
Autonomous File Transfer Utility i

This document was produced on the Apple Macintosh, using Microsoft Word 3.01 for text,
and MacDraw II for diagrams
Printed on the Apple Laserwriter IINTX
Set in 10-point ITC Bookman

© Copyright August 1989 by: University of Oulu, Finland
Reprinted with corrections, October 1989

By: Ben Hekster, Tankelanden 5, 7542 DR Enschede, Netherlands. 053-764091

Autonomous File Transfer Utility ii

Contents

Contents.. ii
Preface ... iii

DEVELOPMENT
Introduction .. 1
Remote Communication .. 3

Design
Implementation & Testing

Local Communication .. 7
Design
Implementation & Testing

REFERENCE
Answer .. 9

Using Answer
File-Transfer Extensions to Answer

Upgrading Answer ... 11
Adding New Command Menus
Adding Configuration Parameters

Configuration File.. 12
About the Configuration File
Configuration Parameters

Script File.. 14
About Scripts
Script Directives
Example

Password and Log Files.. 17
Password File
Log File

Bibliography .. 18
Index ... 19

Autonomous File Transfer Utility iii

Preface

This is the report written towards the requirements of the ‘100-Hour Assignment’ (Dutch:
100-Uurs Opdracht) course for the degree of Electrical Engineering at the University of
Twente in the Netherlands. The assignment was executed in the Measurement Technology
Laboratory (Mittaustekniikan Osasto) at the University of Oulu in Finland, under Prof.
Saarimaa and with the guidance of Prof. Kalliomäki.

The report consists of two main sections—the first of these, entitled “Development”, is in
the form and contains the type of information typically expected in a report of this kind—
i.e., definition of the problem which the work described in this report attempts to solve, my
solution of the problem, and consideration of the various alternatives which were considered
but abandoned during the design process. Also, some ideas are proposed for further
improvements which might be implemented in the future.

The second section in the report, “Reference”, takes the form of a reference manual,
describing in detail the information needed to use the software which was produced in the
solution of the problem—the ‘ANSWER’ program. The software has been carefully designed
so as to be easily applicable in a wide variety of applications, but sufficient detail is given for
programmers who may wish to make their own adjustments or additions to the program.

Therefore, if you are only reading this report in order to find out how to use ANSWER, or
if you are looking for details on the program’s operation, you may wish to proceed directly to
the Reference section. However, if you are completely unfamiliar with the program, the last
section in the “Remote Communication” chapter, “Implementation & Testing”, may prove
illuminating. If you are interested in the history and development of the program, continue
reading from this point.

The entire project—starting from its definition through to the writing of the original
report—was concluded with great exertion in two and a half weeks’ time.

—Ben Hekster

Autonomous File Transfer Utility 1

Introduction

In this chapter, I will discuss the reasons behind the commissioning of my work. First,
however, I will begin by elaborating slightly on the background of the environment in which
it is to be applied.

In maintaining the official Finnish time and frequency standards by the Finnish State
Research Institute (Valtion Teknillinen Tutkimuskeskus, or VTT), certain measurements need
to be made relating to the variation of the transmission delay of a signal received at specific
locations throughout Scandinavia. These measurements are made at each of the locations,
and are later collected at VTT and statistically correlated for seasonal, circadian, or other
periodic variations. (The exact nature or purpose of these calculations is unknown to me,
but has absolutely no bearing on this work.)

TV transmitter

Espoo

sync
generator

Oulu

sync
separator

Phase
comparator

Other Sites

Analyzation

Cesium clockRubidium clock
Data Acquisition

Data Storage

Helsinki

Fig. 1. The measurement scheme

The measurements taken are samples of phase differences between a locally generated
Cesium-based oscillator clock signal and a received signal related to the common reference
clock in Espoo (see Fig. 1). This reference signal is derived from the vertical retrace signal of
national television station YLE 1, which in turn is driven by a relatively stable Rubidium-
oscillator clock located at VTT. As the instability of this reference Rubidium clock is tracked
and recorded, against a number of other clocks at VTT, the phase difference measurements
can later be used with these recordings to determine the variation of the signal transmission
delay.

Several phase measurements are taken at 10-minute intervals by an IBM PC-compatible
computer from different channels of an IEEE-488 bus, and are temporarily stored in a
buffer in memory. From this buffer, the data is appended to two different files—one receives

Autonomous File Transfer Utility 2

data from selected channels at the full 10-minute temporal resolution (called ‘quick’ data)
while the other file gets only two-hour averages, but from all channels (‘super’ data). New
files are used every 10 days. By using a formula to convert Julian dates to an integral
number of days since a certain celestial event, and using this number in the file name,
future file indexing becomes straightforward.

