
QQbbee**rrtt
A Massi vel y Paral l el  Hypercube Processor

Ben Hekster, Peter Middelhoek and Robert Remmers



Nothing comes easy, and that's a fact
Nothing comes easy, but a broken back

Nothing comes easy, it never will
Nothing comes easy, but a broken will

—Work Hard, Depeche Mode [People are People]

We are paid by those
who learn by our mistakes

—The Working Hour, Tears for Fears [Songs from the Big Chair]

The sweetest perfection to call my own
The slightest correction couldn't finely hone

—Sweetest Perfection, Depeche Mode [Violator]



Preface
This document reports the assignment which we performed for the senior-year
course in VLSI System Design, the design and realization of the Qbe*rt processor.
Mainly because all of the relevant terminology has already established itself in
English we chose to use that language, rather than using often awkward Dutch
translations of such terms.

Justification Although we understand that for this assignment it is typical to implement
another sequential processor with all the usual processor elements, such as a
microcontroller and registers, we feel that this process has already been
exhaustively investigated by others before us.  Several levels of such an
implementation have already been adequately addressed in another course1 and
[4].

Instead, we set for ourselves a somewhat more challenging and uncertain goal
by choosing to design and implement a hypercube processor.  Such a processor is
designed from the ground up to work together with many other identical elements
in a massively parallel environment, to solve computational problems exceeding
the capabilities of conventional sequential processors.

A very significant factor that we had to consider in our decision to step outside
of the clearly trodden path of sequential processor architecture was the
uncertainty that lay before us.  When we initially started considering the
architecture of the interprocessor communication protocols and hardware it was
not at all definite that our concepts were indeed at all realizable.  The fact that
one teacher from the Computer Science department had considered these issues
before and not yet found a practicable solution was at the least daunting.

Even though we would like to imagine that our processor is umbly modeled
after Thinking Machines’ well-known Connection Machine processor, it is
important to realize that most of the lower-level implementational information is
still considered very much proprietary and not actually publicly known [1].  The
machine and processors are relatively new so many of its more unconventional
concepts are not yet well established in literature.  This implies that such issues
had to be inferred from often vague and on occasion incorrect information.

Rather than using a messy ad hoc type of report we have chosen for a highly
structured form.  Chapters which describe higher-level aspects of the processor
give rise to subsequent chapters which deal with the design and implementation
of their subcomponents.  As such the ordering of chapters in this report does not
imply a chronological relationship.

Concluding, we would say unanimously that we enjoyed having actually
designed our own processor.  Although we regretted not being able to spend more
time to build a more complete processor or to commit to extensive testing of a
processed product, other duties precluded this.

Throughout the text this symbol is used to indicate features or
functionality that could not be included due to time constraints

Ben Hekster, Peter Middelhoek, Robert Remmers

1Uitrusting van Digitale Systemen



Copyright © 1991 by Ben Hekster, Peter Middelhoek, Robert Remmers

Created on the Apple Macintosh, with Microsoft Word and Claris MacDraw II.
Printed in 10-point New Century Schoolbook

Printing date Monday, October 2, 2000

Contents
Preface ................................................................................... i
Contents ............................................................................... ii
1  Design ............................................................................... 1
2  Observations .................................................................... 8
3  Blocks ............................................................................. 10

Qbert 10
multiprocessor 11
processor_control 12
common 13
reg8 14
processor 15
ram16 18
cmux8to1 19
router 19
router_control 21
receiver 23
ejector 23
ejector_part 25
funnel 26
msg_buffer 27
heart 27
cell 30
switch 32

4  References and Appendix .............................................. 33
Index ................................................................................... 35



1  Design
It is becoming clear that sequential processors are beginning to reach absolute
limits to their performance.  Further improvements will have to be sought in new
and revolutionary concepts such as parallel computing.  A massively parallel (or
fine-grained) computer takes this concept to its extreme, using a very large
number of perhaps relatively simple processors to achieve great overall processing
speeds.  A well-known and rather intriguing example of such an architecture is
Thinking Machines’ Connection Machine which combines 65536 1-bit processors in
a hypercube topology.

We decided early on to attempt to emulate the hypercube architecture and
processor, because it is rather different from anything we have previously
encountered and its usefulness in solving practical processing problems beyond
the means of conventional processors has been established.  We were very
interested in investigating for ourselves the problems and issues in such
architectures.  This process culminated in the design of the Qbe*rt (for cube routed
topology) processor.

It was neither possible nor desirable to copy the architecture of the Connection
Machine in any level of detail.  In following sections, we will deal with the overall
organization of the machine of which our processor will form the cornerstone and
make appropriate comparisons with analogous Connection Machine structures
where possible.

This chapter describes the architecture of our Connection Machine computer,
processor chip and processor node.  Careful distinction is made between these
three entities throughout the report.

Processor
Topology

As stated, the Qbe*rt and the Connection Machine employ a number of processors
connected in a hypercube structure.  A hypercube is the higher-dimensional
generalization of the usual 3-dimensional cube.  A single processor, called a node
of the hypercube, is located at each of the corners of the cube and may be uniquely
identified by its address.  This is the ordered n-tuple of its coordinates (an–1, an–2,
…, a0), where n is the dimension of the hypercube.  The following figure depicts a
four-dimensional hypercube.

Figure 1.1.  Four-dimensional hypercube

Note that each processor has exactly one neighbor to which it is connected along
each of the dimensions.

For reasons of efficiency the Connection Machine actually has 16 processors on
a single chip.  This does not detract in any way from the hypercube nature of the
computer—the particular distribution of processor nodes over chips is irrelevant to
Connection Machine programs.2  The Qbe*rt processor chip contains only four
nodes.  This was a decision made early on in the design before we had accurate
information about chip area usage.  The number was chosen as the minimum
number of nodes that were required for the design of the on-chip interconnection
logic to retain its essential structure.

2This disregards optimizations that might be achieved by carefully distributing
strongly bound computational tasks over nearby processors



Qbe*rt—A Massively Parallel Hybercube Processor 2

Some advanced features of the Connection Machine, such as the ability to
connect its processors in an arbitrary two-dimensional mesh, and the ‘flipper’
network which allows processors to access the local memory of other processors on
the same chip, are not supported by Qbe*rt.  Also, although the router design
supports the simultaneous sending of messages between any two processors,
processor instructions currently specify only a single relative address for all
messages that are sent.

Processing Model Our multiprocessing computer, like the Connection Machine, operates on a single-
instruction multiple data (SIMD) model.  This means that every processor executes
the same instruction on different data.  There is one microcontroller which
broadcasts instruction words to every processor chip simultaneously.  Since
broadcasting is not a message-like sender/receiver transaction they are not sent
through the hypercube network but through a dedicated instruction bus.  Use of
separate buses for instructions and data (also known as a Harvard architecture)
eliminates a source of contention between the processor and router.

The Connection Machine's processing model is actually somewhat more refined
than this, as it can be configured as four separate quarters which can each be
connected to separate or shared front-end computers (such as a DEC VAX or
Symbolics LispMachine).  Each of the quarters is equipped with its own
microcontroller which allows them to operate more or less independently.  In
contrast, our design uses only a single very simple microcontroller.  It fetches
instructions from a separate program memory and sends the bits of the
instruction word time-multiplexed over four cycles over the instruction bus.
Furthermore, the clock signals it generates keep the processors synchronized,
which is crucial during message transmissions.

