; b;,b! € B:
) ) A,BaR
(# s )- (47 aitt) =+ 7 iyt = 4 by =4y b € AB, where a” = mb; and b7 = a0,
A<R
Then show that AB< Risideal. VneZ';n; € A;b; € B: VreR: r-+'ab, =+"r-a;b; = +7 alb; € AB, where
a=r-a;.
A<R B<R
b.Forany +’a,b, € AB, +’a,b; = +] a/€ A and +!a,b; = +} b”e A where a/,b/=w;b;. So +!a,b; € AN B and
ABc ANnB.

32. A;B:{,ER V|VbeB:7fheA}.

a. First, show that A: Bc R is a subring.
e (additive identity) 0 e R: VbeB: 0-b=0e A =0€A:B.

e (additive inverse) V7€ A: B, Vb e B: (—7/’) b= —(rb) €A =>-reA:B.

e (additive closure) Vr,7"€ A: B: Vb e B: (V+V')b=Vb+7’17=ﬂ+ﬂ'eA,where a=rbeA, a’=r'beA. So

r+r € A:B.
A<R
e (multiplicative closure) V7,7 € A: B: Vb e B: (W')b = V(V’b) =ra’ = a”,where a’=rbe A and 2" =ra’. So
r-r'eA:B.
commutative
Show that A: B< R isideal. Vre A:B: Vse R: Vb e B: (V:)b = (Vb):=ﬂ’s=ﬂ"eA = rse€ A: B, where

a’'=rbeAand a” =4a's.
33.  Show that Sc M, F is a subring;:
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e (additive identity) [8 g:| €Ss.

e (additive inverse) V a b €S: —-a,-beF: - b es: |” b + 77 b -0 .
0 0 0 0 [0 0 0 0 00
e (additive closure) follows directly from the closure of Fand M, F.

T a bl|la U a b|[a 0] [aa’+00 ab'+00| [aa® bt
¢ (multiplicative closure) V! , €Ss: : = = €S.
0 0[O0 O 0 0[O0 Of [0a”+00 0&"+00 0 o0

Now V[g (b):|eS; v[foo f01:|eM2F:

) ) Vfw fu )
a b}lfoo for af o0 + bf10 ﬂf01+bf11:|: af oo + bf1o ﬂfOlerf“]eS

100 [fio fii]l [O0fo0+0f10 Ofor+0f1 0 0
but

[ foo f01:|_[ﬂ b—_—fooﬂ+f010 foob+f010]:—“foo hf00:|

flo i) [0 0] [fion+£0 fiob+ 0] |afie i

which is not necessarily in S.

0

0:|> = Ey, 7, 1s the trivial

34.  Enumerate all the possible elements that could be contained in an ideal of M, Z,. <|:g
ideal. Consider a matrix with one non-zero element:
1 0 {70 o1 | _ 1ngg +0myy  1mgy +0myy | | mgg 791
0 O] |my = Ony +0myy  Ongy + 07y 0 0
which we know from Exercise 33 is not an ideal. By symmetry we know that neither are any of the other principals
generated by matrices with one non-zero component or with two non-zero components along a row or column. As
10 01
to the other two matrices with two non-zero components, obviously <{O 1:|> = <[1 0:|> =M, Z,, and this

implies that neither are the ideals generated by matrices with three non-zero elements proper.

§6.3 Grobner Bases for ldeals

v The discussion after Example 2 states in essence that <f f i> = {yi er Ti 1S, i} are the ‘principal ideals” with multiple
generators, and that they are <: f Z> =N < f Z> the intersection of the individually-generated ideals.

v 4 The common zeros of {,— f,} are the common zeros of <Z- f,>
v 5  This is just a generalization of Theorem 2.24 to multiple indeterminates: every ideal of F [x] is principal <Z- fl>

v7 Let fi:rx+y—-32-8=0and f,:2x+y+2+5=0,then f3:-y+72+21=0 can be formed from
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10.

11.

((f:gq_’_;/,”

i

f3=H-2i & fi=2/+f;

f3_
f3=H-2A & £ A

P

remainder product quotient

divisor

Keep in mind that the algebraic variety of an ideal is equal to that of any basis. In the left figure are plotted the

zeros of the two original polynomials of the Example. Disregarding some plotting artifacts, it can be seen that they
intersect in one point. The right figure shows the zeros of the Grébner basis calculated in Example 13, and it can

be seen that they intersect in the same point.

2
1
J \\

S}

[

1 1
-2 2
-3 -3

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 37
Write out the exponents of the power products, and sort them lexicographically like words:
“135,213,221,300” — “300,221,213,135”: —3x°+7x%y%z —5x%yz> + 2uy°%2°.

“025,100,033,007” — “100,033,025,007”: —4x+5y°2° +3y%2°-827.
“010,100,003,122,212” — “212,122,100,010,003”: 2x2yz? —2xy%2% —7x+3y +10z°.
“000,101,011,110,013” — “110,101,013,011,000”: —8xy —4xz +3yz° + 2yz + 38.

Write out the exponents in reverse order:
“531,312,122,003” — “531,312,122,003”: 2z°y3x—5z°w? +7zy2x% - 34°.

“520,001,330,700” — “700,520,330,001”: —8z” +32°y% +52°y3 —4w.

“010,001,300,221,212” — “300,221,212,010,001”: 10z° —2z%yx+2z%x? +3y - 7x.

“000,101,110,011,310” — “310,110,101,011,000”: 3z3y+2zy—4zx—8yx+38.
l<z<y<x
2 2 2
<z <Y<y <xz<xy<X
<zP<yp?<ylz<yd<an? <aypz <y’ <xlz<xly<a’
<...
Write the sum of the exponents as an exponent and sort by degree first:

“135%,213%,221°,3003” — «135°,213% 221%,300%”: 2xy3z° —5x%yz® +7x%y%z —3x°.
«0257,100',033%,0077” — «0257,0077,033%,100"7: 3y22°-8z7 +5y°2° — 4«.
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12, “010%,100%,003%,122% 212> — «212°,122%,003%,100%,010': 2x%yz? —2xy?2? +102° - 7x+3y.
13. «000°,101%,011%,110%,013*” — «013*,110%,101%,011%,000°”: 3yz® —8xy — 4xz + 25z + 38.

14.
/maximum—order term

xy2—2x @4xy xy—y2

y-ylx e ox
4xy+y2x

leaving <xy2 - 2x,4xy +y2x,xy—y2>.
15. @y3 v yz x—y*
xy—y° "
y5 4 y°
leaving <y5 +y3,y3 +z,x—y4>.
16.  Can't be reduced as required, because x° can't be divided by any of the 1 p( fi).
17. y2z3+3 @—Zz y2z2+3
-3y -2z

leaving <y2z3 +3,-3y —2z,y%22 +3>.

18. w+x—y+4z-3 2w+x+y-2z2+4 w+3x-3y+z-5
2 2w+2x—-2y+8z—-6
-x+3y=10z+10
11— w+x—y+4z-3
2x-2y-3z-2
=2 2x—6y+20z-20
4y-23z+18
x—-3y+10z-10 «—--1
w+2y—6z+7
_23 L1
2y 2z+9 3
w+%z—2
4 2 4
et 2,7
4 2
2w+1lz -4 —4x+29z-14

leaving <2w +11z -4, -4x+292-14,4y - 23z + 18>. Every §;; has a leading term containing at least a nonzero

power of w, x, or z and can thus be divided by the leading term of one of the basis polynomials. We have thus
found a Grobner basis.
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19. w—4x+3y—-z+2 2w-2x+y-2z+5 w-10x+8y—-z-1
2> 2w—-8x+6y—-2z+4
6x—-5y+1
11— w—4x+3y—-z+2
—6x+5y-3

leaving <w —4x+3y—-2+2,6x-5y+1,-6x+5y — 3> . Since the second and third polynomials have no common

zeros, the Grobner basis is <1> .

20. xtrad-3x—4x—4 xP+x?—4x-4
xt +wd —4x? —4x —-x
x*-4
X —> x° —4x
x’—4

leaving <x2 - 4> , which is a single-element basis and thus a Grébner basis.