As the situation existed prior to my work, the phase difference measurement data from
the different institutions were collected on 360K floppy disks which were mailed to Helsinki.
On some occasions the data on a disk had become corrupted, so that another one needed to
be mailed—altogether a rather slow, cumbersome and unnecessarily expensive procedure. I
therefore proposed to design a system which would employ electronic file transmission to
supplant the movement of the data on physical media. It was also desirable for each of the
installations to have access to the collective body of measurement data present in Helsinki,
something which up to then was only possible by phoning an individual at VTT with
physical access to the data, and asking him to mail a disk back in return. In this report, I
will refer to these issues collectively as the remote communication problem. The problem I
attempted to solve is actually quite independent of the particular nature of the data, i.e., the
way in which it happens to have been generated, or what it represents.

More or less unrelated to this (the communication of data between different installations),
there was an additional desire at the Measurement Technology Laboratory to be able to
communicate data between personal computers throughout the laboratory electronically
rather than physically. The nature of this problem, which I will hereafter refer to as the
local communication problem, is very similar to that of the remote communication, but as
we will shortly see, the completely different scale of ranges required a somewhat different
solution.

I will refer to the entire scheme, comprising hardware, software, protocol, and such, as
simply the system. I have already used the term installation to describe different physical
locations in the remote communication problem. A single instance of a communications
session is called a transaction—this not only to stress that the communications protocols
require both parties to actively negotiate in establishing the connection,† but also to
indicate that either party may wish to receive data from the other, i.e., two-way
communication.

† Just refer to any of the levels in the ISO/OSI Reference Model [4]. In practical terms, an
answering modem may adapt itself to the baud rate of an originating modem. Or, a file transfer
program may downgrade its own level of error checking if the other party cannot support it. In fact,
both of these examples highlight instances of negotiation occurring in this very system

Autonomous File Transfer Utility 3

Remote Communication

After having defined the problems, I then proceeded to weigh various alternative solutions. I
will start by discussing my solution to the remote communication problem in this chapter,
following in the next with local communication. This dichotomy does not reflect the actual
development of the systems, which occurred more or less concurrently, but is conducive to
a good understanding of the underlying concepts and decisions made in the process.

DESIGN
Although it has not been mentioned explicitly yet, it seems almost immediately obvious that
phone lines should be used for the remote communication. Although there are other
alternatives, such as the usage of packet switching-networks, there were no such facilities
available at the Measurement Technology Laboratory. Note that using phone lines implies
that each installation have a modem installed in one of its computers.

Whichever medium is selected for the actual data transfer, several basic alternative
communications methods may be considered. Each of these has its own distinctive impact
on system characteristics, such as the amount of human activity required in effecting the
transaction, intelligence of the system, security, and ease of implementation (complexity):

• Nonautonomous transaction The data is transmitted electronically, but requires
human attendance of the system on both sides of the communication. This is by far the
easiest to implement, since the system can rely on human intelligence to detect and resolve
any contingencies which may arise while establishing or during the transactions, and which
it has no knowledge of. The system therefore needs very little intelligence of its own.
Security is not an issue, since it has already implicitly been resolved when the transaction
is initiated—presumably by both operators vocally identifying themselves to each other over
the phone, before the transmission is started.

• Semiautonomous transaction The transactions only require human action on one
side of the communication. Significant intelligence is already required on the autonomous
side—security starts to become an issue, since there are now no humans to identify the
party initiating the transaction. Records of all transactions must be kept at the autonomous
end of the communication. The problem of scheduling the transactions between the various
installations is now delegated to the humans initiating the transactions. If the system is to
be effective, it must be reliable enough to prevent the operators becoming frustrated with it
and reverting to manual operation.

• Autonomous transaction The system is fully automatic—data is transmitted
completely transparently to humans at all installations. At regular intervals, the system
decides which of the data to transmit, and initiates the communication itself. A highly
intelligent system is required to initiate a coordinated sequence of transactions, to cope with
contingencies such as may occur, for instance, if an installation being contacted is
unavailable. In such cases, records must be kept of which installations have received which
data, and subsequent attempts must be initiated to transfer data which has not yet been
received by systems which may, for example, have been temporarily out of commission. The
remarks relating to security and reliability in the semiautonomous transfer approach apply
even more strongly here.

After deliberation with professors at Oulu and officials at VTT in Helsinki, I opted for the
second alternative, the semiautonomous communication. The situation is depicted in the
following figure:

Autonomous File Transfer Utility 4

HelsinkiOulu

Other Sites

PC modem

RS-232

Phone line

Peripheral Installations Central Installation

Fig. 2. Schematic representation of the remote communication solution

The autonomous party in the communication is aptly named the central installation,
while the remaining installations are called peripheral installations. The terms ‘central’
and ‘peripheral’ are used as adjectives generally. The designation of VTT in Helsinki as the
central installation is natural, as all the communication is centered on this installation. As
the central installation is distinct from all others, transferring files in this direction may be
referred to as uploading, while the converse is called downloading.