For initialization of the processor's memories and retrieval of the stored
results, the front-end could be equipped with one or more serial links which would
be connected into the processor network:

µ-controller

Qbe*rtswitch

data link

instruction busfront-end

Figure 1.2.  A Qbe*rt computer system

Because they are different structures, and the mandate of this course is the design
of a single VLSI chip, we have not completed exhaustive designs of the front-end or
the microcontroller.

Programs running on the front-end computer can use both the parallel
computing power of the Connection Machine, and the host for scalar and program
flow instructions.  As to the latter, the Connection Machine and Qbe*rt both
incorporate a form of conditional execution of instructions by allowing sets of
processors to be either used or excepted from an instruction depending on the
contents of local memory.

Programming The unusual architecture of the Connection Machine and Qbe*rt raises questions
as to its usefulness and performance.  With most programmers now used
exclusively to sequential Von Neumann programming, massively parallel
computers require a radically different approach.  The use of many very limited
processors to attack real-world problems may require some illustration.

The answer to the question whether massively parallel computers are in fact
useful is clear, considering the success of the Connection Machine and the fact
that new models (the C M2 and CM200) have been introduced.  Beneficial
performance largely depends on the ability to calculate many results in parallel.
Fortunately there are many such problems—examples of productive uses of the
Connection Machine are documented in [2] and [3].



Qbe*rt—A Massively Parallel Hybercube Processor 3

An advantage of 1-bit processing is that it allows problems to be solved to
exactly the precision actually required.  For instance, operands using only 24
rather than 32 bits of precision can be processed with 24-bit operations,
eliminating wasted processing power.

The Qbe*rt instruction has the following assembler mnemonic format:

operationb operationc, operanda, operandb, operandc, resultc, condition-sense, condition-out

For example,

ADD SUB $23, $24, $A, $4, $5, true

is a valid Qbe*rt instruction.



Qbe*rt—A Massively Parallel Hybercube Processor 4

Architecture

ro
ut

er

ro
ut

er
_c

on
tr

ol

ce
ll

sw
itc

h

Q
be

rt

m
ul

tip
ro

ce
ss

or

he
ar

t
ej

ec
to

r
re

ce
iv

er

ej
ec

to
r_

pa
rt

m
sg

_b
uf

fe
r

4

6

4
24 7

pr
oc

es
so

r
pr

oc
es

so
r_

co
nt

ro
l

co
m

m
on

re
g8

8

ra
m

16
cm

ux
8t

o1

2

Figure 1.3.  Qbe*rt processor architecture



Qbe*rt—A Massively Parallel Hybercube Processor 5

Message Routing A processor may send messages to any processor (including itself) in the
hypercube.  In some cases the processor to which the message is directed is located
on the same chip as the sender.  In other cases the processor is located on a
different chip and messages need to be transmitted through external links.  The
delivery of messages between processors is accomplished by virtue of message
routing.

Every chip contains a single router shared by the local processors, which
performs the necessary directing of interprocessor messages.  The router receives
messages from the local processors (along the internal dimensions) as well as
from the routers on neighboring chips (external dimensions).

The purpose of the router is the sending and forwarding of messages to their
destinations, as specified by their relative addresses.  This may involve sending
messages to one of the hypercube neighbor routers across the external network
or to one of the local processors through the internal network.  This includes
messages directed to the sender itself.  If all of the external connections it might
want to traverse are already in use it may be necessary to misroute a message
along a dimension that it does not need to go through.  In the original 80's arcade
game Q*bert™  the destination was similarly reached from a single starting point
by making successive routing decisions.

The router uses relative addresses for addressing and delivering messages.
This means that processors do not need to be assigned addresses from the start
and that the processor network is completely symmetric.  In fact, a program may
be run however it is rotated or mirrored across the hypercube as long as its
topology remains unchanged.  As messages travel across the hypercube network
their relative addresses are modified at each router stage to indicate the crossing
of a dimension.  A message has reached its ultimate destination when its relative
address is zero.

A message contains the destination node's relative address, followed by a single
data bit.  The message format is depicted in the figure:

d ma 7 a0

Figure 1.4. Bit-serial message format

The m bit is 1 if  the bit stream carries an actual message.
The design of the heart is such that it can be shown that messages3 are never

lost.  The heart makes a best effort to deliver messages to their proper destination,
but when multiple messages want to cross the same dimension this cannot be
guaranteed.

There are possible cases in which a message cannot be routed into a dimension
that it needs to traverse.  In the extreme case a message cannot be routed along
any of the dimensions it still needs to cross.  If such a message cannot reach the
ejector for any reason it will automatically be misrouted by being sent across a
dimension that it does not need to go to.  The message is not lost—it is merely
delayed in reaching its ultimate destination since one of the following routers will
need to redirect it back along that dimension.

The Qbe*rt computer is designed for use with any number 2n of processors,
where n ∈  {2, …, 8}.  No hardware reconfiguration is required other than the
addition or removal of processor chips in the network.  The processors are not
aware of the actual number of nodes in the hypercube and always operate as if the
maximum number was available.  Missing external dimensions must be ‘folded
back’ onto the chips to retain the hypercube topology.  In effect, this makes routers
work for missing nodes to reroute messages back to available processors.

3The proof is left as an exercise to the interested reader



Qbe*rt—A Massively Parallel Hybercube Processor 6

Qbe*rt
chip

Figure 1.5.  A two-dimensional Qbe*rt hypercube

Performance Our target clock speed was 10 MHz (100 ns cycle), which should still keep the
design relatively insusceptible to difficulties often associated with high-speed
circuits, such as signal reflections, and allows the use of relatively slow memory.
At this speed a standard personal computer can still be used as a front-end.

With this and other basic design parameters we examined the feasibility and
performance of a maximum implementation (28 processors) of a Qbe*rt computer.
In the current implementation all except send instructions have a fixed duration
of four clock cycles.  Send instructions have a variable length which depends on all
the messages that are sent in the network at the same time.  At a minimum of 4
clock cycles per instruction the maximum Qbe*rt computer thus delivers a peak
performance of 640 native MIPS.  A more realistic rating might use a 32-bit
integer addition as a basic ‘instruction’.  This requires 32 native instructions on a
single processor programmed as a simple sequential ripple adder.  In parallel,
Qbe*rt performs 256 additions in 32 . 4 cycles, equivalent to 20 MIPS.  Using 24 bit
operands this increases to  25 MIPS.

In science and engineering floating-point performance is probably more
important.  A floating-point addition can be divided into four steps: mantissa
alignment, addition, normalization, and rounding, which we conservatively
assume each to require one native instruction per bit.  The addition of two double-
precision (64-bit) floating point values therefore requires 4 . 64 . 4 = 1024 clock
cycles, giving a quite reasonable performance of 2.5 Mflops (actual results will
differ because the operation starts with two operands and merges them into one
result operand). This result compares favorably with the 100 Mflops of the original
CM1 computer [7].