21. xt—4xd 4557 —2x  xP-x?—4x+4 x*-3x+2
= —4x” + 4 —-x
-3x2 +9x% —6x
—3x% +3x% +12x 12 «—--3
6x% —18x+12
x%—3x+2
%3 —3x+2 -1
—x2—x+2
—x xS+ a2 =2«
—x>—x+2
A ) «—--1
—4x+4
x—1
—x > —x2+x
—2x+2
x—1

leaving just <x - 1>.
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22. x> +x2+2x-5 P -x?t+x-1

2 —xt &2 x>
st x4+ 287 +2x-5
xt - at—x —-x
x?+3x-5
3 2
X —> x° +3x° —b5x
—4x? +6x-1
—4 —4x% —12x+20
18x—-21
6x—-7
x:-Z —- 1y
6 6
25,5
6
36 6x -3¢
25 5
1
5

leaving <1> .

23. xly—x-2 xy+2y-9
%2y +2xy —9x —-x
—2xy+8x—-2

xy —4x+1
1- xy —4x+1
4x+2y-10
2x+y-5
xy+%y2—%y —-=2

4y—Ly2 45
4x Y +2y+1
—4x-2y+10 —--2
12,9,
PR ?
y2 -9y +18

19492 —4.1.18 _94481-72 949 9+3
2-1 2 2
2x4+y-5=0 =2x=—-y+5 = x=2L(—y+5) the corresponding algebraic variety is {(1,3),(—<,6]}. In the left

y Y S\ P g alg ty >

figure are plotted the zeros of the two original polynomials, in the right figure the zeros of the corresponding

Grobner basis. Again, the common zeros of the Grobner basis are the same as those of the original, but the basis is
as simple as it could possibly be.

y has zeros y =

= 3,6 and from
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24. y+x oxyi-y
NP =y(x2y +x)—x(xy2 —y)

= x2y2 +xy—x2y2 +xy

=2xy
«%y ely
X
o’ o
-y
2y = 2xy
’ o

leaving <x, y> which is obviously a Grobner basis. The corresponding algebraic variety is {(0,0)}.

25. y+x+l oy +y-1
NP :y(x2y+x+1)—x(xy2+y—l)

=x?yl +xy+y—x?y —xy+x

=x+y
x2y+xy2 <_xy
—xy2+x+1
o y? .y
x+y°+1
x+y «—-1
7 -yl
xy2+y3 %yz
—y3+y—1
7 -y+1

leaving <y3 -y+1,x +y>.

121



=)
=}

)

N
N

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
26. Py +xy? wy—x
wly—x? —-x

ND =y(x2 +xy2)—x(xy —x)

x? +xy? =xly+xy° —x%y +x°
=xy® + &2
.yz_) xy?)_xyZ
x% +xy?
1—- x2+xy2
0
xyz_xy -y
x? + xy
wox <l
x? +x

leaving <x2 +x,x5) — x>

27. a.true (Theorem 5, the Hilbert Basis Theorem)

b. false (a fractal for example has infinite complexity, or Zx Z has infinitely many disjoint subsets, and neither can be
described by a finite-basis ideal)

c.true (V<1>)
d. true (every point in R? is the intersection of R? and a line perpendicular to R?)

e. true (corresponding to the intersection of two planes in R?)

f.true (every line is the intersection of R* and a plane perpendicular to R? in R?)
g. true

h. true (finding solutions to systems of linear equations)

i. false

j. false (the algebraic variety is only a property of the basis, not the basis itself— notably, x <x, y> but x ¢ <x2 , y2>)
28. y<x but y#,0.
29. V+cfiel: VreR: V(+i Q-f;-) =+, rc;f; =+; c.f; €I where ¢ =rc;. ¢So why does the ring need to be

commutative with unity?

30. =Let seF[x] be a common divisor of fand g, f =sf’, g =s5’. Then
f=g99+7r ﬁrzf—ngsf’—sg'qz:(f’—g’q) so sis also a divisor of 7.
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31.

32.

33.
34.

35.
36.

<Let se F[x] be a common divisor of gand 7, g=sg’, 7 =sr". Then f=gg+r=9'q+sr’ = s(gq’ + 7/’) so sis also a

divisor of f.
xy yi-y
S=y(xy)—x(y2 —y)
=xy’ -yl +y=y
0
»” <
-y
-y —-—1
0

Since the only possible § is reducible to 0, the given basis must be a Grobner basis.
First, show that I = {feF[x] f|Vs €S: 5= 0} c F[x] is a subring;:
e (additive identity) Op[x] : VseS: OF[X]s =0 = OF[X] elg;
* (additive inverse) Vf eIy VseS: (—f)s=~(f)=-0=0 =-fel;
e (additive closure) Vf,gel;: VseS: (f+g)s=ﬁ+gs=0+0=0 = f+gelg;
e (multiplicative closure) Vf,gelg: VseS: (ﬁ;)s=fé-gs=0~0= 0 =mel;.
Next, show that I < F[x] :
Vfelg: VgeH[x|: VseS: (fy)s=f-sm=0-45=0 = fyel.
VxeF": xeVI;: =Vfelg: fx=0 and this is obviously true by definition for all se §,s0 ScV ;.
Let §= {x’yER (x,y)‘xZ +y?= 1} \ {(1,0)} be the unit circle about the origin except for the single point on the

positive x-axis. Then I is the ideal generated by x% + y% —1 of all polynomials intersecting that circle. Because of
the continuity of R, obviously (1,0) eVI.

The following figures demonstrate some elements (polynomials) in that ideal and how they each intersect the unit
circle:

Obviously any polynomial in N is zero-valued for any element of VN, so N c Iy y .
Let N= <x2>, so Nis every polynomial in [R{[x, y] in which every term is divisible by x2. Obviously the y-axis
{yER (O,y)} c V N. Also, any point (ﬂ, b) not on the y-axis cannot be in VN because x% € N and ¢(ﬂ b)xz =a’#0

, 80 VN is precisely the y-axis. Now Iy  are all the polynomials that are zero-valued for the y-axis, which obviously
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includes N. Butalso xelyy and x ¢ <x2>

§7.1 Unique Factorization Domains

v

v7

v 28

—

SIS

Y »®N o

10.

By definition, a reducible can be factored into irreducibles but not vice versa. The key characteristic of a Prinicpal
Ideal Domain is that every element can be identified with an ideal. Since the infinite union of an infinite sequence

of properly contained ideals is <1> , this terminates the sequence of ideals, and correspondingly therefore every

element has a finite factorization. In a Prinicpal Ideal Domain an irreducible is prime, so the factorization is unique.

DPID JL» DUFD g
7.1.28
Fl«] PID ' D[x| UFD
~5.6.20
6.2.24
Ffield -ess27
DUFD D[x| UFD
recover a factorization of
fe D[x] from one in F[x]
Ffield of quotients 5.6.20 . F[x] UFD

Since 5 is prime, the only factorization up to associates of 5€ Z is 5=1-5 where 1 is a unit, so 5 is irreducible.

Since 17 is prime, the only factorization up to associates of —17 € Z is =17 =—-1-17 where —1 is a unit, so —17 is
irreducible.

14=2-7 is reducible.
Is a primitive polynomial and irreducible.

2x-10= Z(x - 5) is reducible.

2x -3
a

2x—3 isof degree 1 and Va#0:2x-3 =

-a where 2 is a unit, so irreducible.

Idem, irreducible.
Irreducible.

Z[x]: {2x—7,—2x+7}
@[x]: {2x—7,4x—14,6x—21,8x—28}
7y[x]: {2x-7,4x-3,6x+1,10x -2}

The roots of the polynomial are
o2 —

() (4) 448 4il6-128 axi112 447 1417 eR
24 8 8 8 2720 '

So in Z[x]: 2-2-(%2 —x+2), in @[x]: 4x? —4x+8. In Z,, the polynomial has roots x =5,7 so in

Zy[x]: 2-2-(x-5)x-7).