The semiautonomous is preferred to the nonautonomous method, since it relieves the
operators in Helsinki of the tedious task of collecting data from various sources, not to
mention having to verify the data in each of the files for errors—this task can be handled by
the transaction system. Also, operators at the peripheral installations are still able to select
a time convenient to them to execute the transaction, rather than having to wait or make an
appointment for an operator at the central installation to be present. Better still, peripheral
operators may at any time access the central installation to obtain the most recent files
uploaded from other peripheral installations.

A fully autonomous system might seem slightly superior in that it is no longer necessary
for peripheral operators to manually initiate a transaction. However, peripheral installations
must then either dedicate an entire computer to this task alone, or an individual at each
site must be designated to start the program and ensure the data is ready, before the next
scheduled transaction. This hardly seems much less effort than in the semiautonomous
approach, and considering the significant additional complexity such a system would
represent certainly not worth the effort. It seems that the fully autonomous method is not
well-suited to a personal computer-based system. Had the system been implemented on
mainframes with appropriate scheduling capabilities†, this would most certainly have been
otherwise. Finally, consider that the semiautonomous method gives individual peripheral
operators much more freedom in deciding when to execute their transaction, and the ability
to peruse the file list of the central installation at their leisure.

IMPLEMENTATION & TESTING
The implementation of the system proceeded in three main steps, each of which will now be
considered separately.

Installation of the hardware. Since phone lines are used for the long-distance communi-
cation, the presence of a modem in each of the installations’ designated computers is
required. Since there was no computer with a modem in the Measurement Technology
Laboratory at that time, a modem was acquired which I then proceeded to install. Also, a
cable was prepared to connect the modem’s line input to a phone outlet.

† E.g. in UNIX, the at operating system function

Autonomous File Transfer Utility 5

The correct operation of the modem and cable were ascertained using the KERMIT
terminal emulation facility to send commands to and receive responses from the modem.
Also, some calls were made to a dial-in modem of a university mainframe, and some simple
commands were executed remotely on the mainframe through the modem to ensure that it
was operating correctly, and was capable of establishing a connection with another system.

Preparation of the peripheral installation software. Although it would have been possible
to write special software for the peripheral installations, this would have amounted to
reinventing the wheel, since no other tasks are required of this software than can already be
handled perfectly well by the excellent communications software which already exists—
namely, terminal emulation, and file transfer. The terminal emulation capability is required
when interacting with the central installation, (e.g., when selecting a file to be downloaded)
and the file transfer option when the actual data is transferred. In the immediately
preceding section, the KERMIT program is mentioned—as the name implies, other than
being a straightforward terminal emulator it also supports the standard Kermit‡ file-
transfer protocol. Since this program was already in general use at VTT in Helsinki, and as
inspection of the manual showed the software to be perfectly adequate for the purposes at
hand, I decided to use it for the peripheral installations.

Note that other software supporting the Kermit file-transfer protocol also exists for the
IBM PC-compatibles, which may be used instead of KERMIT if so preferred. In fact, it is not
even required that the peripheral installations have to be based on IBM PC-compatibles—
any computer may be used, as long as there is software available for it which supports the
Kermit protocol.

Writing the central installation software. This was by far the greatest effort of this work.
As far as I know, no software preexisted which might have been readily applied. As has been
delineated by the preceding matter in this and the previous chapter, a program is required
which will operate without human intervention for prolonged periods of time, and will allow
the up- and downloading of files at the request of the peripheral operator. The programming
effort which resulted from these requirements is the ANSWER program, so named because
it does not initiate transactions itself but monitors a phone line for incoming calls and
answers them. (Note that this capability requires an auto-answer modem at the central
installation.) The operation of ANSWER is described in great detail in the aforementioned
second section of this report.

In effect, the central installation runs ANSWER unattended on its designated computer.
The peripheral operator may use his preferred communications software (e.g., KERMIT)
whenever he likes to gain access to the system by identifying himself with a distinct user
name and password, provided by the central installation. After the operator’s identity has
been verified by ANSWER, the program allows him to upload his own measurement data, or
to download files he might want. The security facility of the ANSWER program even makes it
possible to limit the level of access extended to certain individuals according to a privilege
level scheme.

As I would not be available after completion of this work to maintain or upgrade the
program, I concentrated on writing it in such a way as to make its operation very easily
modifiable. This is exemplified by the usage of so-called scripts, which allow the way in
which the program responds to commands and inquiries from peripheral operators during a
transaction to be subdivided into small steps, and changed simply by editing a text file
called a script file. In fact, the program is so flexible and completely independent of this
particular application, that by using a different script file, ANSWER may be used as a
bulletin board system for any particular application which may be desired. A sample script
file has already been predefined to allow ANSWER to be used in this particular application.
Refer to the “Example” section in the “Script File” chapter for an instructive general idea of
what scripts actually look like.