A 256-processor machine built from 64 chips has 64 . 6 bidirectional
communication links, each transmitting 10 bits per send instruction.  If a send
instruction requires 14 clock cycles† (4 to execute the instruction and 10 to
transmit the message) the overall communication bandwidth is

10.106 cycle/s . 10
14 bit/cycle . 64 . 6 = 2.74 Gbaud

of which 10% is actually data, giving a maximum data transfer rate of 274 Mbit/s
(over 1 Mbit/s per processor).

Unfortunately this calculation is too optimistic since each processor can only
actually send one message per instruction.  This gives a maximum utilized
bandwidth of

10.106 cycle/s . 10
14 bit/cycle . 256 = 1.83 Gbaud

of which 10% is data.
In a congested network it is possible that a message cannot directly reach its

destination.  In that case it is buffered in an en-route processor and the
instruction is extended by additional send cycles (each 10 clock cycles) until all
messages have reached their destination.  In a scenario where four send cycles are
required to deliver every message the data transfer rate drops to 46 Mbit/s.

The Qbe*rt design uses 256 bits of memory per processor, giving a total
memory capacity of 8 kB.  This is quite low considering that Amdahl's rule
postulates that one byte of memory is required for every instruction that the
processor can execute per second, which is roughly 20 Mbyte for Qbe*rt.  Amdahl's
rule also states that one bit/s of I/O capacity is needed for each instruction/s.  Here

† As stated, the actual number of cycles per send instruction depends on the
presence of other messages in the network and the amount of congestion.



Qbe*rt—A Massively Parallel Hybercube Processor 7

Qbe*rt does well with a typical transfer rate of 46 Mbit/s and a peak transfer rate
of 183 Mbit/s.

Figure 1.6 shows how this capability could be used to communicate with a host.
Note that it requires a 1.83 Gbit/s communication link between the front-end and
Qbe*rt, equivalent to 19 FDDI or 183 Ethernet links.

Qbe*rt
chip

Qbe*rt
chip

Qbe*rt
chip

Qbe*rt
chip

switch between network and front-end

front-end
computer

with 
µ-controller

µ-controller

Figure 1.6.  A four-dimensional Qbe*rt hypercube with 16 processors

It is well to realize that this architecture is best suited for massively parallel
computers, with a number of processors on the order of 216.  The current Qbe*rt
design with 28 processors only just barely falls into this category and should be
considered an experimental proof-of-concept machine.



Qbe*rt—A Massively Parallel Hybercube Processor 8

2  Observations
With the benefit of hindsight we comment on the design presented in this report.

Design
parameters

Originally we had thought (making a rough transistor-count estimate) that four
processors on a single chip could reasonably be implemented on a 100 mm2 die
and still leave room for R A M  and ROM of undetermined size (the exact
specifications of the memories were purposely left vague so that they could be
adapted to available space).  Early cell occupancy estimates seemed to confirm
this.  Incredibly, final placement and routing produced a total effective cell
occupancy of only 25% with 90% of the die used, and 64 signal overflows and 72
signal errors.  At these rates obviously the RAM and ROM could not have been
incorporated at any size.

Many of the decisions were influenced by technical reasons.  Others were made
considering the need to limit the implementation time.

Improvements Although we cannot approach the incredible performance of our model (the
Connection Machine) we believe that our design amply demonstrates the
feasibility of designing and realizing a massively parallel machine using limited
resources.  In contrast, the latest Connection Machine model (CM-200) achieves a
performance of 9 Gflops by using 256 times as many processors as and with the
assistance of shared floating-point coprocessors [5].

There are several ways in which the performance of an improved Qbe*rt could
be substantially (an order of magnitude at least) increased:
• Currently, the pin count limitation requires a four-fold multiplexing of the

instruction word.  If the chip was packaged with more pins than the 40 that
where available in our design it would be possible to read the entire
instruction at once and probably execute all non-send instructions in two
cycles.

• The clock speed could be increased.  A frequency of 50 MHz would still allow
use of standard on-chip RAM (with an access time in the order of 10 ns), but
would require significant reworking of the router and network communication.

• Increasing communication throughput.  The current message protocol provides
one bit of transmitted data per message, using a nine-bit message header
which is needed to dynamically instantiate the message path.  By enhancing
the protocol to enable continuous links between processors, the path would
only need to be established once and the message headers could be eliminated
from the actual data transfers.

• Using resource management techniques such as hardware scoreboarding [6],
we should be able to again double performance by fully pipelining instruction
execution.

Concluding… Although we realize that our design and implementation are far from complete in
real-world or commercial terms, we are convinced that they contain the essential
aspects of a massively parallel computer.  All the steps in the design process up to
the final ‘tape-out’ have been gone through.  Unavoidably we feel that we could
greatly improve on our design if we had to do it all over again, but considering
that this was the first time that we had designed and implemented a VLSI circuit
we are not unhappy with the result.

We are somewhat disappointed in the tools.  Our complaints range from simple
(a user-interface that displays text that is almost impossible to read due to both a
too small size and the use of non-contrasting colors) to the unsatisfactory
performance of the placer and router tools.  The lack of speed of the tools was at
least annoying.  We sometimes had to wait, especially when testing the complete
Qbe*rt chip, for well over an hour just to get a program started.

We were surprised with the performance of the placer and wire-router.
Although initial estimates showed that our circuitry would occupy about 25 % of
the silicon real estate, after running the placer and router (on a more powerful
workstation) it turned out that it was not possible to have several parts correctly



Qbe*rt—A Massively Parallel Hybercube Processor 9

placed and routed in the given area.  [9] shows that placement densities of 70 %
and higher are very much obtainable using the standard cell approach.  This is
true both for regular data-path structures like the router part of Qbe*rt and
irregular control-type structures.  We manually examined some signal paths in
the placed part and where surprised by the mess which the placer had made of it.

Clearly a lot of work needs to be done somewhere to obtain a more reasonably
efficient placer.  The alternative, doing a lot of the placement manually, is not
very appealing.  The tools are a very significant improvement over manually
designing, implementing and testing a VLSI circuit, but it is also clear that they
are currently far from perfect and that a lot of development needs to be done
before we can really generate a chip in a day.

Finally we would again like to state that we greatly enjoyed designing Qbe*rt
and believe that it has been a valuable learning experience.



Qbe*rt—A Massively Parallel Hybercube Processor 10

3  Blocks
The following sections describe each of the blocks created in the implementation in
great detail.  These descriptions are presented in a common structured format, as
shown in the following general fashion.  Symbol and circuit diagram print-outs
and simulation results of all the blocks are given in a separate appendix.

Function Short description of the block's function

Use How the block is used in the design

Uses List of subcomponents used in the block

Interface
signal → signal type Input to the block
signal ← Output from the block
signal ↔ Bidirectional

Diagram Implementational diagram of internal structure

Timing Timing of the block's interface signals

Implementation Detailed description of the block's implementation, in terms of its own circuitry.

Comments Caveats, bugs, out of the ordinary remarks

Qbert

Function Elementary massively parallel computer

Use Qbert implements a two-dimensional processing element of a massively parallel
hypercube computer.  One chip contains four 1-bit processors and a local and
global router which allows a higher- (up to eight-) dimensional hypercube to be
constructed from multiple processor chips.