X =
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11.

12.

13.

14.

15.
16.
17.
18.

19.
20.
21.

234=2'.3%.13!
3250=2"-5%.13' t = ged=2'-13' = 26
1690 =2'.5'.132

784=2%.72
1960=2%.5'.72 L = ged=2%.7' =56
448 =20.71

2178=2'.32.117
396=2%.3%.11!
792=2%.32.11"
594=2%.3%.11!

=gad=2'-3%-11'=198

6-(3x2—2x+8).

18x2 —12x +48.
2x% —3x+6.
2x% —3x+6.

a/b=ab™" is only well-defined if & has an inverse. But even elements without an inverse can be associates, e.g.
26=-26--1. So “ifand only if # = bu, where » is a unit.”

Insert “without one of the factors being a unit.”

“Smaller” is not defined. “if and only if any divisor divides at least one of the factors in any factorization.”

a. true (a field does not have any nonzero nonunit elements)

b. true (by Corollary 6.2.6 a field has only the trivial and nonproper ideals, which are both principal)
c. true (Theorem 16)

d. false (Example 30)

e.true (by Corollary 17 Z is a UFD, and by Theorem 28 Z[x] is also)
f.false (5,7 € Z are irreducible but not associates)
g. false ( Z[x] is a PID but Z[x][y] = Z[x,y] is not)

h. true (Theorem 28)
i. false (an associate of p could appear)
j. true (by Definition 5 a UFD is only defined for an integral domain, which cannot have divisors of zero)

By Lemma 26. The irreducibles of D[x] are the irreducibles of D and the irreducibles in F [x] that are primitive in
D[x]

Again following Lemma 26, a nonprimitive polynomial in D[x] is reducible in F [x] but irreducible in D[x], for
example 2x+2=2- (x + 1) is reducible in Z[x] but irreducible in @[x]

With divisors of zero, factorizations are no longer unique. For example, (1, 0) = (1,0) . (1, 3) = (1, 0) : (1, 5).

Suppose p =ab is reducible where 4,4 are not units. Then 2,4 #, 0 are not divisible by p, for suppose without
loss of generality that 2=, 0 then #=,, 0= 3c:a=abc. Since an integral domain has no divisors of zero and

p#0, then 2#0. Since cancellation holds in an integral domain we have 1= ¢ = ¢= 4" but & is not a unit. So p
is not prime. So if pis prime, it is irreducible.

Let p=ab be a factorization of an irreducible p. Then without loss of generality, # is a unit. Since this
factorization is unique up to associates and ab=, 0= b=, 0, so pis prime.

o (reflexive) a=a-1s0 a~a;
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' = b~ a,where u,u" are units;

e (symmetric) Va,beD:a~b =3IJueD:a=bn =b=au
e (transitive) Va,b,ce D:a~byb~c =3JuveD:a=bub=cv :>ﬂ=bu=(cv)u=c(1m) = a ~c, where vu is
also a unit.

28. Let a,be D" —U be two nonzero nonunits. Since D is an integral domain, it has no divisors of zero so ab#0.

Suppose a6 was a unit, then (ﬂb) . (nb)_l =1 = a(b(ﬂh)_l) =1 =a'=b- (ﬂb)_l and 2 would be a unit. So

D" —U is closed. It is not a group because it does not contain the identity 1.
29. Let fe D[x] be primitive, and let g,h € D[x] : f =ygb. Suppose g=c¢g’ is not primitive. Because D[x] is a UED,
f =c¢g’h and fis thus not primitive.

30.  Lemma 9 shows that every principal ideal is contained in a finite chain of ideals that terminates in D = <1>

31. x% = y® has a root for x =y, s0 x° —y3 :(x—y)-(x2 + xy +y2). The quotient has roots
:—yi« y2—4-1-y2 :—yi«—Syz :—yiyw“s—3
2-1 2 2

32. ¢« ACC= MC
By ACC, any chain of strictly increasing ideals is finite, therefore there is a last ideal in this chain that is not properly
contained in any other ideal.

« (MC= FBC) = (FBC = MC)
Suppose there is an ideal N that has no finite basis set. Surely it has at least an infinite one. Then we can construct
an infinite set of ideals by iteratively adjoining one element from theis basis set, with each new ideal containing the
pervious ideal. This set therefore does not satsify MC.

e FBC = ACC
If every ideal has a finite basis, then we can construct a finite chain of ideals by iteratively adjoining an element from

the basis set to the previous ideal. Since every ideal in any chain can be constructed from a finite chain of ideals, the
chain must be of finite length. (shaky...)

33. +(DCC=mC) e (m_c = DCC)

that are not in Q.

X

Suppose § was a set of ideals in which every ideal contains some other ideal of S. Then an infinitely long decreasing
sequence of ideals would exist.

e mC=DCC
If any strictly decreasing sequence of ideals has an ideal that does not properly contain any other ideal in that
sequence, the sequence must be finite.

34.  ACC holds in Z, but for any finite-basis ideal <n> < Z there is always another relative prime that can be adjoined to

the basis to construct a new ideal properly contained in it.

§7.2 Euclidean Domains
v The valuation gives a measure by which we can guarantee that a factorization will at some point terminate.
v 9  Let Dbe a Euclidean domain with valuation v. Then for 7,7, € D :
Yo =714 + 7 7, =0vvr, <vn
7 =13+ 73 r3=0vvr; <vr,
i1 = Vil i i =0V VL <vr
If 7 1=40,7=40 =7 =0 =740 =4 0andif 7, =,0,7,=,0 =7, =74, +7;,,=4 0,50 the
common divisors of 7;_;,7; are the same as those of 7;,7;,;. So when 7, is the first remainder equal to zero, a
greatest common divisor of 7,_,,7,_; is also one of 7, and 7. And since 7»,_, =7._,9, +7, =7,_14,, a greatesst
common divisor of 7,_,,7,_; is 7,_;.
1. On Z, the g and 7 of Condition 1 do exist by Theorem 1.5.3 and 0<7» < 4. From » <& and 7,6 >0 we have
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10.
11.

. 2
7? <b* = vr<vbh. Then Va,beD": VLZS(ﬂLb) =a’t? <1<b <b>1.

We know by Theorem 5.6.1 that on the ring of polynomials over a field the quotient and remainder 4 and 7 in
@ = bg+r are unique, so a solution may not exist in Z[x] and Condition 1 is not satisfied. For example,

(24-1)=(2)-(+~3)+(0)-

Again, the quotient and remainder are unique but if the remainder is nonzero we cannot guarantee that v <vb and
satisty Condition 1. For example, (lx + 7) = (lx) : (1) + (7) where v7 « v(lx) <7 ¢«1. The problem is that the
process of division does not necessarily reduce v.

In a field, for any a,6 € F, b # 0, a = bg always has a solution so Condition 1 is satistied. Butin Q, for 0<b <1

and any 2€Q”: mﬁv(nb) f;v(ub)<va ¢a2b2=(ab)2<ﬂ2 =<l <0<b<l.

From Exercise 4, Condition 1 is satistied. Also, Va,b € Q" : va= v(ub).

23=3-138-391
=3-(3266—391-8)—391=3-3266—24~391=3-3266—25-391
=3-3266—25-(7-3266—1-22471)=3-3266—175-3266+25-22471
= 1723266+ 25-22471

49349 =15555-3 + 2684

15555 = 2684 -6 — 549

2684 =549.5-61

549 =61-9

61=5-549—1-2684
=5«(6-2684—1-15555)—1~2684=29-2684—5«15555
=29(1-49349 - 3-15555) - 5-15555 = 29- 29349~ 9215555

= ged(49349,15555) = 61

By polynomial long division:
(xw —3x7 +3x% —11x7 + 112 —11x° +19x* =134 +8x2 —9x + 3)

=(x4—2x)-(x6—3x5+3x4—9x3+5x2—5x+2)+(—x4—3x3—2x2—5x+3)

(xé — 355+ 3xt —9x3 4 52 —5x+2) = (—x2 +6x—19)-(—x‘* — 3w = 2a2 —5x+3)+(—59x3 —118x+59)

(—x4 —3x% —2x? —5x+3)= (Sigx+%)»(—59x3 —118x+59)

so 59- (—x3 —-2x+ 1) and x® +2x —1 are greatest common divisors.