One point of interest is that the ANSWER program actually during its execution calls
Kermit to effect the actual file transfer. In this manner ANSWER automatically benefits from
all the advantages of the Kermit protocol, such as transmission error checking and

‡ In this report, the word KERMIT in full capitals indicates the software program for the IBM PC,
while Kermit with a single capital refers to the file-transfer protocol (which happens to be supported by
KERMIT)

Autonomous File Transfer Utility 6

automatic packet retransmission. A significant number of parameters of the program,
mostly pertaining to the communication protocol, needed to be set before the file transfer
would work—these were collected in an initialization file called ‘MSKERMIT.INI’ (which is
read by Kermit when it is executed) so that future users of KERMIT will benefit from them.
Peripheral installations already using communications software would already have a
similar file themselves. The Kermit protocol negotiates applicable communications
parameters such as transmission packet size before the transfer is started, so that it is not
required that the installations use identical settings.

It must be said that due to the lack of available time, the sample script which I have written
was intended to serve mainly to demonstrate and illustrate the basic capabilities of the
script system. As such it is rather terse, and does not fully utilize the full potential of the
ANSWER program. Several improvements will be made by users of the system in Oulu,
which will greatly improve the operation and general appearance of the user-transaction
interface. Some ideas which I have suggested:

• the incorporation of context-sensitive help;
• further specification and application of privilege levels;
• more detailed and user-friendly screen layout and menu hierarchy;
• implementation of additional functions besides simple up- and downloading.

The framework of the program as is should provide enough flexibility to absorb any
additions or alterations which may be found necessary in the future.

Autonomous File Transfer Utility 7

Local Communication

Regularly, not insignificant amounts of data needed to be exchanged between certain
computers within the Measurement Technology Laboratory†. Of course, the data could be
moved physically, on floppy disks (which indeed, it was), but a faster, more modern solution
was desired.

DESIGN
This part of the assignment was so straightforward that it hardly merits its own ‘Design’
section. In any case, although the symmetry of the problem with the remote communication
one might again suggest the use of telephone lines this was deemed unnecessary, and for
some extremely obvious reasons direct cabling using the RS-232 serial communications
ports was selected (see Fig. 3):

RS-232

RS-232 connector

PC

Fig. 3. Schematic representation of the local communication solution

• Initial cost. You can’t beat the price of two-wire grounded cable. Some
experimentation showed that the KERMIT program running on both computers could
communicate using only the Transmitted Data (TxD), Received Data (RxD) and Signal
Ground (SGND) signals from the RS-232 protocol;

• Running cost. Cables, as opposed to phone lines, have no running cost;
• Speed. Reasonably-priced modems are usually limited to transmission speeds of up

to 2400 baud, while the RS-232 cabling method demonstrated rates of up to 9600 baud (the
highest rate the PC-compatible could handle) when it was completed;

• Reliability. Phone lines are noisy, connections may be inadvertently broken, or the
connection may not be established due to a malfunction in the switchboard. Cables, if they
are laid free of obstructions and the connectors are soldered correctly, do not suffer from
these problems;

• Practicality. Since communication practically always occurred between the same
pairs of computers, there was no need for the generality of being able to dial into any other
computer. With cabling, then, there is the benefit of not having to dial the number of the
other computer on each occasion.
Also, using cabling frees the use of the phone while communicating.

† The nature of this data was not specified further, nor was it necessary that it should be

Autonomous File Transfer Utility 8

IMPLEMENTATION & TESTING
This is even more straightforward than the previous section. However, two points are worth
mentioning. Firstly—since some of the computers between which was to be communicated
were situated more than 30 meters apart, there was some concern on my part that the
computer’s ports would not be able to drive the lines so as to make communication
possible, since the EIA RS-232 standard dictates a maximum distance of only 15 meters.
After testing, however, several large files (in the order of 200 Kb) were transmitted back and
forth (not using a packet retransmission facility) without any errors. It goes without saying
that the other connections were similarly tested as well.

Secondly—since two computers are always in use during transactions (the central and a
peripheral computer), a null modem cable was constructed which accurately simulates the
presence (on a signal level) of two modems and a telephone line (see Fig. 4). Using this
cable, one computer, running ANSWER, represented the central installation, while the
other, running KERMIT, a peripheral installation. This proved to be an invaluable aid during
testing and evaluation of ANSWER.

RS-232

Phone line

PC modem

RS-232 connector

null modem cable

Fig. 4. Schematic representation of the effect of the null modem cable

If electronic communication proves to be very effective, installation of a Local Area
Network might be considered.