Uses multiprocessor, router

Interface
clk1 → positive duty clock Control clock (180° phase lead)
clk2 → positive duty clock Data clock
reset* → active low control System reset
xcond → active high control Enable/disable
xbusyin → active high control Undelivered message(s) in network
xbusyout → active high control Undelivered message(s) in node
xff → instruction code Select flag
xaa → instruction code Operand address
xow → instruction code Opcode
xdid → data External dimension network data input
xdod ← data External dimension network data output
f ∈  {0, …, 3} specifies one of 16 flags
a ∈  {0, …, 7} specifies an eight bit operand address
w ∈  {0, …, 7} specifies an eight bit opcode
d ∈  {0, …, 5} indicates the external dimension



Qbe*rt—A Massively Parallel Hybercube Processor 11

Diagram

processor

processor

processor

processor

router

processor control

multiprocessor

common

Qbert

xdo5
…

xdo0

xdi5
…

xdi0

instruction
bus

xf3
…
xf0
xa7
…

xa0

xo7
…

xo0

Timing None

Implementation None

Comments The Qbe*rt chip design could be modified to incorporate more processors on a
single chip.  The multiprocessor part scales especially easily—only 12 new
processors have to be added and the RAM sized accordingly.  The router part is
more difficult, but since it is more or less independent extra stages could be added
to its switching network without impacting the multiprocessor part.

This property is very useful since it permits the application of newer
fabrication techniques when they become available, thereby reducing the chip
count of a Qbe*rt computer.

multiprocessor

Function Four single-instruction multiple-data (SIMD) 1-bit processors

Use A multiprocessor implements the processor nodes in a Qbe*rt chip.

Uses Processor, common, processor_control

Interface
clk1 → positive duty clock Control clock (180° phase lead)
clk2 → positive duty clock Data clock
reset* → active low control System reset
xcond → active high control Enable/disable
xbusyin → active high control Undelivered message(s) in network
receive* → active low control Processor message delivery
send* ← active low control Initiate message send
xff → instruction code Select flag
xaa → instruction code Operand/node address
xow → instruction code Opcode
did → data Router message data input
mip* → active low control Router input message available
dop ← data Router message data output
mop ← active high control Router output message available
f ∈  {0, …, 3} specifies one of 16 flags
a ∈  {0, …, 7} specifies an eight bit operand/node address
w ∈  {0, …, 7} specifies an eight bit opcode



Qbe*rt—A Massively Parallel Hybercube Processor 12

p ∈  {0, …, 3} specifies one of the on-chip processors

Diagram

processor

processor

processor

processor

processor control

multiprocessor

common

instruction
bus

xf3
…
xf0

xa7
…

xa0

xo7
…

xo0

di3 & do3

di2 & do2

di1 & do1

di0 & do0

mi3 & mo3

mi2 & mo2

mi1 & mo1

mi0 & mo0

RAM

Timing

clk

Op-addr Op-addr N-addrAddr

R-flag addr Con-flag addr W-flag addrFlag-Addr

Opcode 1 Opcode 2Opcode

E
xternal

Con SenseCon Sense

C0 C1 C2 C3 C4 C4
Route Route

C0

External timing

Implementation To optimize the usage of hardware real estate it is advantageous to have several
processors on a single chip.  The processors can share a single multiple-bit wide
RAM, instruction decode ROM, single hypercube router and shared output pins for
the microword bus.

Comments

With relatively little effort the fourth cycle (C3) and the first (C0) could
be made to overlap, in effect pipelining the processor and improving its
performance by 30 %.

processor_control

Function Controls operation of the processors on a Qbe*rt chip



Qbe*rt—A Massively Parallel Hybercube Processor 13

Use Within a microprocessor it generates the nanoinstructions for the local processors.
It determines the sequencing of the register-to-register transfers within the
processors and coordinates interaction with the router.

Uses None

Interface
clk → positive duty clock Control clock
reset* → active low control System reset
send → active high control Start send cycle
busy → active high control Undelivered message(s) in network
c0* ← active low control In C0 state
c1* ← active low control In C1 state
c2* ← active low control In C2 state
c3* ← active low control In C3 state
c4* ← active low control In C4 state

Diagram

C0 C1 C2 C3 C4
reset* send

send* busy

busy*

Processor state diagram

Timing Since the processor control outputs are often used in other parts of the processor
as enabling signals during clock pulses or transitions, the processor clock must
have a different phase than the processor system clock.  See the appendix for
further details on processor timing.

Implementation The processor control is basically a state-transition engine with a token ring
structure.  The ring is implemented as a string of flip-flops, of which at any time
only one contains the token (a logical 0), defining the state of the processor.

Comments
The state-transition engine, although not minimal in silicon usage, allows for

easy modification of the controller.  This was very useful during development, and
should facilitate straightforward addition or removal of extraneous states if
pipelining were incorporated in the processor.  In particular, it is possible to have
the first and fourth cycle of an instruction overlap.

common

Function The components (besides the router) that are shared by the four local processors

Use Instruction word and instruction decode hardware are shared between the local
processors.   The four local 256-bit times 1-bit wide data RAMs are combined to a
256*4-bit RAM so they can share the same address decode hardware.

Uses reg8

Interface
clk → positive duty clock Data clock
reset* → active low control Reset
xff → data Microword flag address field
xaa → data Microword address field
xow → data Microword function (operation) code field
rfs* → active low control Read-flag address strobe
wfs* → active low control Write-flag address strobe



Qbe*rt—A Massively Parallel Hybercube Processor 14

cfs* → active low control Condition-flag address strobe
oas* → active low control Operand address strobe
nas* → active low control Message destination node address strobe
os* → active low control Function (operation) code strobe
fbs* → active low control B-result function code strobe
fcs* → active low control C-result function code strobe
c*rfsel → control Condition/Read-flag select
rfaf ← data Condition/Read-flag address
wfaf ← data Write-flag address
naa ← data Message destination node address
fbw ← data B-result function code
fcw ← data C-result function code
dop ← data A/B-operand output
dip → data B-result feedback
f ∈  {0, …, 3} specifies one of 16 flags
a ∈  {0, …, 7} specifies an eight-bit operand/node address
w ∈  {0, …, 7} specifies an eight-bit opcode
p ∈  {0, …, 3} specifies one of the on-chip processors

Diagram

Condition
flag address

Read
flag address

Operand
address

Node
address Opcode

bypass

RAM

8

4 4

4

844

4

ROM

Fb Fc

optional
decode bypass

8
8

<8

8 8

common

select flag

Write
flag address

4

not
used

not
used

xf3…xf0 xa7…xa0 xo7…xo0

wfa3…wfa0 rfa3…rfa0 na7…na0 do3…do0 di3…di0 fb7…fb0 fc7…fc0

Timing None

Implementation During the implementation it turned out that we would have enough external pins
available to use a full unencoded opcode, making the complete 65536-instruction
set available and an instruction decoding ROM unnecessary.

Comments The RAM  was not actually incorporated because it had to be especially generated
at IMEC and would have required a stronger commitment to future testing of a
processed chip than we were capable of making.  As noted in the Observations, it
could not have been implemented anyway.  The RAM is not required for otherwise
functional testing of the processor.  The RAM size is 256 × 4 bits and has an access
time of roughly 90 ns.

reg8

Function 8-bit parallel-in/out register

Use Among others, reg8s find use in storing operand and result addresses, and
instruction codes.