Calculate 4,,; = gcd(ﬂ- d-), where 4y = a,.

2178 =396-5+198
396=198-2 4y =ged(2178,396)=198
792=198 4 d, = ged(792,198) =198
726 =198-4-66
198 =66-3 d; = ged(726,198) = 66

12. a.Yes, because Z is a UFD by the Fundamental Theorem of Arithmetic and Z[x] is a UFD by Theorem 1.28.

b. This is the subset of Z[x] with even constant term. It is fairly obvious that it is in fact closed and a subring. Now

consider any g € Z[x] cg=x9"+ ( Jo+ 1), g€ Z[x], Jo € 2Z polynomial with odd constant term and any
f=xf"+f,, f'€ Z[x],fo € 27 in the subring. Then
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13.

14.

15.

16.
17.

18.

19.

20.

21.

f 'ﬂz(xﬂ""(ﬂo +l))~(xf’+fo)
=’ ﬁ”rfoxﬂ”r(ﬂo +1)xf,+(ﬂo +1)f0
=’ ﬁ”r(foﬂ”r(ﬂo +1)f,)x+(ﬂofo +f0)
It is obvious that the constant term g, f, + fo is again even, so the subring is indeed ideal.

c.No. Any generator of the ideal in (b.) would have to have even constant term, but this wouldn't then generate
polynomials with odd coefficients on nonconstant terms. For example, there is no polynomial that will generate
both 2 and x.

d. No, by Theorem 4.

a. true (Theorem 4)

b. false (by the discussion after Corollary 5)

c. true (Corollary 5)

d. false (by the discussion after Corollary 5 and Exercise 12)

e.true (in a field, every nonzero element is a greatest common divisor of any set of nonzero elements)

A~ o~ —

f.true

g.true (Theorem 6)

h. false (by Theorem 6 every unit # has vz =vl1, not only the multiplicative identity)
i. true (Theorem 6)

j. true (Example 3)

No, because the arithmetic structure of a domain Dis defined by its operations and is independent of any particular

choice of valuation.
If # and & are associates then there exists a unit # such that 2 = &x. By Condition 2 of Definition 1,

va = v(lm) < v(bu‘ u_l) =Vvb, and conversely, so va = vb.
If b is a unit, then a and ab are associates and by Exercise 15 va = v(nb) . Conversely ...

This is the set of all elements with valuation greater than that of a unit. Condition 2 shows that the set is closed
under multiplication, but it is not closed under addition and hence not a group. For example, for 3,-2€ Z,

v3,v(—2) >1 and v(3 + (—1)) =vl.

In any field, Condition 1 holds with zero remainder always. If v is the identity 7| . , Condition 2 holds as well.

a. Since v is minimal for v1, 1 has minimum value N1 =v1+s>0,s0 1n: D" — Z*. Also, if Condition 1 holds for v

then it also holds for 1 because 17 < Nb < vr < vb, and if Condition 2 holds for v it also holds for 17 because
na < n(ub) =va< v(ab).

b.Since vis minimal for vl and 7 >0, 1 has minimum value 7-v1 >0, and since v maps to integers and » € Z*,
A:D" — 7Z*. If Condition 1 holds for v then it also holds for A because Ar < Ab < vr < vb, and if Condition 2
holds for v it also holds for A because Az < l(ﬂb) =va< v(nb).

c.Let v be any valuation. Then p:D" - Z" :a (Vﬂ - vl) -100+1 is a Euclidean valuation by (a.) and (b.), with

ul = (vl - vl) -100+1=1. Since v has minimum value vl, va =vl+1 for any nonzero nonunit, and

yn2((v1+1)—v1)-100+1:101>100.

For any a,be D", <ﬂ>,<b> are their principal ideals, that is, all their multiples. Then <ﬂ> N <17> is an ideal by

Exercise 6.1.27 of all the common multiples of # and 4. Since Dis a Euclidean domain it is a PID, so

JceD: <PL> N <17> = <c> . Since ab#0 and abe <£> we know that <c> # E and ¢ #0. Since ¢ divides every element

of <£> , it is a least common multiple.

If 2 and b are relatively prime, then by Theorem 9 A, e D: Aa+ ub = ng(ﬂ, Za) =1, so a and & generate <1> =7.
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22.

23.

24.

Conversely, let 4= gcd(ﬂ, b). Every element generated by # and & is of the form Aa+ ub = d{%ﬂ + %b) ) <d> , 80 to

generate Z we must have 4 =1, which is to say that 2 and & must be relatively prime.
If 2 and » are relatively prime, then by Theorem 9 34, ue Z:

la+un=1 = b(/lﬂ+,un) =b = (b/l)ﬂ+(bu)n= b =>(17/1)ﬂ =, b =>x=0

Let d= gcd(ﬂ, n) By Theorem 9 A, ueZ: An+ un=d. Since d divides b, Ja € Z:b = od. Then

a(lﬂ + yn) =ad=b = (oc/l)ﬂ + (Oc,u)n =0 = (OM,)PL =,b = x=o0A. Conversely, if ax =, b then
IAeZ:ax+An=0b. Now d= gcd(ﬂ, n) obviously divides ax + Az, so if it does not also divide & the equation

cannot possibly have a solution. In other words, ax =& has a solution for xin Z, iff the greatest common divisor
of # and » divides &.

Find A by the procedure outlined in Exercise 6, and let 4 = gcd(ﬂ, n) Verify that 4 divides 4, then x =oA = % So

42=22-2-2, 22=2-11so d= gcd(42,22) =2. We see that 2 indeed divides 18, so there is a solution

M _218 ¢
a 2

§7.3 Gaussian Integers and Norms

1.

2.

pbieCi—> = 5'(%_%)' _5a=dbi 5100y 5 here n=1,6=2, 50 5:(1+2i)(1—2i).
a+bi (ﬂ+bl)(ﬂ—b¢) a2’ +b? 5

N7 =49 has to be factored into two factors, so we are looking for &+ &z with norm 7 but that doesn't exist by
Theorem 10. Irreducible.

4+3i (4+3i)(a—0i) (4n+30)+(30—4b)i (4:1+3-2)+(3-1-4-2)i
a+bi (ﬂ+bz)(ﬂ hz) a’+b? - 12 422
4+3i=(1+2i)2-4).

6-7i (6=7i)a—bi) (6a=7b)+(-7a-6b)i (6-4-7-1)+(-7-4=6-1)i
a+bi (u+bz)(ﬂ bz) a’ +b? - 12 + 42
6-7i=(4+i)1-2i).

6=2-3

:(1+i@)(1—iﬁ)

o 742 (7+2)(3+4z‘)_(21—8)+(28+6)'
B 3-4i (3-4i)3+4i) 32 442 2
p=a- ﬁO':(7+2)—(3—4i)(1+i)=(7+2i)—((3+4)+(3—4)i)=(7+2i)—(7—i)=z'.
[ 46 ) (8+6i)(5+154) _(8-5—6~15)+(8-15+6-5)i__50+150i__l+§i
5-15i (5-15i)(5+15) 52 +152 © 250 0 505
i-(5-15i)=15+5i

(8+64)—(15+5i) =7 +i

8-+6i =i-(5-15i)+(-7+i)

=2—4,where a=1,6=2,s0

=1-2¢,where a=4,6=1, so

LB 3, So=1+4
57 25
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10.

11.

12.

13.

s-15i _(5-150)(7 1) _(5-(7)=(19)-(-0) +(5-(-)+ (29)- (7)) _ s04100i _ .