Autonomous File Transfer Utility 9

Answer

The ANSWER program was written in Turbo Pascal Version 3.0, and consists of several
units and auxiliary files which are used by the program. The various files are shown in the
following figure which is followed by a short description of each of them:

core extension

Answer unit The main program code is contained in this unit†—it is the one in which
execution first begins when the program is started. It reads the configuration file, initializes
global program variables and takes care of displaying and handling the command menus;

Local unit This unit contains general-purpose routines for interaction with the operator,
such as error warning;

Remote unit Contains the routines which handle remote interaction, i.e. with the user
using his terminal to dial into the local modem where the program is running;

User unit The final unit contains procedures which are executed during a remote
connection as a result of /proc directives in the script file. These terms are explained in
their appropriate chapters;

AuxInOut unit This unit is modified from the AuxInOut example in the Turbo Pascal
manual [3] which takes care of the lower-level serial I/O through the communications ports.

Also, some files are used by the program:
Configuration file Allows certain parameters to be changed;
Script file Which controls the dialog with the remote user;
Password file Controls who accesses the system;
Log file Keeps a record of who did access the system.
These are all explained in great detail in later chapters.
Answer actually consists of a relatively unchangeable program core, supplemented by

application-specific support code. By this I mean, that the function of the program can be
changed completely without significantly altering the main program itself. The Answer
program proper is a bulletin board system without a purpose.

But as the purpose of the program was already defined in terms of the problem posed in
the “Introduction” chapter, support code has already been added to make the program
useful. In the next chapter, “Upgrading Answer,” it will be shown how to add different
functions.

USING ANSWER
The program is executed from the MS-DOS command line by typing ANSWER. The auxiliary
files are normally expected to reside in the current directory.

† More precisely, the source code of each of the files can be found in .Pas files, and the object
(compiled) code in .TPU (Turbo Pascal Unit) files. The resultant program, comprising all the compiled
units sis the Answer.Exe file.

Autonomous File Transfer Utility 10

When the program is started, it initializes the Hayes-compatible modem which it expects
to be in the port specified by the modemPort configuration parameter. The operator is then
presented with a single menu, which has just three options.

Selecting “Answer calls” selects the normal course of operation for the program. In this
mode, the program continually monitors the phone lines for another computer to dial into
the system. When a connection is made, the message “call in progress” is blinked in green
on the top line of the display. At any other time, the top line will show a message indicating
that call monitoring can be ended by pressing the <Esc> key, which will return you to the
menu. The program is intended to be completely self-sufficient in the monitoring mode, and
should normally require no operator intervention.

The second option, “Initiate a call” is currently used for test purposes only—it can be
used to ascertain whether the configuration parameters pertaining to modem operation
have been set correctly.

Pressing <Esc> ends the program.
If an error occurs at any time during the operation of the program, a beep is sounded, an

error message is displayed in red. Furthermore, if the system is currently entertaining a
remote user, the connection is terminated. This is done for security reasons, so as not to
allow users access to the system in an uncontrolled situation.

FILE-TRANSFER EXTENSIONS TO ANSWER
As stated, the Answer program has already been given ‘extended’ code which answers the
file-transfer problem. The extensions consist of /proc procedures (explained in the “Script
File” chapter) in the User unit, which invoke the Kermit software to effect the actual file
transfer, and a predefined script file named “ANScript.Txt” which presents the remote user
with several menus to allow him to up- or download files. Passwords are used.

The user may download files if his privilege level is greater than or equal to ‘1’, from the
directory specified by the constant downloadDir. Uploading of files is allowed if the user's
privilege level is greater than or equal to ‘5’, into the directory specified by the constant
uploadDir. There are also commands which allow the remote user to view these two
directories.

Autonomous File Transfer Utility 11

Upgrading Answer

Many of the features of the Answer program can be changed quite easily by using a text
editor and working on one of the auxiliary files. More advanced changes can be made by
changing the actual program code. Answer has been written with this very upgrading in
mind. This chapter attempts to explain all the details you need to know about the way in
which Answer works that will allow you to customize and add your own features and
commands to the program.

ADDING NEW COMMAND MENUS
As the program originally exists, there is only one command menu with three options in it.
However, Answer has been written to allow many more, hierarchical, command menus. All
the code and supporting routines for command menus resides in the Answer unit.

In Answer, each command menu has its own menu ID. The main menu, the one which is
shown when the program is started, always has ID = 0. Implementing additional menus
proceeds in two steps:

• First, you must write code that displays the menu's options. This is done in the
ApplyMenu routine. Whenever the menu parameter in this routine matches the ID of your
menu, simply use successive Writeln commands to display all the options.

• Immediately after this code, follow with a loop which scans the keyboard until a valid
key is pressed, and then dispatch to your own routine. Refer to the code for the existing
menu for an example.

Hierarchical menus can be implemented extremely easily—when the operator selects an
item which should link to a lower-level menu, call GetMenuCmd with the menu ID of the
next lower-level menu. The program will take care of returning you to the higher level in the
menu structure. The number of levels which can be implemented is limited only by memory
size.