Uses None

Interface
clk → positive duty clock Data clock
reset* → active low control Register reset



Qbe*rt—A Massively Parallel Hybercube Processor 15

ds* → active low control Data write strobe
did → data Write data
dod ← data Read data
d ∈  {0, …, 7} specifies the 8-bit data

Diagram
di7…di0

reg8clk

reset*

ds*

do7…do0

Timing None

Implementation None

Comments A reg8 part is used in some cases where fewer than 8 bits are actually required,
mainly to minimize cell implementation and verification time.  The space
overhead is not considered significant.

processor

Function single-bit processor

Use An elementary processor forms a single node of a hypercube-topology computer,
and one-fourth of the processing power of a single Qbe*rt chip.

Uses ram16, cmux8to1

Interface
clk → positive duty clock Data clock
reset* → active low control Processor reset
condi → control Send condition polarity
conds* → active low control Condition-flag register strobe
ai → data A-operand
as* → active low control A-operand strobe
bi → data B-operand
bs* → active low control B-operand strobe
cs* → active low control C-operand strobe
fbw → data B-result function code
fcw → data C-result function code
bo ← data B-result
wfaf → data Write-flag address
wfs* → active low control Write-flag address strobe
rfaf → data Read-flag address
mi* → active low control Message available from input
di → data Message input data
mo ← active high control Message available for output
do ← data Message output data
f ∈  {0, …, 3} specifies the flag address
w ∈  {0, …, 7} specifies an eight bit opcode



Qbe*rt—A Massively Parallel Hybercube Processor 16

Diagram

8

ram16

A

B

C

cmux
8 →1

8

cmux
8 →1

88

Con

rfa3…rfa0wfa3…wfa0 aibicondi bo

di do momi*

fb7…fb0 fc7…fc0

processor



Qbe*rt—A Massively Parallel Hybercube Processor 17

Timing

clk

Op-addr Op-addr N-addrAddr

R-flag addr Con-flag addr W-flag addrFlag-Addr

Opcode 1 Opcode 2Opcode

Read ARead A

Read BRead B

Read CRead C

Read ConRead Con

E
xternal

Read FBoutRead FBout

Read FCoutRead FCout

Write BoutWrite Bout

Write CoutWrite Cout

Con SenseCon Sense

C0 C1 C2 C3 C4 C4
Route Route

C0

Read A
from RAMRAM

FCout
from ROMROM

Read B
from RAM

Read Con
from RAM16RAM16

Write Bout
in RAM

FBout
from ROM

Read C
from RAM16

WriteCout
in RAM16

Internal
R

esources

Implementation The processor is made up of a very simple ALU with taking one-bit operands,
combined with a local 16 × 1 flag register file.  The ALU in fact has a very powerful
instruction set because it can perform any one of the 65536 possible logical
operations on its three operands for both output operands.

Any instruction can be made to send its result to another processor in the
hypercube.

Comments None



Qbe*rt—A Massively Parallel Hybercube Processor 18

ram16

Function 16-bit random access memory with special port

Use The ram16 is used to store 16 read, write or condition flags of a processor.
Received messages use a special port into address 00012 so that they can be
received asynchronously of the processor.

Uses None

Interface
clk → positive duty clock Data clock
reset* → active low control Reset
write* → active low control Write data strobe
write1* → active low control Write data (00012) strobe
aif → address Write data address
aof → address Read data address
di → data Write data
di1 → data Write data (00012)
do ← data Read data
f ∈  {0, …, 3} specifies one out of 16 flags

Diagram

di1

di do

RAM16

ai3…ai0 ao3…ao0

mux
4→1

mux
4→1

mux
4→1

mux
4→1

mux
4→1

dec
1→4

dec
1→4

dec
1→4

dec
1→4

dec
1→4

Timing None

Implementation The current ram16 has one read and two write ports. Read and write operations
can be performed concurrently.

Comments Future versions of Qbe*rt processors employing instruction pipelining would
require multiple read ports.

cmux8to1

Function 8-to-1 conditional multiplexer



Qbe*rt—A Massively Parallel Hybercube Processor 19

Use Two cmux8to1 parts are used to select the appropriate values for the Bout and Cout
results, with the A, B and C operands forming the three address bits.  The two
opcodes are used as input data.

Uses None

Interface
a → active high control Multiplex inhibit (y follows d instead)
as → address Input address
dw → data Muliplex data input
d → data Multiplex inhibit data input
y ← data Output
s ∈  {0, …, 2} selects one out of eight inputs
w ∈  {0, …, 7} constitutes eight inputs

Diagram

cmux8to1

8

d7…d0

y

a2
…
a0

a

d

3

Timing None

Implementation None

Comments The cmux8to1 part is in effect used as an elementary 3-to-1 bit ALU.  It probably
shows best one of the advantages of a reduced operand-width processor.

router

Function Hypercube message router and local distributor

Use The router forms the core of the Qbe*rt chip, handling all of the communications
needs between the 28 = 256 processors in the network.  One router, having
separate inputs and outputs for each of the local processors, suffices for the entire
chip.  The router contains high-speed circuitry for assimilation, distribution and
routing of local interprocessor messages without using the global network.

Uses router_control, ejector, receiver, heart

Interface
clk1 → positive duty clock Control clock (180° phase lead)
clk2 → positive duty clock Data clock
reset* → active low control System reset
send* → active low control Initiate message send
receive* ← active low control Processor message delivery
xbusyin → active high control Undelivered messages in network
xbusyout ← active high control Undelivered messages in node
ain → data Message destination node relative address
din → data Processor message data input
min → active high data Processor input message available
don ← data Processor message data output
mon* ← active low data Processor output message available
xdin → data External dimension network data input
xdon ← data External dimension network data output



Qbe*rt—A Massively Parallel Hybercube Processor 20

Diagram

injectorejector heart

i 3 i 4 i 5 i 6 i 7

o2 o3 o4 o5 o6 o7

i 2

receiver

Pi3 Pi 0

Po2 Po2

The injector accepts messages from the on-chip processors at the beginning of a
send cycle.  Any messages destined for the local processors are ejected
immediately without having to endure a routing and transmission phase.  Left-
over messages, and messages received from external processors are routed
through the heart to appropriate destinations.

Timing Since the router control outputs are often used in other parts of the router as
enabling signals during clock pulses or transitions, the control clock must have a
different phase than the router (data) clock.

clk2

send*

ain, min, din

clk1

receive*

mon*, don

Router/processor interface timing

As the timing diagram shows, a send phase is initiated by an active low send*
signal which is received from the global controller.  Because the router preloads
messages, it is imperative that the message address, data and availability bits be
present before the beginning of the cycle.  During the send cycle, the receive*
control signal may go low an undetermined number of times, depending on the
number of messages that were sent and congestion on the network.  It is the
processor's responsibility  to pick up any messages at these times.  The presence of
a message for a particular processor is indicated by an active message-out mon*
signal.



Qbe*rt—A Massively Parallel Hybercube Processor 21

clk2

send*

clk1

receive*

xbusyout

xbusyin

VALID VALID

Router/network interface timing

Because a send phase may involve several consecutive message send cycles, the
the routers need to be able to signal to the controller when all messages have been
delivered so that the microword of the next instruction may be fed to the ALU.
The routers use the xbusyin and xbusyout signals to achieve this.  While a router
still contains undelivered messages it asserts the xbusyout signal.  All these
signals from each of the routers must be combined externally into a common
signal which indicates the presence of undelivered messages in the entire
network, and is fed back to the routers as the xbusyin signal.