74 72 112 50 50
5—15i:(—1+2i)~(—7+i)

ged(8+6i,5-15i) =7 +i

a. true (Theorem 4 and Theorem 2.4)
b. true (Theorem 4)
c. true (Definition 1)

d.false (L e Z]i])

(
(
(3
e. true (the Euclidean algorithm holds in any Euclidean domain, Theorem 9)
f.true (in the case of Theorem 7, a prime multiplicative norm corresponds to an irreducible)
g.true (Theorem 7)

h. false ( deg 0 < 0 so Condition 1 of Definition 6 doesn't hold, degl =0 so Condition 2 doesn't hold, and

deg x? # deg x-deg x < 2 #1-1 so Condition 3 doesn't hold either)

i. true (all three conditions of Definition 6 hold)

j. true (Example 9)
If 7 € D such that N7 is minimal, then if 7 was reducible there would be o,p € D: 7w = op with neither o,p a
unit and thus No, Np # 1, but then either No, Np < Nz which is a contradiction. So 7 is irreducible.

2
a.2=-i-2i=-i-(1+i) .
b.By Theorem 10, p=, 1= p=a*+b> = (ﬂ+ bz)(u— bi) reducible in Z[i]. Conversely, if p =, 3 was reducible then
p=n-band Np=p>=Na-Nb= Na,Nb=p and Na=p= N(ﬂ’+u"i) =a’? +a”? = p but there is no such

expression by Theorem 10.

1. Na=a"*+a"* 20, where o’,a" €Z.
/’2

2.No=a?+a"?=00"=0A0""=0a"=0A0"=0=0a=0.
3. N(op) = N((a' +io”)-(B+ z’ﬁ”)) = N((a’ﬂ’ —aB)+ (B + )z)
= (o' - (x"ﬁ”’)2 +(oB”+ a”ﬂ')2
= (a’ﬂ')z — 20 BB + (e, ")2 +(a'ﬂ”)2 + 20’0 BB + (o ')2
1) 0
= N(o'+ia”)- N(B’ +iB”) = Noc- NB
Vo=ao +ia"5,=p +ip"\5:
N(op)= N((a vias ):( B +ips )) = N((o0B' - 508"+ 0B + aB)in'5)
= (o' - 5a”ﬁ”)2 +5(a’B” +a” ')2
= (a’ﬁ’)2 ~10c’0"B'B” +250B" + 5(cx /5") +10c0 BB +5(ct” )
(w? +502) (57 +557)

= N+ ia5 ). N{ '+ iB"5 ) = No:- NB

Let 4 be a nonzero nonunit. Suppose 34,6 :d =ab where a,b nonunit. Because Nd = Na-Nb and Na, Nb>1 it
must be that Na, No < Nd. Otherwise, if Aa,b:d =ab where a,b nonunit, 4 is irreducible. Because N4 has a
finite factorization in Z, repeating this procedure will at some point terminate.

130



14. ’16+7,-:(16+7¢)(1o+5i):(16-10—7-5)+(16-5+7-10)i:125+150i=1+1li
10-5  (10-5i)(10+54) 125 125 5
(1+z’)(10—5i):(10-1—(—5)-1)+(10-1—5-1)i:15+5i
(16+7i)—(15+5i) =1+ 2

16+7i = (1+4)- (10— 5i) + (1+2i)

10-5; (10—5i)(1—2i)_(10-1—5~2)+(10~(—2)+(—5)~1)i__251-_

1+2i (L+2i)1-2i) 5 5 -

ged(16+74,10-5i) = 1+2i

15. a.Since Z[i] is a Euclidean domain, there exists a valuation v on Z[z] Then VBeD:3B,,B eD:B=Ba+p,

1,41 . . . 4]
where 8, =0 or v, <va. So y: Z[z] - @ B By + <Oc> is the canonical homomorphism onto @ and the
conditions on f, show that there are a finite number of them.
b.If <7‘£> were not maximal then there would be p ¢ <7L'> : <7‘£> c <p> c Z[z] so do :mw = po where p not a unit (else
<p> = <7c> ), but then 7 would be reducible. So <7r> is maximal and Z[i] / <7r> a field.

c. I verified these by plotting on graph paper. The characteristic is pretty simple to find, the order seems always to be
equal to the norm.

i % = {Oga,,a»d o +io” + <3>}
4]
<1 + z>

Z

@ =9, charﬂz&
; O

(3) )

P U
’ <l + z>

2)i 2)i

] [ .

(1+2i) (1+2i)

16. I don't think # needs to be ‘square free’ in this exercise but in the next one.

a. Obviously Vo e Zl:\/—»n]: Na>0. Also, No=0 a? +nb* =0 a*,0> =0 a,b=0. Finally,

Va,Pe Z[\/Tn]:a:a’+ia” n,ﬁzﬁ'+iﬂ”\/;:
ap={(a+ian ) (5 i)

= N((a’ﬁ' - na”ﬁ") + (a'ﬂ” + a”ﬂ’)i\/;)

2 2
— (a/ﬁ/_ ”a”ﬂ”) + n(alﬁ//+a/lﬁ/)
2 B 2 2
— ((xlﬁ/) _ Zna/al/ﬂlﬁ//+ n a//ﬂl/+ n(a/ﬁ//) +2nalallﬁ/ﬂl/+ n(allﬁ/)
— (05,2 +na//2)(ﬁ12 + nﬁ”2)

= N(oc’ + ioc”\e“‘;)- N(ﬁ’ + iﬁ”\s”;) = No- NS

/2 1/2 ’ ”
b. Van[\/—n]:Nazl :>N(a’+ia"\/n):a’2+na”2:1 = o nno 0 = o na”=0
a?=0Ana”?=1 a'=0ra”"=x1lAn=1

il.

=5; char

iil.

Since these elements are also the only possible units, this describes precisely all the units.
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c. We show that Z[\j—n:l is an integral domain by showing it has no divisors of zero:

off=0 =>N(aﬁ)=Na~Nﬁ=O =>Noa=0vNB=0 =a=0vf=0
Then by Exercise 13 and (b.) every nonzero nonunit has a factorization into irreducibles.
17. I think # needs to be ‘square free’ in this exercise but not in the previous one.

*

=0 o’ =na"? oo ,a” =0, where (*)

a. Obviously Vo e Z[\s‘;} :No>0. Also, Voo: Na=0 < |o’? - no

”2

holds only if 7 is square free— for example, if #=3:a’* =3a"* @ o’,a” =0 butif n=4:

a’?=4a"? <o’ =2,0”=1. Then, Vo, B e Z[x;]

N(aﬂ) = N(((x’ + oc”xf;) . ([3’ + ﬁ”«/;))
N((a’ﬂ’ + na”ﬂ”) + (a’ﬂ” + a”[}’)\/;)
= (oc’,B' + noc"ﬂ")2 - n(oc'ﬁ" + oc"ﬁ’)z

(B + 2 (o) = o) - 2moter BB - e

= (06'2 - mx”z)(ﬁ’z - nﬂ”z)

=la’? - na”? ﬂ'z _ nﬁnz
N(a+ o )-N(B+ B ) = Nav- N

2
b. This can only hold if one of o’?, 0”2 is even and the other odd. Since (il) is the only odd integer square,

a’?=1ana"?=0 o' =tlra”=0
ﬁ @ ’ ’”
a?=0Ana"?=1 o' =0r0"=%1An=1
c. Z[\s’ n:| is an integral domain because it has no divisors of zero because it has a multiplicative norm, so by Exercise
13 and (b.) every nonzero nonunit has a factorization into irreducibles.
18. Let o,fB€ Z[\s’—Z] co=o'+ia”,B=p +if”,f#0 and let g=a/B=q"+iq", ¢',7” €Q,and let

14

c=0"+i0", 0’,0”€Z as close as possible to g so that |o" o AN % Then

N(7-0)=N((1'+ia")~(o"+ic")) = N((g' ")+ (1~ ")i) < () +2-(2) =2+2=2 ana
vp=Np= N(a - ﬁcr) = N(ﬁ-((x/ﬁ - G)) =NpB- N(q—cr) < NB% <NB=vpB,so Z[\f’;} is a Euclidean domain.

n=2,3

Similarly for Z[\/;}, N(q—d):...Sn‘(%)z :in and vp=...SNﬁ~in < NB=vBso Z[\E],Z[\/g} are

Fuclidean domains.