Note that the <Esc> key is usually reserved to return to the previous menu without
taking any action, as is done for the main menu.

ADDING CONFIGURATION PARAMETERS
This can be done by adding code to the Answer unit SetParameter routine. This routine will
be called with the name of the configuration parameter in param, and its assigned value in
value.

Autonomous File Transfer Utility 12

Configuration File

ABOUT THE CONFIGURATION FILE
The configuration file allows you to set various parameters which affect the program's
operation, without actually having to recompile the program. It is the file with the name
‘ANConfig.Txt’, in the current directory when the program was started. This name can only
be changed by recompiling the program.

The configuration file consists of parameter assignments, with each one starting on a
new line. These lines take the form of

parameter = value
where parameter is the name of a configuration parameter, and value is its assigned value.
Both parameter and value are case-sensitive, i.e., upper- and lowercase characters are
distinct. The program expects at least one space or tab character separating the equals sign
(‘=’) on each side. If an error is detected while reading the file, an error message is displayed,
and further reading is aborted. If more than one assignment is made to the same parameter,
only the last one is significant. If no assignment at all is made to a particular parameter, the
program supplies a default.

A comment, delimited by curly brackets (‘{}’), may be inserted anywhere outside of the
actual assignment, i.e., before the parameter or after its assigned value, but not inside the
assignment. It is customary to start the file with a comment, identifying the author, the
creation date and updates of the file.

CONFIGURATION PARAMETERS
In the following list of configuration parameters, curly brackets (‘{}’) indicate that exactly one
of the values in the list must be used. The value which is printed in boldface is the default.

modemPort = {com1, com2}
This specifies in which of the computer's serial communications ports the modem is
installed.

baudRate = {110, 300, 1200, 2400}
Specifies the default baud rate of the modem, or any rate at which the modem can operate.
Note that during remote connections, it is entirely possible that the modem may switch
speeds to adapt itelf to the calling modem.

dialMethod = {pulse, tone}
Specifies whether the modem should use the older pulse dialing method, which emulates a
rotary dial-type phone, or the faster two-tone dialing system. Some older phone exchanges
cannot use tone dialing. The default is the modem default, which is usually pulse dialing.

modemSpeaker = {off, soft, medium, loud}
The modem's speaker is usually turned on during dialing, so you may follow the status of
the dialing operation. The speaker volume may be adjusted, or the speaker may be turned
off, using this parameter. The default is the modem default, which is usually medium.

timeOutLimit = seconds
When a connection is made with a remote computer, and the system is waiting for a
particular response from the remote user, timeOutLimit specifies the maximum number of
seconds the system will wait. This way, if the remote user hangs up, or the connection is
inadvertently lost, the system is not left waiting endlessly for a reply from a nonexistent
user. The timeout feature can be disabled by setting timeOutLimit to zero. The default
timeout limit is 60 seconds.

Autonomous File Transfer Utility 13

logFile = name
Name is the name of the file which is to be used to log when and which of your users log
into the system. The default is no log file, in which case all the logging information is
displayed on the screen instead.

Autonomous File Transfer Utility 14

Script File

ABOUT SCRIPTS
The script file makes it possible to significantly change the remote interaction without
changing a line of program code. However, if you wish, the script file does allow you to link
your own customized Pascal routines to any part of the interaction.

The interaction proceeds in steps, called screens. For instance, when a remote user first
logs on to your system, Answer automatically displays the screen named ‘main’. Special
commands, called script directives allow you to jump to different screens, to set up menus,
or call external procedures. Screens can actually contain more information than a single
screen on the computer—the beginning and ending of a ‘script file screen’ is determined by
the screen definition.

A powerful feature of script files are menu definitions. Within a screen, it is possible to
create fully automatic menus by using a series of simple commands. With menus, you can
have the program interact with the remote user by jumping to different screens, depending
on the user's response.

As in the configuration file, it is customary to start the file with a comment, identifying
the author and the creation date etc. of the file. The comment can be made to appear the
same by enclosing it in curly brackets (‘{}’), but in fact anything outside of a screen definition
is considered a comment. Using the brackets makes it clear to other people that the
comment is not part of the remote dialog.

As the configuration file was initially set, the script file is the file with the name
‘ANScript.Txt’, in the current directory when the program was started. This name can be
changed by setting the scriptFile parameter in the configuration file.

SCRIPT DIRECTIVES
A script directive must always start on a new line in order to be recognized as such. All
directives start with the backslash (‘\’) character to distinguish them from normal text. This
also implies that whenever a backslash is the first character on a line, the program expects
a directive to follow, and it will signal an error if it does not find one. Therefore, a line of
plain text cannot begin with a backslash.

More often than not, the program expects a single space to separate any parameters
following the directive. Note that the script directive names and the parameters are case-
sensitive, so upper- and lowercase characters are distinct.