As the diagram shows, while xbusyin is active a router will remain in the send
phase so that another message send cycle is performed.  It is important to realize
that the routers on all of the chips remain synchronized, and therefore all execute
the same number of send cycles even though some routers may not contain
undelivered messages.  However, they may receive new messages during such
cycles.

Note that there is approximately one cycle time (100 ns) for xbusyin to be
generated from the time that the xbusyout signals become valid.  If this should
prove to be not enough time, the clock cycle period could be lengthened or the
routing state could be extended with additional clock periods.

Implementation Messages are either parallel-loaded into the ejector directly from the local
processors during load cycles, or are shifted in from the heart during the shift
phase.  When new messages have arrived in the ejector in either way, it ejects and
removes from itself all messages directed to one of its local processors.

Remaining messages and messages in the receiver are examined by the heart,
which uses their availability bits and relative addresses to rearrange itself
appropriately.  Once the router has determined its proper state it is locked in, and
the messages contained in the receiver and ejector are shifted through the heart.
Depending on how it is switched, these messages are routed across the external
dimensions or shifted into the ejector.

Comments None

router_control

Function Orchestration of operation and interaction of router subcomponents

Use A single router_control block is used in a router to control its operation.

Uses None

Interface
clk → positive duty clock Control clock
reset* → active low control State reset
send* → active low control Initiate message send
busy → active high control Undelivered messages in network



Qbe*rt—A Massively Parallel Hybercube Processor 22

load* ← active low control Load messages from local processors
preeject* ← active low control Prepare for ejection (duration unspecified)
eject* ← active low control Eject messages to local processors
receive* ← active low control Received messages ready for local

processors
route* ← active low control Compute message routing
shift* ← active low control Transmit serial messages

Diagram

T4
SHIFT

T3
ROUTE

T2
EJECT

T0
HOLD

Tr
RESET

send

send*

reset

busy

busy*

reset*

Timing Since the router control outputs are often used in other parts of the router as
enabling signals during clock pulses or transitions, the router clock must have a
different phase than the router system clock.

load*

clk

route*

receive*

preeject*

eject*

shift*

T0
LOAD

T2
EJECT

T3
ROUTE

T4
SHIFT

Implementation The router control is basically a state-transition engine with a token ring
structure.  The ring is implemented as a string of flip-flops, of which at any time
only one contains the token (a logical 0), defining the state of the router.  The
router is in its hold state (T0) after a reset.

The duration of the shift state (T4) is controlled by a 4-bit 10-counter.  This
corresponds to the length of the serial message, the number of bits that must be
transmitted to complete a message.
Note: The explicit state T1 (load) was made obsolete.  A load is now always

performed in T0 (preload).

Comments The routing phase was extended to two consecutive cycles, the first of which
overlaps with message ejection, after it was determined that the routing could not
complete within one cycle.  The ejectors were optimized to eject messages very
rapidly (just after the clock in the ejection state) so that the correct message
availability information is presented to the heart as early as possible.  Therefore,
actually only approximately one and a half of these two cycles (150 ns) are
effectively useful.  Still, this saved us from having to introduce a two-cycle routing
state.



Qbe*rt—A Massively Parallel Hybercube Processor 23

receiver

Function Receiver for messages arriving from external neighborly chips

Use A single receiver is used within the router for the collection of serial messages
from other nodes of the hypercube

Uses Msg_buffer

Interface
clk → positive duty clock Data clock
reset* → active low control Buffer reset
reset0* → active low control Message erase
shift* → active low control Transmit serial messages
empty* ← active low control No messages in receiver
sid → data Data input (external dimension d)
dod ← active high control Dimension d message available

← data Data output (during shift phase)
aoda ← data Address output
d ∈  {0, …, 5} indicates the external dimension
a ∈  {2, …, 7} specifies a message external relative address bit

Diagram None

Timing None

Implementation During shifting, messages are received from the external neighbors and shifted
into their respective message buffers.  Simultaneously, messages previously
present in the buffers are shifted out.

Comments

Although msg_buffer blocks are used as the primary component of a
receiver because they were already available, most of their functionality
is not used by the receiver.

ejector

Function Combined serial message injector, ejector and distributor to local processors

Use The ejector accepts messages from local processors and injects them into the
external network message stream.  Messages supplied to it by the processors and
messages received from the network router heart destined for local processors are
detected and ejected immediately, thus avoiding a costly global network message
exchange when unnecessary.  All other messages are (re-)injected into the network
router heart.

Uses Ejector_part, funnel

Interface
clk → positive duty clock
load* → active low control Load parallel data message word
shift* → active low control Shift the data out
reset* → active low control Ejector reset
preeject* → active low control Prepare for ejection
eject* → active low control Eject messages for local processors
empty* ← active low control Indicates if the ejector is empty
aia → address Input message relative destination

address
mip → active high control Processor p message input available
dip → data Processor p data input
sie → data Ejector_part e shift input
mop* ← active low control Processor p message output available



Qbe*rt—A Massively Parallel Hybercube Processor 24

dop ← data Processor p data output
soe ← active high control Ejector_part e message available

← data Ejector_part e shift output (during shift
phase)

aoea ← address Ejector_part message relative address
a ∈  {0, …, 7} specifies a message external relative address bit
e ∈  {0, …, 3} specifies one of the ejector_parts
p ∈  {0, …, 3} specifies one of the on-chip processors

Diagram The ejector_parts generate signals specifying the relative destination on-chip
processor.  This implies that when, for instance, ejector_part 2 indicates relative
processor 0, its message in fact has as its destination local processor 2, not
processor 0.  The diagram shows how the absolute destination address y  of a
message in ejector_part x can be derived from its relative address.

01

00

11

10

10

01 01

10

11 11

00 00

0000

relative destination

x, y

Ejector_part x  to processor y, with relative destinations

Timing The timing of the ejector is essentially the same as that of the individual
ejector_parts (see ejector_part).

Implementation Multiple messages for a single local processor are simultaneously ejected and
funnelled to produce a single combined message which is passed to the processor.

The ejector provides four address buses from the corresponding ejector_parts to
the heart together with their shift data outputs, which are used for routing the
heart.  Messages destined for one of the local processors are ejected, which
involves clearing the message availability bit (thus changing the shift output).
This ensures that such messages do not influence heart routing.

The ejector generates an empty* signal which indicates if no messages are
present in the ejector.  This signal is valid after message ejection, triggered by an
eject*, which changes the corresponding message-available bits.

Comments

ejector_part

Function Ejecting messages for the on-chip processors and determining which processor is
targeted.

Use Four ejector_part blocks are used in an ejector for the simultaneous reception and
ejection of messages to as many local processors, as well as the injection into the
global message stream.