§8.1 Introduction to Extension Fields

v So “extension field” is just “superfield.”
2
L x=1432 Sx-1=12 =(x-1) =2’ -2x+1=2 =’ -2x-1=0.
2 —
2. =243 :>x2=(w’/5+w’/g) =2+26+3=5+2V6

I 2
= x-5=26 :>(x—5) =x2-10x+25=4-6=24 = x2—-10x+1=0
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3.

9.

10.

11.

12.
13.

14.
15.

16.

17.

18.

2
x=1+: =>x-1=1 :(x—l) =x?-2x+1=-1 = x>-2x+2=0.

e . 3
x:\/1+§/5 =x2=1+%2 :(xz—l) :(x2+l)(x4—2x2+1):x6—2x4+x2+x4—2x2+1

xt—x?+1=2 =a0-xt-x?-1=0

x= \/2—1 =x2=%2-4 :x2+i=3\/5

[+

2
) (x +z)(x2+i) =(x2+i)(x4+2x2i—1)=(x6+2x4i—x2+x4i—2x2—z')=2

(x6 3x2% - 2) (—3x4+1)i

2 2 2 2
(x6—3x2—2) =—(—3x4+1) :>(x6—3x2—2) +(—3x4+1) =0

12_3x8 —2x® —3x% +9xt + 647 — 240 + 642 +4+9x% —6x +1=0

22 4348 440 +3x* + 1242 +5=0

I S PN -

=+’

irr( 3-

2
—3) —xto6x249=6 = x*—6x2+3=0

6,@)=x4—6x2 +3; deg( 3—\g,@)=

- 2
x:\/%+w’7 :>x2:l+\/; :xz—%:\/; :(xz—é) :x4—§xz+%:7

X=1

x=1+1

o 2 2
24i ma-i=n2 =(x-i) =x>-2ix-1=2 =’-3=2ix =>(x2—3) = xt—6x2 +9 = —4x?

= 1['['(

= irr(

= X

—+\/— @) X —%x —68 deg(q/%+\/;,@):4

\E+ i,@): =252 +9; deg(\/5+ i,@) =4
= x?=-1 = x?+1=0;algebraic with degree 2.

2
-1=4 :>(x—l) =x?-2x+1=-1 = x?—2x+2=0;algebraic with degree 2.

X = \/; ; transcendental.

x= \/; =x’ =1 = x? -7 =0;algebraic with degree 2.

idem.

X =
X =
X =

x2+x+1_

7T2
7'[2

7T2

X -0

=x—

; transcendental.

n% =0 algebraic with degree 1.

= x° = 71°; algebraic with degree 3.

+(a+1) :(x2+x+l):(x—a)(x+a+l).

a. Since the polynomial has no zero for any element of Z3, it is irreducible by Theorem 5.6.10.

o

0
1
2

x2+1
1

2
2
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19.

20.
21.
22.
23.

24.

25.

+ 0 1 2 o 20 1+« 1+ 2 2+a 2+ 20
0 0 1 2 o 20 1+ 1+ 2 2+a 2+ 2
1 1 2 0 1+« 1+ 2a 2+« 2+ 20 o 200
2 2 0 1 2+ 2420 o 2a l+a 1+ 20
o o l+a 2+« 200 0 1+ 2a 1 2+ 20 2
20 200 1+2a 2+2a 0 a 1 1+« 2 2+«
l+a l+a 2+« a 1+2a 1 2+ 2¢ 2 20 0
1+2a | 1+20 2+2a 2o 1 1+ 2 2+« 0 o
2+a |2+« o l+o 2+2«x 2 20 0 1+ 2« 1
2420 | 2+20 2o 1+ 2a 2 2+a 0 (] 1 1+
) 0 1 2 a 200 1+« 1+2a 2+« 2+ 20
0 0 0 0 0 0 0 0 0 0
1 0 1 2 a 20 1+ 1+2a 2+« 2+ 20
2 0 2 1 20 o 2+20 2+a 1+2a l+a
o 0 o 200 2 1 2+« 1+ 2+20 1+2a
2a 0 2a o 1 2 1+20 2+2a l+a 2+«
1+ 0 1+ 2+20 2+ 1+20 2« 2 1 o
1+ 2 0 1420 2+« l+o 2+2a 2 o 200 1
2+0o 0 2+0a 1+20 2+2a l+o 1 2a o 2
2+ 20 0 2+ 20 1+« 1+2a 2+a o 1 2 20

where a+1=0=0o? =-1=2.
“of some nonzero polynomial” in F [x]

“nonzero”
are having “the coefficient of the highest-degree term” equal to 1.
Correct?

a. true (there is no polynomial over (@ having 7 as a root)

b. true

c.true (VfeF:x—f eF[x] has f'as a root)
d.true (Ro Q)

(
(
¢.false (Q » Z, because addition on Z, is not the one induced from Q)
f.true (Definition 14)
(
(
(
(

g false (x> -2¢ @[x] has degree 2 but x — \/5 € [R[x] has degree 1)
h. true (Kronecker's Theorem)

i.false (Rx Z, DR is an extension field but x? +1 has no zero in it)

j.true (as in the discussion after Example 19)

a.In F = <1,7r3>, irr(n’,F) = x* — % with degree 3.
b.In E= <1,elo>, irr(ez,E) =x° - ¢! with degree 5.
a. ¢z, (x3 +x%+ 1) = {1} has no zero in Z,, so no nonunit factors.

x3+x2+1_
xX—0O

b. -2 T —x2 +(l+a)x +(a2 +a), so x°+x?+1= (x —a)(xz +(1+oz)x+(oc2 + a)). To factorize the second

factor, finding a zero by applying the elements of Zz((x): 0,La,o+1,0% o +1,0> + o, ® + o +1. Eventually we

2 *
find that ¢a2(x2 +(1+a)x+(a2 +a)):(a2) +(1+a)oc2 v+’ +o=—a’+a+a’+a®+a* +a=0, where
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26.

27.
28.

29.

Ne)

30.

31.

32.

33.

34.

a3+a2+1:0:>a3:—(a2+1); a4:a-a3:—a~(a2+1):—a3+a. Then

x2+(1+a)x+(oc2+a)

; =x+(a2+a+1),so xz+(1+0¢)x+((x+0¢2)=(x—a)(x—az)(x+(a2+a+1)). Note
x—a

that the solution in the text has a minus sign in x — (a2 +a+ 1)?

deg(a,Zz)zs ﬁaezz(a):xs—azo; Zz(a)z{o,l,a,aﬂ,az,az+1,a2+a,a2+a+1}. The table gives

<Zs (a), +> :

0 1 a a+1 o’ o’ +1 o’ +a o’ +a+1
1 0 a+l o a’+1 o’ a’+o+l  a’+o
o a+1 0 1 o’ +o o’ +a+1 o o’ +1

o+l « 1 0 a’+o+1 o’ +o o’ +1 o?
o? o’ +1 a’+a  a’+a+l 0 1 o a+l

o’ +1 o> odrra+l P +a 1 0 a+1 a

o’ +o o +a+l o’ a’+1 o a+1 0 1

o’ +a+l| a’+a o’ +1 o? o+l o 1 0

By the Fundamental Theorem of Finitely-Generated Commutative Groups, this has to be isomorphic to either
LyxlyX2ly, ZyxZ,,0r Zg. Since Z4,Zg have elements of order 4 and 8, respectively, which Zz(a) does not,

we must have Zz(a) =L, XLy X1,y = {0,1} X {O,a} X {O,az}. <22 (a)*,‘> has order 7 so it can only be isomorphic

to Z,.

Because it is (Theorem 13) of minimal degree.

By Theorem 18, F(a) = {hiep +1 biai} where each of the elements are unique, so ‘F(a)‘ = |F|n =q".

a. x(x + 1)(x + 2) = x(x2 +3x+ 2) = x(x2 + 2) = x° + 2x evaulates to zero for x € {0,1, 2} =75 so
x(x + 1)(x + 2) +1=x%+2x+1 evaluates to one over Z; and is therefore irreducible.

b. By Exercise 29,

7;(a) =37 =27.