\screen screenName directive
This marks the beginning of the screen screenName. The program always starts the remote
dialog with the screen named ‘init’. Any lines of plain text that follow \screen, before the
next \endscreen, are transmitted as is to the remote user.

\endscreen directive
This delimits the screen definition which was started by \screen. Any lines of plain text that
follow \endscreen are ignored. When the screen is being displayed the program reaches
\endscreen, the connection is terminated and the phone is hung up. This can be avoided by
placing a \goto directive just before the \endscreen.

\goto screenName directive
Causes parsing of the current screen to be terminated, and continued at the screen named
screenName.

\wait directive
Suspends parsing of the screen until the remote user presses the <Enter> key. Before using
\wait, you should display a line stating that the user should press <Enter>.

Autonomous File Transfer Utility 15

If the user fails to respond within the period dictated by the timeOutLimit configuration
parameter, the message ‘timeout!’ is displayed, and the connection is terminated.

\proc procedureName directive
Calls the external procedure procedureName. The routine actually called is DoProc in the
User unit, with procedureName as a parameter. It is up to you to amend DoProc to recognize
this name, and dispatch control to the appropriate routine.

\getpassword directive
Prompts the remote user to enter his user name and password, which are then checked
against the password file. If they match, the current user privilege is set to the value entered
in the password file. If the remote user fails to enter a correct user name and password in
three attempts, the connection is terminated, meaning that anything following \getpassword
is ignored.

If the user fails to respond within the period dictated by the timeOutLimit configuration
parameter, the message “timeout!” is displayed, and the connection is terminated.

If logging is turned on, the user name, as well as the current date and time, are written
to the log file. The name of the log file is preset to ‘ANLog.Txt’, but may be changed (or
logging may be switched off) by setting the logFile parameter in the configuration file.

\menu directive
This is the most sophisticated of the directives. It starts a menu definition, which is
terminated by the \endmenu directive. Within the definition, menu directives are used to
define the appearance and effect of a menu, by describing the individual options the user
has. These options, as they appear in the menu, are called items.

\endmenu directive
This terminates the menu definition started by \menu. Parsing of the screen is suspended
until the user enters a character indicating his choice, followed by <Enter>. Only the first
character of the response is significant. If the choice is not valid, the user is prompted
again, until a correct response is received. If the chosen item was associated with a
particular screen in the \item menu directive, anything following the \endmenu is ignored,
and parsing resumes with the associated screen.

If the user fails to respond within the period dictated by the timeOutLimit configuration
parameter, the message “timeout!” is displayed, and the connection is terminated.

\item [key: keyCharacter] [screen: screenName] [privilege:
level] [name: itemName] menu directive

This directive causes the specified item to be added to the list of valid menu choices.
Brackets (‘[]’) enclose optional parameters.

The key parameter defines the key that is used to select the item. KeyCharacter is the
single character that selects the item, or the three-letter code “esc” to indicate the <Escape>
key. <Escape> key should be used to return the user either to the next-higher level menu,
or to the main menu. Although a key need not be associated with the item, this simply
makes the item unselectable, and serves no known practical purpose.†

The screen parameter causes parsing of the script file to continue at the screen entitled
screenName if this item is chosen. If the screen parameter is not included in the item
definition, parsing will resume following the next \endmenu directive.

Privilege allows you to lock out users who do not have sufficient privilege from choosing
the item. Specifically, if their privilege is lower than level, the item will not be displayed and
will be unselectable.

Finally, the name parameter specifies the name of the item, as it will appear in the menu.
If no name is specified, the item will not appear in the menu, but it will still be selectable.
Warning: Everything following “name:” is considered part of the name, so this must be the

last parameter in the \item directive.

† Actually, the item should still be selectable with <Cntl>-A, but it is not advisable to use control-
or Alt-key combinations for menu items

Autonomous File Transfer Utility 16

\default [key: keyCharacter] [screen: screenName] [privilege:
level] [name = itemName] menu directive

This is identical to the \item directive, except that the declared item will also be chosen if
the remote user types just an <Enter>, without making a selection. This item should be the
safest course of action, e.g. a help screen. Note that there is no need to define the item
twice, i.e. once as an \item, and once as \default. If the user does not have sufficient
privilege for the default item, the program will act as if there was no default item, i.e.,
parsing will resume following the \endscreen directive.

\timeout [key: keyCharacter] [screen: screenName] [privilege:
level] [name = itemName] menu directive

This is identical to the \item directive, except that the declared item will also be chosen if
the remote user does not respond within within the period dictated by the timeOutLimit
configuration parameter. Note that there is no need to define the item twice, i.e. once as an
\item, and once as \timeout. If the user does not have sufficient privilege for the timeout
item, the program will act as if there was no timeout item, i.e., parsing will resume following
the \endscreen directive.