Uses Msg_buffer

Interface
clk → positive duty clock



Qbe*rt—A Massively Parallel Hybercube Processor 25

reset* → active low control Message reset
load* → active low control Message load
shift* → active low control Message shift
preeject* → active low control Prepare for ejection
eject* → active low control Eject message for local processor
mi → active high control Parallel load message available
di → data Parallel load message data bit
aia → address Parallel load message destination address
si → data Serial message shift input
msg* ← active low control Message present
do ← data Parallel eject message data bit
aoa ← address Parallel output message external

destination address
so ← active high control Message present

← data Serial message shift output (during shift
phase)

rpp* ← active low control Message ejected for processor p
a ∈  {0, …, 7} specifies a message external relative address bit
p ∈  {0, …, 3} specifies one of the on-chip processors

Diagram None

Timing In the timing diagram processor 1 was arbitrarily taken as the destination
processor.

clk

load*

preeject*

eject*

shift*

rp3* - rp0* X F D F

reset0*

Implementation In ejector_part the six most significant bits of the destination address of the
message word are fed into a logical OR.  During ejection (eject* active), if there is a
message available (q0* of the msg_buffer is low) whose destination is an on-chip
processor (all bits are zero), the flip-flop output is reset at the positive transition of
the clock.  This generates a short low pulse on the msg_buffer's asynchronous
reset0* input, resetting the message available bit.

The flip-flop is preset by preeject* before ejection takes place, to ensure that
only negative transitions of its output occur.  The flip-flop's function is to continue
to indicate the ejection of a message after its available bit has been reset.

One of four signals specifying the relative on-chip destination processor address
is made low, selected by the two least significant bits of the message destination
address.

Comments Originally, the message available bit was not cleared until the next cycle.  Due to
routing timing constraints elaborated on later, it was desirable to do this as
quickly as possible.



Qbe*rt—A Massively Parallel Hybercube Processor 26

funnel

Function Multiplexing of data from multiple sources to a single output

Use Combining ejected data from the four ejector_part blocks of the ejector to a single
input to the processor.

Uses None

Interface
pxp* → active low Data input present from source p
dp → data Data input from source p
px* ← active low Data output present
dx ← data Data output
p ∈  {0, …, 3} specifies one of four data sources

Diagram None

Timing None

Implementation Multiple data which is presented to the funnel is combined by means of a logical
AND.  The data output present signal is asserted when any data is passed through
the funnel.

Comments

In future, rather than combining multiple data through a logical AND,
any particular logical function combination might be selected by
specifying an function selector.

msg_buffer

Function 10-bit serial shift register with parallel load and output.  Independent
asynchronous reset of the lowest-order data bit.

Use Msg_buffer is used as the core of an ejector_part, in which the message word is
both parallel loaded/ejected and serially shifted in/out—in the case of the receiver,
only the latter function is actually used.

Uses None

Interface
clk → positive duty clock
reset* → active low control Reset data word
reset0* → active low control Reset lowest-order bit of data word
load* → active low control Load parallel data
shift* → active low control Shift right
si → data Shift input
di → data Data bus input
so ← data Shift output
qi ← data Data bus output
q0* ← inverted data Lowest-order data bit output
i ∈  {0, …, 9} specifies bits of the data word

Diagram None

Timing None

Implementation The input of  each flip-flop i (storing bit i of the data word) is the output of  a four-
input multiplexer i.  Three inputs (one is unused) of the multiplexer are,
respectively, the output of the previous higher-order bit flip-flop i+1, the parallel-
load data bit di and the output of  flip-flop i itself.  Each of these inputs is selected
by an particular combination of shift* and load*.  If both these signals are inactive
the stored data is unchanged.



Qbe*rt—A Massively Parallel Hybercube Processor 27

Comments The flip-flops are positive edge-triggered, but unfortunately not of the master-
slave type—i.e. at the positive edge of the clock the input immediately appears at
the output, which often gives rise to hold-time violations during simulation.

The multiplexer has an inverting output.  To preserve polarity its inputs are
inverted as well, i.e. qi*, qi+1*, di* (with qi* being the the inverting output of flip-
flop i).

The behavior is undefined if load* and shift* are both low at a positive clock
edge.

heart

Function Routing of messages between internal processors and external neighbors.

Use The heart forms the core of the router.  Messages which have been loaded or
shifted into the ejector, and messages which were received from external
neighbors are routed by the heart to their proper destinations as well as possible.

Uses cell

Interface
dwe → active high control (route phase) Message present from

ejector e
→ data (shift phase) Bit-serial message from

ejector e
dsd → active high control (route phase) Message present from

receiver of dimension d
→ data (shift phase) Bit-serial message from

receiver d
dee ← data (shift phase) Bit-serial message to ejector e
dnd ← data (shift phase) Bit-serial message to

neighbor of dimension d
awea → active high data Relative address bit a of message from

ejector e
asda → active high data Relative address bit a of message from

receiver of dimension d
route* → active low control Route phase



Qbe*rt—A Massively Parallel Hybercube Processor 28

Diagram

6-lane
intersection

HNODE

VNODE

5-lane
intersection

HNODE
VNODE

4-lane
intersection

HNODE
VNODE

7-lane
intersection

VNODE

HNODE

6-lane
intersection

VNODE

HNODE

5-lane
intersection

VNODE

HNODE

5-lane
intersection

VNODE

HNODE

7-lane
intersection

HNODE

VNODE

6-lane
intersection

VNODE

HNODE

a4

a5

a3

d

d

a7

a4

a7

a2

a3

a7

d d

a2

a3

a7

d

d a7 a3a4

d

a7

a4
a3

d

a7

a4

a5

a2

a3

a7

d

d a7 a3 a2 d a7 a5 a4

a7
a5

d

d d

a2

a
3

a7

d

d a7 a3 a2

a2

a3

a7

d

d a7 a3a4

d

a7

a4
a3

d a7 a5 a4

d

a7

a4

a5

d a7 a3 a2

d a7 a3a4

d a7 a5 a4

Timing Simulation shows heart routing times of up to 120 ns, which is longer than one
cycle at the target clock frequency of 10 MHz.

Implementation The heart is certainly one of the most conceptually complex yet fundamental parts
of the Qbe*rt processor.  There are two modes of operation: in the route phase
(defined by an active route*), stable messages at the inputs are used to determine
their destinations when they are serially shifted through during the shift phase.

It is clear that since individual cells do not create or destroy messages, and
interconnections between cells are one-to-one, that the entire heart does not create
or destroy messages.  This is an important result since it means that messages
always end up somewhere.

The heart routing algorithm can be induced from the individual cell switching
algorithm.  Generally, however, the heart can be said to route messages
approximately according to the following rules:
• Messages may be prioritized according to lowest-to-highest numbered ejector

followed by highest-to-lowest ordered dimensional receiver;



Qbe*rt—A Massively Parallel Hybercube Processor 29

• The highest-priority message that wants to be routed across an external
dimension is routed across the highest dimension that it needs to cross.  The
next lower-priority message that wants to cross the same dimension takes the
place and hence acquires the priority of its contender;

• Messages from receivers are only routed across same or lower-ordered
dimensions, or to an ejector;

• The highest-priority message that does not want to be routed across any
external dimension is routed to an ejector of equal or higher priority;

• Messages which are trying to reach an ejector are misrouted across a
dimension they do not need to travel if all ejectors are taken by higher-priority
messages.

Misrouting may be seen as a last-ditch effort by the heart to route the message
anywhere at all when all paths to its proper destination are already taken by other
messages.