2
a.Since 17 =1 and (p - 1) =p?—2p+1 =, 1 there must be at least one element in Z, that is not a square.

b.By (a.), there is an element 2 € Z, that is not a square, so x? —a has no zero in Z, so ais of degree 2 in Z, (Oc) ,
. 2
and by Exercise 30b ‘Zp (ﬂ)‘ =p°.

Because if e F((x) is algebraic then Jp € F(a) :¢pp=0and then 3p’ € F(OC) 19,0 = @yip_op such that

9u0"=9pp=0,and a would be algebraic also. It is clear that p” is in fact polynomial also.
— 2
It is clear that {ﬂ’b’ﬁe@ a+b-2+ c-(%/?) } c R is the simple extension @(%/5) described by Theorem 18 and a

field, and that @(%) cR.

i.Since 8 = 2%, we look for an irreducible polynomial of degree 3 in Z,: x- (x - 1) x+l=x—x?+1. So

and ‘Zz(a)‘ =23 =8 (Exercise 25).
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ii.Since 16 = 2* we look for an irreducible polynomial of degree 4 in Z,: x- (x - 1) wt+l=x*-x*+1. So

iii. Since 25 =52, we look for an irreducible polynomial of degree 5 in Z5. Since 9z, (x2 + 3) = {2, 3, 4} that one is

. . ZS[x] 2 .
irreducible and Zs(a) =-—— and ‘ZS((X)‘ =5" =25 (Exercise 31b).
<x2 + 3>
35.  Since Fis finite it is of prime characteristic and contains a prime subfield Z, ¢ F (Theorem 6.2.19). By Theorem

5.3.1, Vae Zp* sl =1 = q)ﬂ(xp_l —1) =0 and algebraic over Z,.

36. By Exercise 35 every finite field can be considered an extension of its prime subfield. Then by Exercise 29, the
order of the field is a prime power.

§8.2 Vector Spaces

v 1  So, dimensionality does not even enter into the definition of a vector space— the defining aspect is only scalar
multiplication with a field. It's almost like a G-set (Definition 3.5.1) except X has to be an actual group and G a
field. Note in particular that no relationship between Vand Fis implied.

v 4 This seems profound but is almost meaningless: any superfield can be regarded as a vector space in the same way
that any field is a vector space.

1. {(0,1),(1,1)}, {(1,0),(1,—1)}, {(—1,0),(—1,—1)}.

2. Since

o1 0]:%([1 1oo+[o 1 1]-[1 o 1])
[0 0 1]=%([0 1o+t o 1)1 1 0])

and by Lemma 16, this set of vectors obviously spans R*. Since dimR® = 3, by Theorem 17 this is a basis.

4 —
“lx+1y+2z=0 o) t22=0 50
3. 25-3y+12=0 ={-ly+lz=0 ={ "7
5 5x-7y=0

10x-14y =0 10x—14y =0

so not linearly independent by Definition 10, and hence not a basis.

4, {1, \5}
1}.

{

6. {20/3’21/3,22/3}.
{
{

7. 1, z}

8. 1, i}

9 {20/4’21/4’22/4’23/4}.

10.  The same polynomial of Example 1.19 has a zero for 1+ a:

¢1+a(x2+x+1)=(1+a)2+(1+a)+1=1+a2+a=1+a+1+a=0.

11.  Delete “uniquely.”
12. Correct.
13. Correct.
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14.
15.

16.

17.
18.
19.
20.

21.

22.

23.

24.

25.

26.

“independent.”
a.true (Va,feV:a+BeV)
b.false (Va,beF:a+belF)
c.true (Va,beF:n-beF)
d.true (VaeF,aeV:aaeV)
e.false (F [x] has an infinite basis, Example 7)

f.false (Definition 15)

g. false (wouldn't be linearly independent)

h.true (Theorem 23)

i. true (idem)

j. true (discussion before Lemma 16)

a. A subspace of a vector space Vover Fis a vector space of a subgroup of Vover Fwith the induced operations.

b. We have to show that the intersection is closed. Let U,V be subspaces over F.
Vo,BeUnNV:a+BeU,0+BeV=20+BeUNV,

VaeUNV,aeF:aaeU,aaeV =>aacUNV.

If every vector in V can be generated by the §; then they certainly span at least V. If the zero vector is the sum of
none of the f;, and the zero vector can be expressed only uniquely as a linear combination of f;, then they are
linearly independent. So f; are a basis. Conversely, if fB; are a basis then they span V. Each vector is a unique
linear combincation of the f;, otherwise the difference between two expressions of the same vector would give a

linear combination of the zero vector and f8; would not be linearly independent.

a. Considering the vector space F™ over F, we have Vi:+a;x;=b; < +;x;a;=b,where

a; = (VLO]- ...ﬂm,l’j), b= (bo ...bm,l) € F™. The system has a solution iff b is in the span of {]- a]-}.
b. By the Exercise, every € F™ can be expressed uniquely as a linear combination of the basis { ;a ]»}.
They are naturally isomorphic by their ‘coefficients’. Let {?:—01 v,} and {?:_01 f,-} be bases for Vand F”, respectively.

Then y:V — F” :x=+,x;v; > +; x,f; is an isomorphism: Vx =+,x;v,,y=+,y,v, €V:
W(X + Y) = ll/(‘h' XVt +i}’zVi) = ‘I/(‘h'(xz + )’z‘)Vz)
- +Z.(xl. +y,-)f,- =+;x,f; ++;7,£; = l//(+ixivl-) +y/(+ixiv,») = yx +yy
and VaeF,x=+;x;v,eV:
l//(ux) = 1//(% : +zszi) = l//(+iﬂ : (xivi)) = l//(+l-(ﬂxi )vi)
= +i(axi)fi = +ia-(xifi) =a-+;xf; =0 y/(+ixivi) =0 -yYx
a. Vv=+;7,0 :¢v= ¢(+ﬂ’i/3¢‘) = +i¢(”iﬂi) =+;v,00;.

b. Since by (a.) a linear transformation is completely determined by its action on the basis vectors, the action required
for the basis vectors specified here suffices.

a. homomorphism.

b. The nullspace of ¢ is the set of vectors v €V : ¢v =0. To show that Ker¢ cV is a subspace we have to show that it
is closed under the induced operations from V-
Vv, we Ker¢:¢(v+w):¢v+¢W:O+0:0 =v+weKerg.

c. When it is a homomorphism (linear transformation) with Ker¢ =E.

The quotient space V/S over Fis the vector space in the group of cosets of Sin V over F, with scalar multiplication
by representatives in V. The coset group exists by Corollary 3.2.5 and is clearly commutative. Show that the five
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conditions of a vector space hold: Va,beF:o+S,8+Se V/S:
(1) ﬂ(OC-i—S):ﬂOC-i-SEV/S;

(2) ﬂ'(b~(05+8))=ﬂ~(ba+8)=ﬂba+8=ﬂb(a+8);
(3) (p;+b)(a+$):(p;+b)a+S:(mx+ba)+S:((na)+S)+((ba)+s):ﬂ.(a+5)+b.(a+3);
(4) ”((a+8)+(ﬁ+s))=ﬂ((a+ﬂ)+s)=VL(OC+ﬁ)+S=(ﬂd+ﬂﬁ)+$=(ﬂd+$)+(ﬂﬂ+:);

(5) or+S)=la+S=ar+S.

27. a.We know that ¢ is a homomorphiosm so that operations under ¢ coincide with the ones induced from V’. We
need to show that ¢V <V’ is closed:

Va',ﬁ’eq)V:EIa,ﬁeV:(pa=a’,¢ﬂ=ﬂ':>¢(a+ﬂ)=¢a+¢ﬂ=a'+ﬁ’e¢V.
b. Let {i a,-} be a basis for Ker¢ c V. To this basis can be adjoined dimV —dim Ker ¢ vectors to form a basis for V.

Since v : V/Ker¢ — @V is an isomorphism, we have dim¢V = dimV —dim Ker¢.