EXAMPLE
The following is an example of part of a script file, as it appears in the presupplied sample
file:
\screen mainmenu

Please select a command from the menu.

\menu

\item key: d screen: transmit privilege: 5 name: Download

\item key: u screen: receive privilege: 3 name: Upload

\default key: h screen: help name: Help

\timeout key: esc screen: quit name: Quit

\endmenu

\endscreen

A user with a privilege level of 4 will see the following when this screen is parsed:
Please select a command from the menu.

(u)Upload (h)Help (q)Quit

The user has too low a privilege for the ‘download’ option. If the user enters the character
shown with one of the options, that action is executed. For instance, if the user types an ‘h’,
the Help screen is executed. Control is also passed to that screen when the user presses
Return, since Help is the default item. If nothing happens within the prescribed timeout
period, control is passed to the Quit screen.

Autonomous File Transfer Utility 17

Password and Log Files

PASSWORD FILE
The password file is the file containing the user names, passwords and privilege levels for
all the users who are allowed access to the system. If logging is on, the user name can be
used to determine which of your users are accessing the system. It is not necessary to use
passwords on the system, but they are invoked with the \getpassword script directive (cf.
the “Script File” chapter). If you don't want to use passwords, you don't need to create a
password file. The password file is the file with the name ‘ANPass.Txt’, in the current
directory when the program was started.

A user name is a name (or call sign) you assign to a particular user or installation that
you want to be able to gain access to the system. User names are generally not secret. The
password, however, which should be unique to each user, is. The privilege level controls
what level of access you allow a particular user, with higher numbers implying more access.
For instance, you might not allow users with a privilege level lower than ‘5’ to upload files to
your system, though they might be allowed to download files.

The password file consists simply of successive password entries on each new line, which
are of the syntax:

userName password privilege
Note that even if you don't use privileges, you must assign one, or the program will signal
an error.

Warning: The password protection given by this system is only rudimentary. For instance,
anyone with access to your installation may easily read, add or delete
passwords from the file.

Warning: If you allow users to up- or download files to or from your system, make sure
they do so only in an especially assigned subdirectory. Otherwise, users with
malicious intent may be able to locate and amend the password file.

LOG FILE
The log file, if one has been specified by the logFile configuration parameter, is updated with
a log entry whenever a user attempts to log onto the system. These entries are single lines of
the form

date time {userName, timeout on login, access denied}
where date (in day/month/year format) and time indicate the moment when the user
attempted to log in. If the user did in fact log in by correctly entering his password, the user
name ends the entry. Otherwise, the message “timeout on login” is shown if the user failed
to gain access within the timeout period, or “access denied” if the user did not enter a
correct user name and password in three attempts.

Note that if passwords are not used (i.e. there is no \getpassword directive in your script
file), there is no logging either.

Autonomous File Transfer Utility 18

Bibliography

[1] Electronic Industries Association, EIA Standard RS-232-C Interface Between Data
Terminal Equipment and Data Communications Equipment Employing Serial Binary
Data Interchange, October 1969

[2] MS-DOS Kermit User Guide, C. Giacone, F. da Cruz, J.R. Doupnik, Trustees of
Columbia University, 1988

[3] Turbo Pascal Reference Guide, Version 5.0, Borland International, 1988
[4] International Standards Organisation, Open Systems Interconnection-Reference Model

Autonomous File Transfer Utility 19

Index

ANSWER 5, 8, 9
comment 12, 14
configuration parameter 12

adding new 11
assignment 12
baudRate 12
dialMethod 12
logFile 13
modemPort 10, 12
modemSpeaker 12
scriptFile 14
timeOutLimit 12

downloading 4
file

auxiliary 9, 11
configuration 9, 12
log 9, 17
password 9, 17
script 5, 9, 14

installation
central 4
defined2
peripheral 4

intelligence 3
KERMIT (program) 5, 6, 7, 8
Kermit (protocol) 5, 6
local communication 7

defined 2
Measurement Technology Laboratory 2, 3, 4, 7
menu

definition 14
hierarchical 11
ID 11
main 11

modem 3, 4
negotiation 2
operator 9
oscillator 1
password 5, 17
phase measurements 1
privilege level 5
program core 9
quick data 2
remote communication 3

defined 2
remote interaction 14
RS-232 7, 8
screen 14

definition 14

script directive 14
\default 16
\endmenu 15
\endscreen 14
\getpassword 15, 17
\goto 14
\item 15
\menu 15
\proc 15
\screen 14
\timeout 16
\wait 14

security 3, 5
State Research Institute 1
super data 2
support code 9
system 2
transaction

autonomous 3
defined 2
initiating a 3, 4
nonautonomous 3
semiautonomous 3

transmission delay 1
unit 9
uploading 4
user name 5, 17
VTT 1, 3, 5