It can be verified that the cells used here do in fact implement these rules.  The
data bits of the cells are used to switch the message-available and the address bits
in parallel, in effect switching the messages' relative addresses while at the same
time creating a data path for the subsequent transmission of data.

Note the strict causality in the routing process.  The lower left cell (cell 35) is
the first to find its correct orientation.  Although its neighboring cells (25 and 34)
will start routing simultaneously, they will not be able to find their correct
orientations until 35 has done so, because their orientation depends on which
message is routed to their input by cell 35.  There is a frantic flurry of activity in
the early stages of routing as distant cells try continuously to adapt to the
changing messages appearing at their inputs†.  Gradually the heart settles as the
steady-state condition propagates to its farthest reaches.  At this point route* may
be made inactive, locking the heart in its orientation.

Comments The routing algorithm used is not optimal, but it ensures that no message is ever
lost and always eventually reaches its destination.  For instance, note that
messages can fortuitously acquire much greater priorities when they are
redirected in favor of another message.

As a matter of interest—an unrouted version of the heart showed an occupation
of 11.2 mm2, or 7.76% of the chip surface.

We also investiagated using a combinatorial tree-like structure in which the
entire heart is set in parallel.  It quickly became obvious that this would have
required an unacceptable extent of silicon area.  A hybrid scheme was also
considered but was not found to be practical.

We had originally envisaged a scheme whereby the message bits were
clocked through the heart by means of a shift register-like structure.
Unfortunately, this implies that since the distance that a message
travels through the heart is variable and generally unpredictable, the
messages do not enter or exit the heart simultaneously but are delayed
with respect to one another.

cell

Function Cross-dimensional routing cell for interprocessor messages

† If don't care values (X) are specified for address bits which really are irrelevant
to the eventual state, simulation produces an incredible amount of “no data
available” warnings as the ‘don't care’ messages occasionally leak through when
parts of the heart are still in a transitional state



Qbe*rt—A Massively Parallel Hybercube Processor 30

Use Within the heart, during the routing phase a cell examines the two messages and
their relative destinations which enter it from the west and the south and
determines how the messages should be switched—horizontally (west to east and
south to north) or diagonally (west to north and south to east).  During the data
shifting phase the cell freezes this orientation.

Uses Switch

Interface
wmsg → active high data West message present
smsg → active high data South message present
emsg ← active high data East message present
nmsg ← active high data North message present
wnode → active high data West message directional preference
snode → active high data South message directional preference
enode ← active high data East message directional preference
nnode ← active high data North message directional preference
w4-w0 → data West data input
s4-s0 → data South data input
e4-e0 ← data East data output
n4-n0 ← data North data output
switch* → active low control While active, the cell changes orientation

according to the messages input to it.
When inactive, the orientation is held

Diagram

N n-1 N 0

W n-1

Sn-1

En-1 E0

W0

…

…
…

S0
…

n

n

n

n

D

ø

Timing None

Implementation
The cell switch algorithm is as follows.  If there is a message from the west, its
routing preference is accorded priority.  Otherwise, the cell is switched according
to the message from the south (even if there is no message from the south, in
which case the orientation of the cell is a don't care).

The routing preference of a message is specified by its node relative address
bit.  A logical 1 in an address bit of a message indicates that the message still
needs to travel across the corresponding dimension, so the message will want to be
routed towards the north.  Conversely, a 0 indicates the message has already
reached the desired hypercube coordinate of that dimension.

The word “preference” is used here purposely.  It is very much possible that a
message may not be routed in the direction in which it needs to go, in particular
when  a higher-priority message needs to be routed in the same direction.

Comments Fan-in of data and control inputs is double normal gate load.



Qbe*rt—A Massively Parallel Hybercube Processor 31

switch

Function Horizontal/diagonal cross-switch of one-bit data between two inputs and outputs

Use Many switches are combined into a cell, which routes many bits of data
simultaneously through the heart.

Uses None

Interface
h → control Logical 1 switches cell horizontally/

vertically, logical 0 switches cell
diagonally

h* ← control Should be inverse of h.  Switching
characteristics are undefined if not

w → data West data input
s → data South data input
e ← data East data output.  Follows west input

while h is 1, south input while h is 0
n ← data North data output.  Follows south input

while h is 1, west input while h is 0

Diagram

D = (HMSG ∧  HNODE) ∨  (HMSG ∧  VNODE)

HMSG

HNODE

(VMSG)
VNODE

D

Timing None

Implementation This block cross-switches two data inputs to two outputs, depending on the value
of the h and h* inputs.

Comments Fan-in of data and control inputs is double normal gate load.



4  References
and Appendix

[1] Charles E. Leiserson, Advanced Parallel and VLSI Computation, lecture notes
[2] W. Daniel Hillis, The Connection Machine, Scientific American, June 1987, pp. 86-

93
[3] W. Daniel Hillis and Guy L. Steele Jr., Data Parallel Algorithms, Communications

of the ACM, December 1986, Volume 2 Number 12, pp. 1170-1183
[4] Blaauw, Digital System Implementation, Prentice-Hall
[5] Ware Myers, Faster…, Computer, July 1991, pp. 96
[6] H.G. Sachs, H. McGhan, L.F. Hanson, N.A. Brookwood, Design and

Implementation Trade-offs in the Clipper C400 Architecture, IEEE Micro, June
1991, pp. 18-21, 74-79

[7] O.A. McBryan, The Connection Machine: PDE solution on 65536 processors,
Parallel Computing, 9, 1988-1989, pp. 1-24

[8] Neil Weste and Kamran Eshraghian, Principles of CMOS VLSI Design, 1985-1988
[9] Peter F.A. Middelhoek, Timing and Placement in the C400 FPU, Internal report

Intergraph Corporation Advanced Processor Division



Qbe*rt—A Massively Parallel Hybercube Processor 33

to router

8

8

A

B

C

Con

16
FLAGS
16 Bit

mux
8→1

Condition-Sense

W-enable

8 8

8

ROM
32 * 8 Bit

FBout CoutF

W-FLAG R-FLAG C-FLAG

RAM
256 * 4 Bit

4

4

16

4

Op-addr

8

COMMON

4

Opcode

5

N-addr

Bout

Cout

4

ALU

Flag-addr Addr Opcodes

to router

Processor 0

D
a

ta
 o

u
t

D
a

ta
 in

select flag

send

do0 mo0di0mi*0

0

1

0

1

Condition-Sense

to processor control

mux
8→1

mux
2→1

mux
2→1

4 * mux
2→1

dec
1→16

mux
16→1

o
p

tio
n

a
l

RAM16

5

8
/

Processor 1

Processor 2

Processor 3



Qbe*rt—A Massively Parallel Hybercube Processor 34

Index
address 1
cell 30
cell occupancy 8
cmux8to1 19
common 13
conditional execution 2
dimension 1
ejector 23
ejector_part 25
external dimension 5
external network 5
funnel 26
Harvard architecture 2
heart 27
hypercube 1
hypercube processor i
Improvements 8
instruction bus 2
internal dimension 5
internal network 5
message 5
message format 5
message routing 5
microcontroller 2
misroute 5
misrouted 5
msg_buffer 27
multiprocessor 11
node 1
processor 15
processor_control 12
Qbert 10
ram16 18
receiver 23
reg8 14
relative addresses 5
router 19
router_control 21
switch 32