§8.3 Algebraic Extensions

So we have two ways of determining the degree of an extension: by the order of the basis, and by the degree of the
irreducible polynomial.

1. deg[@(\/g) : @] =2, s0 by Theorem 2.23 | {20/2,21/2} is a basis for @(\5)

2. {20/ 2, 2Y 2} is a basis for Q(\E) over Q. Itis ‘clear’ that xg cannot be axpressed as a linear combination of this
basis, so {30/2,31/2} is a basis for @(\E, \/g) over @(\5) By Theorem 4, {1,31/2,21/2,61/2} is a basis for
@(\/5,\g) over @ and [Q(\/E,\/g):@]z 4.

3. 18=3\2¢ 4;(6 ,\E), so from Exercise 2, [@(VE,VE,@ ) : @} — 4 and {1,31/ 2 912 gl 2} is a basis for
@(\/E,N/E,\/ﬁ) over Q.

4. {20/3, 21/3,22/3} is a basis for @(%/E) over Q. Since deg(\/g,@) =2 does not divide deg(%) =3, \/g 3 Q@/E)
and by Theorem 4, {1,21/3, 22/3, 31/2,21/3 -31/2,22/3 ~31/2} spans Q(%/E,\/g) over (1. Since this set is linearly
independent, it forms a basis, and I:(E(%/E,\/g ) : @:| =4.

5. {20/2,21/2} is a basis for @(\5) over (. deg(%‘g,@) =3 does not divide deg(\e‘g,@) =2,s0 3\/5 3 @(\5) So
{20/3,21/3,22/3} is a basis for @(21/3,21/2) over @{21/2) and by Theorem 4, {20/6,22/6,24/6,23/6,25/6,27/6} isa
basis for qu/s,Zl/z) over Q. Try to simplify the basis. 27/6 = 2'21/6, so 2Y6 ¢ @(21/3,21/2) and

GZ[(21/3,21/2) D q21/6). q)l/é(xé - 2) =0 is an Eisenstein polynomial for p =2 and irreducible over @, so
@{21/6) 5@, and @(21/3, 21/2) 5 @{21/6) Q. Then

e 5 ]-[f 2 ] o)
6= [@{21/3,21/2) : Q(zl/ﬁ)]-e

and [@(21/3, 21/2) : @(21/6)] =1, so by the discussion after Definition 2, [621(21/3,21/2) : @{21/6)]. So
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10.

11.

12.

13.

14.
15.
16.
17.

18.

19.

20.

[([1{21/3,21/2),@] =6 and {ngé 2i/6} is a basis.
Exercise 8.1 — — —
x= \/54—\/» x> =10x+1=0. {1,\/5+\s’3}isabasisfor @(\52+\/§),and [@(\/5+\53):@]=2.

{1,\/3} is a basis for @(\/g), and [C(\/g) : @:| =

Analogous to Exercise 4, {Osi<2,()£j<3 22 -5]/3} is a basis for @(\/5,3\%), and [ \/5, ’5) @:|

324 = 2%6, 50 @(%,%@E,ﬁ) = @(%5%3) Y6 =243, 0 4;(%5%3): 4;( 2,%) (swhy?). Then
{O£i<3,0s]‘<3 23 ‘3]'/3} is a basis for Q(%E,%/gﬁ/i) over @, and [Q(%/E,%,%%L :@] =

@(ﬁ,%):ﬁ(ﬁ,ﬁ),so {1,\/5} is a basis for Q(\/E,\/g) over Q(\/g) and [ \/5,\/g):@:|=2
\/5+xge¢:(«/g), $O «/Eedl(@) and {20/2,21/2} is a basis for @(\/5+«/g) over (I, [Q(\/E%r\sg):@}:l

By Theorem 4,

[ f2.02)e ()] [ Y23 Yoz s {2 45 )
=[@(6+\x’§):@(ﬁ+@)].z
o[ 2+ 3)e(s2 )] -1

\/5 ¢ (E(\/g+\/g) but \g-i-\ﬁ € <Q(\f’§+\5’g,\5’5), so {20/2,21/2} is a basis for @(\5,\/g+\/ﬁ) over

V3 +15)

“is a field E where each element of E is”
“to a basis for P’

Correct.

“nonconstant polynomial over F”

Qg (the algebraic numbers) are real elements such as \'2 that have polynomials in C[{x] such as x? —2 with those
clements as zeroes. However, @R [x] has polynomials such as x? +1 with imaginary roots that are not in Q.

a. true (Theorem 3)

b. false (the extension of @ containing all powers of 7, C[{n] , s algebraic and infinite)

c. true (Theorem 4)

d.false (x*+1¢e R[x] has no zeroin R)

e false (x% -2 e@{x], but the root \/5 ¢Qso 0 oQ)

f.true (the only elements of Qx) that are algebraic in C are C itself; for example, x —1 has no root in C[y])

g. false (the polynomial (x + l)y +xe (C(x)[y] does not have a root y)
h. false (Theorem 17)

.
j-false ( C is an algebraically closed extension of (I, but 7 € C shows that C is not an algebraic extension of ()
Since a+bigR, {1,PL+ bi} is a basis for IR(pL+ bi) over R and [R(VL+ bi) : [R] =2. Similarly, [C: IR] =2,s0
[(E : [R]

[C:R]=[C:R(a+bi)].[R(ﬂ+bi):R] :[C:R(a+bi)]=w

=%=1. So <D=[R(ﬂ+bi).
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21.

22.

23.

24.

25.

26.
27.

28.

Since E D F is a finite extension and [E : F] is prime, E is a simple extension of F, Ja€ E\F:E= F(ot). Consider

F(Oc) forany a € E\ F. Then {1,0{} is a basis for F( ) over F and

[E:F] = [E:F(a)]-[F(a): ] = [E F ] [F(—)]F] = %[EF] which is impossible because [EF] is prime, soO
[E:F] =2 and [E:F((x)] =1lso E =F((Z) is simple.

x? =3 has roots i\g ¢ C(%/E) c Q.

Every root increases the degree of the field by a factor of 2, so [Q(f \pl ) : @] =2". Since a zero of x'* —3x% +12
has degree 14 =2-7, which does not divide 2”, there is no element of @(? \/Z ) that can be such a zero.

Since E is a finite extension, by Theorem 11 J¢; : E= F(i OCZ-). Let g, he DCE; g,h#0,s0
J=+; 9%, h=+;ha;. Since g,h#0 and the extension is finite, there are maximal 3j,k: g;,5, #0, so
T h= +i,j gih]'ai+j

Since v3 e@(ﬁ), {l,x/g} is a basis for @(\/g,\s’;) over @(x;), SO [@(xg,x;)@(\/;ﬂz 2. Now consider:
2 —
x=\/§+\/; :x—\/gzx/; :(x—\/g) =7 = x?-2V3+3=7 =>x2—4=2\6

2
=>(x2—4) 43212 —Sx*-8x2+16=12 = x*-8x2+28=0

SO deg(xgwwfﬁ;,@):él and [@(\/g+\/;):@]=4,so

[@(@+ﬁ):@] a(\3++7):a(\7 ).[@(ﬁ):@]
#=|afz+7):a(7) -2

o fe)e)

[ (ﬁ V7): (\;)]z;@(\g,\;) q
o)

||e(3+7):a(\7))]

)
fair)|2
)«

—
Il
/N
e
W
e
AN
u
=
VS
Py
+

A zero B of an irreducible p is of degree deg(ﬂ,F) =deg p and deg(ﬁ,F) = [F(ﬁ)F] But E QF(ﬂ) D F,and so
[F (,B) :F ] = deg p would not divide [E :F ], which is impossible by Theorem 14.

If a is of degree 1, a,0” € F and F(Oc) =F(a2) =F. Suppose # is of at least degree 3. By Theorem 2.23, F(a)

has basis {:1;01 ai} , where n= deg((x,F ) Since 2 is relatively prime to #, 2 generates Z,, by Corollary 1.5.18 and

fr (o) {23 ) ana £{e?) - (o).
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